
An efficient real-time architecture

for collecting IoT data

Mark Phillip Loria, Marco Toja

See Your Box Ltd

2 Common Road

London. England SE5 9RA UK

Email: {mloria, mtoja}@seeyourbox.com

Vincenza Carchiolo, Michele Malgeri

Universitá di Catania,

Dip. Ingegneria Elettrica Elettronica e Informatica,

Viale Andrea Doria 6, 95126 Catania, Italy

Email: {vincenza.carchiolo, michele.malgeri}@dieei.unict.it

Abstract—IoT applications has some characteristics that set it
apart from other fields mainly due to the multitude of different
types of sensors producing data. In monitoring applications,
data processing requires real-time or soft real-time responses
in order to aid systems to make important decisions but also
predictive analysis to leverage the potential of IoT by data mining
vast datasets. This paper presents an architecture developed to
efficiently process and store data coming from an huge number
of distributed IoT sensors. The back-end of SeeYourBox services
is currently based on the proposed architecture that has proven
to be stable and meet all the requirements.

I. INTRODUCTION

The ubiquitous presence of interconnected devices with

sensing and communication abilities has brought us to the

era of the Internet of Things (IoT). RFID tags, sensors and

actuators are only a few examples of components that enable

embedded devices and mobile phones to create a network of

things that collect and transmit data from the environment

they are placed in [3]. Data in IoT applications has some

characteristics that set it apart from other fields. We shall go

through them as presented by Li et al. [16]. With information

flowing from a multitude of different types of sensors data

is heterogeneous, with a direct impact on how it’s organized

within the data storage solution. Reduction in sensor cost,

miniaturization and advances in wireless technologies and

techniques contributed to the pervasive distribution of con-

nected objects [13]. This leads the design of the application to

take into consideration the factor of scale in the early stages

of development. Added value is given to recorded data by

defining location or context-awareness [18].

Data collected from distributed sensors can be enriched by

a multitude of sources. Common examples are city traffic

or emotional status of people [20]. Devices can have more

than one sensor, effectively requiring multidimensional data

management [8]. The most evident consequence of these

characteristics is that data itself shapes and influences the

design of an IoT system architecture. Organization of data

storage and processing technologies and techniques are the

two main aspects to consider [24]. In monitoring applications

data processing requires real-time or near real-time responses

in order to aid systems to make important decisions [25]. On

the other hand predictive analysis can leverage the potential of

IoT by data mining vast datasets [15]. Management of IoT data

can be seen and considered from two view points i) Processing

and ii) Storing the IoT data.

In the typical IoT scenario millions of devices constantly

feed a data ingestion system with data sourced by integrated

sensors. The system must be able to handle and process

incoming data with as low as possible response times to

avoid building system bottlenecks. The challenge is to design

a system capable of processing requests that can have real-

time requirements [19]. On the other hand, the volume of

data produced by the average IoT system over time quickly

translates into ever growing datasets. These can be used for

historical reasons only or for creating predictive analysis sys-

tems that use data mining for extracting valuable information.

The speed with which these datasets grow requires a system

that is capable of handling big data from it’s early stages.

It is common to consider these two main aspects of IoT

system as separate and a way to refer to them is hot-path or

online processing and cold-path processing. The former term is

used to refer to data that is processed before being stored. The

latter, or offline processing, is used to refer to analysis that is

performed after data is stored. Typical examples are statistical

analysis, reporting and data mining. In the following sections

we will dive into common strategies that revolve around data

stores to support these requirements in an efficient way. Both

aspects require the support of a data storage solution capable

of managing the challenges of IoT data. Both will need to face

common challenges but with different goals.

The challenges that big data generate in IoT systems are [6]:

• Variety, with things equipped with multiple sensors and

things that serve different purposes, data in an IoT system

is typically unstructured and varies rapidly over time to

adapt to dynamic environments and tasks.

• Volume Lower costs, smaller dimensions and better

battery life achieved by embedded systems in recent

years has enabled the IoT to become more popular and

pervasive [13]. The widespread availability of connected

things constantly transmitting data generates a demanding

amount of data to process.

• Velocity, while processing speed and performance is

usually sought as a positive quality of any data processing

system, in the IoT it has direct implications on how

things can react to the environment and events. It is not

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1157–1166

DOI: 10.15439/2017F381

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1157



uncommon for IoT systems to be required to meet real-

time constraints.

• Veracity, the power of unleashing computation and sens-

ing capabilities to devices that can blend with their envi-

ronment without direct supervision raises issues regarding

the trustworthiness of data. Dealing with trustworthiness

and repution, also the problem to define a strategy that

minimize the attachment cost is a relevant problem [7]

• Value, the ability of sourcing data that would be otherwise

unavailable and the simplification of creating telemetry

systems offers tremendous opportunity to generate value

by analyzing data both online and offline.

The characteristics of big data are the most influencing aspects

in designing a system that handles it. However, solely focusing

on database management systems is not the only aspect that

needs to be addressed when designing a system that needs to

manage big data and this paper deals with them.

A key component of an IoT system (or a big data system

in general) is the middleware software layer that interfaces

things and application back-end [3]. By abstracting backend

implementation and details it allows application developers

to focus on delivering value based solutions faster and more

efficiently without having to be concerned with technology

details of the infrastructure they rely on.

The massive volume of data processed, performance re-

quirements and robustness that are demanded from industrial

applications translate often into a system that is able to

be distributed and replicated across multiple machines and

locations. A carefully engineered middleware allows a system

to scale horizontally effortlessly. In this paper we present an

architecture designed to collect, elaborate and store informa-

tion of IoT system. In section II we discuss the different

solutions presented in literature. In section III we reason about

the motivation to design a new and personalized solution.

Section IV discuss the proposed architecture; in particular, in

this section we present the solution adopted to collect and store

the vast amount of data produced by an IoT system. Finally,

Section V presents some conclusive remarks.

II. RELATED WORK

In this section we will go through the state of the art

of current technology and research in the field of system

architecture. In respect to system architecture we will analyze

the solutions adopted by two of the major cloud computing

providers, Amazon AWS and Microsoft Azure, for creating a

specific IoT platform. The recent IoT revolution has raised at-

tention for scalable applications and storage solutions. Mileage

might vary a lot between different yet similar applications and

there is no silver bullet for solving all classes of problems.

The impact of big data in IoT raises questions on how

to manage and store data efficiently. A commonly accepted

solution still hasn’t emerged as a de facto standard and it is left

to system architects and developers to come up with a solution

that can provide adequate performance [18]. The challenges

to face are numerous and often each is best dealt with

different database management systems. NoSQL databases,

with their dynamic schema and support for horizontal scaling

aid developers in handling scale and heterogeneity of IoT

data. However, lack of strong ACID compliance and often

lack of support for complex queries, results in reasons to not

exclude traditional SQL databases from the possible candi-

dates. Ultimately it’s difficult to set guidelines that can define

a common solution for dealing with IoT data in an effective

and successful way. Small differences in data structure and

processing can lead to very different results and approaches.

Since the public announcement of Amazon EC2 cloud

computing platform in 2006 [4] an array of companies started

to offer on-demand computing solutions. Examples are Google

App Engine and Microsoft Azure. These platforms allow

flexible pay-to-go solutions to implement an all-in cloud

computing infrastructure that is able to scale according to the

applications they run. The rich suite they often offer allows

developers and designers to customize the architecture to fit the

requirements of their applications. However since 2015 two of

the major cloud providers, Amazon and Microsoft, launched

specific IoT oriented cloud platforms. Other than commercial

or marketing reasons, that will not be addressed in this work,

targeting a specific field such as IoT is a reasonable move

from a purely technological prospective since many of the

requirements and problems are recurrent and standardized. IoT

telemetry is usually characterized by hot-path and cold-path

data analysis. While the first is bound with real time concerns

and constraints, requiring event handling and device control,

in the cold-path response time is set aside in favor of scale

and big-data management. A common solution is to separate

these two flows in order to optimize each one accordingly

without having to surrender to compromises. Powering virtual

cloud environments with optimized messaging paradigms and

protocols eases composability of highly optimized modules.

The IoT targeted solutions focus greatly on providing data

ingestion, routing and processing capabilities.

1) IoT Amazon AWS: Amazon AWS is a suite of cloud

computing services offered by Amazon since 2006. Two of

the most popular services are Amazon Elastic Compute Cloud

(EC2) and Amazon S3 (Simple Storage Service). Both active

since 2006, they offer respectively an on demand solution for

deploying virtual servers and storage in the cloud. Launched

in October 2015 AWS IoT is Amazons’ answer to the growing

IoT industry that requires secure, bi-directional communi-

cation between Internet-connected things and the cloud [5].

The core of Amazon AWS IoT is a publisher-subscriber

pattern. To enable the developer to control communication,

the platform offers multiple communication protocols that

include MQTT, HTTP and MQTT over Websockets. Since

internet is not always available for IoT devices (ZigBee or

Bluetooth) it’s possible to interface these devices with physical

gateways. From a device view point AWS offers a dedicated

SDK implemented in a variety of languages, such as C,

Javascript or Arduino. Particular attention in AWS IoT is

dedicated to connectivity and its characteristics in the IoT

field. Aside from using protocols optimized for publisher-

subscriber communication it offers solutions for managing the

1158 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



high latency or unstable connectivity that often characterizes

WSNs and IoT in general. The message broker offers three

different solutions: MQTT AWS IoT offers a customized

MQTT (Message Queue Telemetry Transport) message broker

implementation, HTTP The message broker also supports a

pure publishing protocol as a REST API over standard HTTP

and MQTT over Websockets. By implementing MQTT over

Websockets AWS IoT enables browser based and remote

application to interact with the connected devices using AWS

credentials.

Message handling and delivery is augmented by a Rules

Engine that enables the use of business logic rules for event

handling and message routing. Rules can be applied to specific

devices or groups of them. The engine is a key component in

the Amazon AWS ecosystem as it allows integration with the

comprehensive tool set offered by Amazon and allows devices

to directly interact with all components of the application.

Rules can be defined by using SQL syntax to filter messages

received by the broker and examples of associated actions

triggered by a rule could be writing to a database or invoking

lambda functions.

The Thing Registry, supports the need of a representation

of a device or logical component in the cloud. Information

regarding a thing is memorized in JSON files that contain a

device identifier and attributes. These could be a serial number

or manufacturer code. While not mandatory, a registry entry

eases management and search of things. Using the AWS IoT

console or CLI it’s possible to create, update and search things

within the registry. Non reliable networking and intermittent

connection result in a not always connected device. Such

behavior could be enforced also by power saving strategies.

To simplify interaction with things Amazon AWS offers a

component called Thing Shadow. This feature enables the

developer to manage the state of a thing and applications to

read messages and interact with it at all times. The underlying

system takes care of publishing data when possible. A thing

shadow is implemented with a JSON document and acts as an

intermediary between actual devices and applications.

Finally, while good security policies are never a bad feature

to claim in an information system, in the IoT where things

can directly interact with the physical world, they acquire

particular importance. Connected devices are required to have

credentials to access the messaging broker and the traffic

must be encrypted using Transport Layer Security (TLS).

Authentication is provided with the use of AWS method

(called SigV4) or by using X.509 certificates.

Pricing In Amazon AWS IoT is based on a pay per use

structure and priced on the number of messages published

from and to the platform. To encourage new customers and

developers there is a free tier that allows 250,000 messages

per month for 12 months. In this pricing model a message

represents a block of data counted in increments of 512 bytes.

2) Azure IoT platform: Microsoft’s counterpart to Ama-

zon’s AWS IoT is the Azure IoT platform. It allows an

organization to connect, store, and analyze device data in both

large scale or hobbyist IoT environments. The architecture

follows four guideline principles: heterogeneity, security, hy-

perscale and flexibility [10]. Only outbound connections are

allowed and security protocols are implemented at transport

and application level. The system allows for direct and indirect

connectivity, the latter used for non IP capable devices and can

be built on top of AMQP, MQTT or HTTP communication

protocols. Devices and gateways can implement edge intelli-

gence and analysis to provide reduction of transmitted data and

local decision making. Incoming connections and transmission

protocols are managed by the cloud gateway. It enables remote

communication between field devices and the cloud and can

make use of multiple application level messaging protocols.

High-volume telemetry ingestion and device control is sup-

ported by message brokering systems. This allows decoupling

the edge from the cloud for performance, composability and

scalability. Additionally, the platform offers a dedicated so-

lution for high-volume ingestion only scenarios called Azure

Event Hub. Devices can connect by direct connectivity, agents

or by using client components provided in the form of libraries

or SDKs.

Once data has reached the cloud gateway its flow is directed

by data pumps and analytic tasks. Microsoft Azure offers the

possibility to use a Stream Analytics service or custom event

processing solutions. Common tasks that can be performed at

this stage are data aggregation or enrichment. Another feature

that can be implemented is a rules engine to dynamically

execute data driven rules that can be activated or deactivated

accordingly. Output produced at this stage can be forwarded

to a storage solution or an event handling hub, called Event

Hub.

In Azure IoT platform the cloud gateway is the entry

point to the cloud infrastructure and enables communication

between devices and the application. It’s responsible for

connection management, authentication and authorization. It

usually implements brokered communication model to sup-

port event handling and decoupling of components. Multiple

application level messaging protocols are available for data

routing and management. Azure IoT offers two alternatives

in respect to the cloud gateway technology: Azure IoT Hub

and Azure Event Hub. The former offers high-performance

bidirectional traffic support by combining telemetry ingestion

with command and control traffic. The latter is an ingestion

only gateway capable of handling heavy concurrent sources at

high data rates.

A Device Identify Store offers a direct lookup means

for device identity and cryptographic secrets used during

authentication procedures. Identity and device registry are

kept separate also for performance and security concerns. The

identity store can be internal to Azure Hub or implemented as

an external component with an array of options such as Azure

DocumentDB, Azure Tables, Azure SQL database or third-

party solutions. A Device Registry Store keeps information for

discovery and reference data related to the device. Metadata

associated to devices is contained in this resource and the main

difference between this and operational data is that the former

is slow changing. The device registry can be implemented in

VINCENZA CARCHIOLO ET AL.: AN EFFICIENT REAL-TIME ARCHITECTURE FOR COLLECTING IOT DATA 1159



different ways:

• DocumentDB: each device is described by a document

and the id corresponds to the device id. This solution is

suited for registry function because it accepts arbitrary

data structures.

• SQL database: this solution uses a hybrid approach by

storing properties as columns or as JSON or XML objects

if they represent complex data.

• Third-party solutions: third-party solutions are allowed

(e.g. MongoDB or Cassandra), however the actual schema

will rapresent a variation of the previous two options.

Azure Iot provides a Device State Store. It contains oper-

ational data relative to the device and is separate from the

registry. While in the Amazon AWS the device shadow is a

core component in Azure the device state store is optional.

Data can be pushed directly to storage. An array of implemen-

tation options are available for the device state storage: Azure

Data Lake used as distributed data store for relational and non

relational data, Azure Blob storage that allows to store raw

data and Azure Tables to manage device records and values.

The brokered nature of the communication architecture

allows for flexible data flow management. Data entering the

cloud through the gateway may flow across different data

pumps or analytics tasks. This feature allows for efficient

parallel data processing. Examples are raw telemetry for

registering data from a sensor, hot-path analytics for pattern

recognition or alert triggering. The implementation can make

use of Azure’s stream processing services or custom third-

party solutions to also create complex rules engines and event

processors.

Pricing Microsoft Azure IoT uses a completely different

pricing model compared to Amazon AWS IoT. In place of

a flexible pay-per-use, Microsoft offers four tiers that set a

ceiling to the maximum number of messages that can be

processed per day and their size.

The two IoT cloud solutions presented share some similar-

ities, such as a brokered message management but are quite

different in the way they implement it. This is mainly due

to the underling protocols they use, AMQP for Microsoft

and MQTT for Amazon. However they both support HTTP, a

protocol that is commonly used withing cloud based systems.

They also take two different approaches on the interactions

between things and the cloud platform. In Amazon AWS IoT

interaction revolves around the concept of state with the device

shadow, a feature that is supported but not mandatory in Azure

IoT.

Features supported by security protocols and SDKs are

comparable for both solutions. On one side Amazon AWS

IoT offers a highly focused platform that defines clearly the

architecture of the system. Combined with the rich feature set

of the popular Amazon AWS suite it is easy to deploy and

integrate the IoT platform within large scale existing systems.

On the other hand Microsoft Azure IoT offers a much higher

level of customization and will attract interest of designers that

are in need of a higher degree of control. This is also reflected

by the richer feature set that the AMQP protocol exhibits [22].

Ultimately the pricing models differ a lot. The Amazon

model is based on million messages exchanged while Mi-

crosoft’s on the concept of a Hub and the maximum number

of messages it is able to handle. It’s difficult to compare

these different approaches in a general way since final pricing

depends a lot on customer needs, volume and payload size

of messages exchanged (AWS’s messages are priced in 512B

increments).

III. MOTIVATION

In the previous section we analyzed the potential of cloud

based IoT platforms for data ingestion and processing. The

offerings from Amazon and Microsoft are specially tempting

for small to medium scale projects or ones that have to

be integrated within an existing system. We can imagine

for instance an IT company developing an IoT branch of

development to find these solutions particularity attractive as

they reduce the R&D costs by offering a reliable turn-key

solution that is scalable. The biggest concern remains however

focused on two of the major arguments on opting for a cloud

based solution or an in house system: costs and control over

data

Regarding costs, for a company that founds on IoT its core

business and that expects to scale to millions of active devices

transmitting constantly every day, the yearly fees can quickly

translate into six figure invoices. This is sufficient to require

deep investigation on developing an in house solution.

Regarding control over data, when working with high-value

and mission critical information it is not infrequent for a

customer to require that data is not sent or stored on cloud

systems that are not under direct control of the company

offering a service. Furthermore, government laws of different

countries can apply and require that data is stored in a certain

matter.

These two reasons forced us to investigate and build an in-

house cloud infrastructure and develop from the ground up

a cutting edge architecture that could handle the volume of

data generated by a ultra-large-scale IoT project. Investigation

of the state of the art in database management systems led

to a deep understanding of how data shapes the architecture

of a system and what are the true guidelines to take into

consideration when designing an IoT processing system. The

most valuable outcome was that a high performance large scale

system could not rely on a centralized data storage solution for

the whole system, and furthermore, on a single DBMS engine

for the different components of the system. Research pointed

into this direction and preliminary prototyping confirmed that

by combining different DBMSs it was possible to achieve

performance levels otherwise unreachable with a single shared

engine. Additionally, research and empirical evidence demon-

strated that performance of a DBMS is heavily related to data

structure and the way that it is manipulated. With this in mind

and with an openness to reshape dataflow within the system

it is possible to expand the array of possible candidates that

can match the requirements for data storage. Ultimately the

freedom that results from this allows a company to consider

1160 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



the choice of a DBMS not only under the concern of raw

performance but also from the points of view of licensing,

learning curve, expandability and availability of development

tools.

When designing the architecture of a system that needs to

process IoT data, one of the first challenges that a designer

has to face is how to manage scaling to possibly millions of

devices transmitting data simultaneously. Founding an appli-

cation onto a scalable cloud based infrastructure can represent

a viable strategy as it allows designers to focus on core

technology without the burden of managing in-house legacy

IT systems [1]. Cloud technology has also a very important

impact on the financial lifecycle of a startup as it enables

companies to capital infrastructure expenses into variable costs

[4]. There are also some important points to consider when

evaluating a cloud computing platform in place of an in-

house infrastructure. Evaluating extensively advantages and

disadvantages of cloud computing systems is beyond the

purpose of this work. However in respect to the specific class

of systems we are considering, it has to be said that immense

flexibility that platforms like Amazon AWS IoT or Azure IoT

offer comes at a price.

Where developers pay this price is in the limited control

over the whole process and the inability to fine tune the

system to their specific needs. Where the companies pay the

price is in the potentially ever growing running costs that

reflect the horizontal scaling of the system. As an alternative a

bespoke system where all components are carefully designed

and integrated, can potentially offer much better performance.

The ability to tailor fine details and control over data are just

a few of the reasons that See Your Box took into consideration

when deciding to develop an IoT server architecture from the

ground up in spite of the tempting aspects of Paas and Iaas

services. Most of the research and work was focused on four

aspects:

• Define an architecture for hot-path and cold-path data

analysis

• Design a scalable private cloud infrastructure

• Distribute computational load

• Managing big-data.

See Your Box is a real-time monitoring service where the

telemetry pattern sustains dynamic business logic applied to

incoming data. Hot-path is used for detecting specific events

that clients want to monitor while cold-path data feeds a pre-

dictive analysis machine learning system. With a goal to scale

up to millions of devices transmitting data simultaneously the

system must be able to scale quickly and easily. The five key

characteristics of the system that influenced the architecture

design are:

• Flexibility, in the See Your Box system two devices can

be sourcing different types of data and require to encode

it differently. Once received by the servers it must be

processed and handled according to business logic rules

customized for each client.

• Edge computing - See Your Box devices are not only

sensors with a transmission module but an active re-

programmable OTA smart sensing devices capable of

data processing and event detecting. The system must

provide a bidirectional communication means to control

the devices.

• Scalability - While not subject to extremely variable and

bursty traffic spikes, common for websites and social

networks, the system must be able to replicate, distribute

and scale over the private cloud network.

• Integration See Your Box provides APIs to allow cus-

tomers to integrate their systems with its monitoring

platform.

• Security Privacy laws and regulations require the com-

pany to have full control over data, especially where it is

stored.

Since early stages of development it was evident that the

scale of data involved and the level of flexibility required

would make the datastorage the most critical part of the

system. If not well engineered it would soon become the

bottle neck of the system. By analyzing data flow it was also

evident that different parts of the application had different

requirements when accessing databases. This pointed to a

strategy of combining multiple databases [14]. This aspect

together with the desire of developing a scalable system

brought See Your Box to design a totally modular system

where each component could be fine tuned and optimized for

its task.

IV. ARCHITECTURE

The whole architecture is based on a fully scalable in-

frastructure based on virtual machines that are responsible

of fulfilling specific tasks. A lot of research and effort was

invested in creating an efficient self load balancing system

that could use the full potential of the available hardware. This

allows the system to take advantage of instant and dynamic

vertical scaling driven by the actual load of the system. The

resulting architecture is summarized in figure 1 The system is

Fig. 1. See Your Box Architecture

subdivided in three main component:

• Gateway, accepts incoming requests from devices, au-

thenticates and decrypts data, forwards data within the

system and delivers messages to devices.

• Engine, devoted to analyze collected data

VINCENZA CARCHIOLO ET AL.: AN EFFICIENT REAL-TIME ARCHITECTURE FOR COLLECTING IOT DATA 1161



• Databases, to store data.

By separating responsibilities over multiple machines it is

possible to scale them (horizontally or vertically) separately

and selectively. Performance, however, is not the only con-

cern that motivates such architecture. Spatial redundancy, for

instance, can be achieved by replicating machines within the

system for increased security and availability. Performance

and behavior of a distributed system is only as good as the

efficiency of the underling protocols that enable communi-

cation between its components. Traffic exchanged between

the telecommunications infrastructure and the servers travels

over the HTTP protocol. While many other more specialized

alternatives exist (as seen with AWS IoT and Azure IoT), the

simplicity of the HTTP protocol and the availability of tools

that enable diagnostic and manipulation make it a valid candi-

date for cloud based solutions. Additionally, its popularity and

widespread usage allow a simpler process of integration of the

APIs developed and distributed by the company to its clients.

In the following sections we will go through the different key

components that define the architecture, highlighting findings

and elements that led See Your Box in its design related

decisions.

In the following subsection we present only the Gateway

and the Databases solution used in the system. The Engine

is out of the scope of this paper. It is structured in two

components, the Rules Engine, that applies business logic to

incoming data, providing real-time analysis for event detection

and data processing and the Actions engine, that implements

the event handling logic by processing actions such as sending

e-mails, connecting to external APIs or producing messages

to send to other devices.

A. Gateway

HTTP protocol allows the gateway to expose its services

and APIs with a single protocol simplifying development and

maintainability of the system. Implemented with a lightweight

Python framework it can take advantage of many best practices

and policies that have emerged in the last years with the rapid

widespread of web applications. The gateway was developed

using Flask, a Python simple yet extensible micro framework

serving APIs through an nginx web server. Data is returned to

the client in the form of JSON files.

When using a web application to deliver content for HTTP

requests it is common practice to enclose all code to manage

the request inside the same module that processes the request

and provides a response. While this is an intuitive way to

handle HTTP requests it does have its drawbacks. There are

times when the processing of a request and the corresponding

output can be decoupled. In figure 2 a device is sending data

to a server that has to be processed and subsequently stored

in a database. In a fully sequential synchronous approach

response time to the device depends on processing time of

the tasks associated to incoming data introducing a delay in

the response. In figure 3 instead, by decoupling server and

workers it is possible to keep short response times to the device

Fig. 2. Synchronized approach

Fig. 3. Not Synchronized approach

requests while deferring heavy workloads to other actors of the

system. Many are the reasons to investigate this choice:

• Scaling is possible to distribute over multiple nodes the

computation related to incoming data and time consuming

operations.

• Power management, usually IoT devices are battery pow-

ered and enforce heavy power management policies. A

common strategy is to power on transmission related

hardware when only strictly necessary. Short response

times translate in smaller windows of time when trans-

mission modules are powered on.

• Resource management The dynamic vertical scaling of

the infrastructure allows to distribute resources instantly

as needed by the single components, maximizing perfor-

mance.

In this scenario the main question concerning this matter

was what information really does the device need in the

response sent by the server. If data processing in the system

is viewed as single action the response usually indicate the

processing status. If however, we breakdown processing into

steps it becomes evident that by operating a separation of

concerns the most important piece of information that must

return to the device is the confirmation of successful reception

of data by the gateway. What the server does to that piece of

information is generally not a concern of the device. Since

it is possible to let the API quickly return the outcome of

gathering the incoming data. To rephrase the last concept, the

main purpose of the return message is to inform the device if

the transmission was successful, regardless of what happens

when the system will process the data. However See Your

Box is not only a pure telemetry system. Device flexibility

and edge computing are only two features that clearly require

bidirectional data exchange between things and the server.

The design of the system calls for only outbound connections

from devices, so, for instance, any data directed to a device

1162 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



will require an initiative of the device. To solve this issue,

in asynchronous systems, we use a message box where data

to be sent to the device is stored until emptied. Two options

were evaluated in designing the system: internal or external

message box. An internal message box is advisable in those

Fig. 4. Message box as a component of the gateway

situations were the content of the message box is produced

from the gateway itself. Examples could be to store the status

of the execution of the worker and request a re-transmission.

Messages can be cached in volatile memory and reduce the

overhead of having to initiate yet another transaction as show

in figure 4 . Whilst using an external message box (figure 5)

the gateway must foreword a request to the service that

implements this function and the added latency clearly impacts

the response time to the device. We opted for an external

message box contained into the Device DB. By doing so the

gateway only needs to query once an external service that

returns both messages directed to the device and the metadata

needed to authenticate and foreword the incoming data to the

rules engine.

Fig. 5. Message box as a separate component

Ultimately the main operations performed by the gateway

when it receives data form a device are:

1) Decode incoming data

2) Query the device DB for metadata and pending messages

3) Forward data and device metadata to the rules engine

4) Return messages to the device

The complete sequence diagram of a generic request to

handle data from a device is highlighted in figure 6. Due to

the limited size of data packets involved we will neglect the

time necessary to perform the decode phase. This leaves most

of the responsibility on the efficiency of the communication

protocol (delegation to worker) and performance of the Device

DB data storage.

1) Communication protocol: Splitting the execution of a

task and distributing its load over multiple threads requires a

form of coordination and interprocess communication. A com-

mon way to do this is by using messages queues. They offer an

Fig. 6. Sequence diagram of the Gateway

asynchronous communication protocol, allowing senders and

receivers to exchange messages without directly interacting

with each other. Tasks are submitted as messages to an inbox

and are eventually read and executed by a worker when ready.

See Your Box Gateway uses Celery, an open source task queue

based on message passing. Its architecture abstracts from the

underlying communication protocol and it can be implemented

with a number of different options. The main components of

a task queue are [12]:

1) Messages Tasks are submitted to the queue in the form

of messages. These could be binary objects, strings or

JSON files.

2) Broker is the component that actually stores the mes-

sages. Acts as a middle man between producers and

consumers. Examples of message brokers are Redis or

RabbitMQ.

3) Producer is the portion of application generating the

tasks. This could be an API endpoint that requires the

execution blocking or time consuming operations.

4) Consumer Commonly referred to as a worker, it is

the component that will actually execute the operations

associated with the task.

There are a number of things to consider when imple-

menting a task queue system for asynchronous processing.

The first is regarding persistence of messages on disk or

in memory. This is an important decision that influences

directly the performance of the system. When evaluating what

strategy to adopt we considered that the main reason that

could motivate the adoption of a permanent storage solution

is to avoid loosing messages due to an unexpected power

down or crash of the system. Upon reboot the system could

ideally continue executing the tasks associated to messages

delivered before the event. What was discovered was that in

case of unexpected crashes or hardware failures the risk of

corrupting the disk under the heavy write and read load was

very high. The benefit of being able to possibly recuperate

messages stored in queue upon a crash was minimal compared

to the potential gain in performance when implemented as a

in memory message broker. Efficiency of the system depends

on how fast the workers are able to process the incoming

messages. To take full advantage of the scalable infrastructure

it is also necessary for the application to monitor system load

and performance and automatically deploy new workers within

the system.

VINCENZA CARCHIOLO ET AL.: AN EFFICIENT REAL-TIME ARCHITECTURE FOR COLLECTING IOT DATA 1163



Finally, when configuring a message queue, and specifically

a task queue, it is important to take into consideration ordering

of task execution and completion. The broker will generally

work as a FIFO (First In First Out) queue. Tasks, or messages,

are delivered to the broker in temporal order and executed by

any of the available workers. An alternative is to configure

Fig. 7. Message handling order with single queue

the system with a FIFO queue for each worker. Messages are

delivered in order to the broker and the corresponding worker

will execute the tasks associated with the messages in the same

order. There are a few aspects to consider when choosing one

configuration over the other.

1) Load distribution. A single queue implementation results

in a simple load balancing mechanism, where tasks are

distributed to free workers as they become available. In

a multi-queue configuration load balancing depends a lot

on how the messages have been distributed to the broker.

The producer has the added responsibility to distribute

messages accordingly onto the queues. Uneven delivery

would result in some workers being overloaded while

others remaining in an idle state.

2) Queue distribution A single queue configuration results

in a single point of failure. If the node that contains the

message queue becomes unavailable due to a system

crash, for instance, the whole task queue comes to a

halt until a recovery strategy kicks in. Distributing the

queue on more machines allows the system to contain

the effects of a node failing.

3) Completion order In a queue messages, and the respec-

tive tasks, are executed in order. However no guarantee

can be given on the required execution time of a single

task. This could result in a queue populated by short and

long tasks as shown in figure. Assuming a three worker

scenario, tasks TA1, TB1 and TB2 will start executing

shortly one after the other. However the smaller task

TB2 could complete before TB1, effectively braking the

order.

In a multiple queue scenario, where one worker is dedicated

to a single queue the execution of a task necessarily follows

the completion of the preceding task. In other words, when

a single worker is dedicated to a single queue, delivery,

execution and completion order coincide. Configuration of the

message broker and how queues and workers are deployed

within the system has to take into consideration load balancing,

distribution and message ordering. It is important to consider

carefully the specific problem to solve. In the See Your Box

system message ordering was a fundamental requirement as it

reduces greatly the need of storing additional data for hot path

analysis. A lot of the conditions that are typically monitored

in IoT systems have direct correlation to temporal evolution

of variables and occurrence of events. When data is provided

to the system out of order it has to be stored provisionally

and subsequently retrieved and reordered for analysis. A very

simple way to make queries faster is not to run them at all.

Enforcing temporal order of processed messages allows the

system to use incremental and cumulative analysis that is able

to support almost the majority of monitoring scenarios. This

resulted in multiple queues, one for each worker, and a simple

yet very efficient algorithm for distributing tasks generated by

a device always to the same worker.

B. Databases

As seen in the architecture overview, it was not convenient

nor feasible to use a single database management system

to serve data processing in the whole system. The strategy

adopted was to focus on the single interactions step by step

and define what were the most important requirements for each

one of them. This architecture results in a data storage solution

that has to cover three key components:

• Device DB. This must be a high speed and robust

data store optimized for reads and updates. It contains

metadata associated to the device producing incoming

data and an inbox for messages to deliver in return. The

faster the system can read from this source the quicker it

can serve a request.

• Business DB The system must be able to serve thousands

of clients, handle accounts, ACLs and financial transac-

tions.

• Data points DB This database collects data points of pro-

cessed data. To minimize processing time this database

must be optimized for inserting data, however the main

concern over this database is horizontal scalability and

ability to manage big data.

In processing incoming data we have two goals: in the first

place ensure the fastest possible response to the device and in

the second place optimize processing time as a whole along

both the hot path and the cold path. The approach followed

was in reality very simple. The idea is to define clearly hot and

cold paths and break them up into stages. For each stage define

what the critical component was and optimize it. As a rule of

thumb the quicker both hot and cold paths are traversed by

incoming data, the smaller the fraction of shared resource for

time unit is necessary to process a request. Smaller fractions

will result in a smaller infrastructure that allows the company

to optimize costs. Quick analysis on prototype architectures

revealed that the bottlenecks were database interactions. It was

clear that it was necessary to optimize reads and updates in

the hot path and writes in the cold path. Sporadic writes in

the hot path and offline reads in the cold path were not to

be taken into account in the optimization phase and choice of

solutions.

Business DB is used for storing crucial data such as

accounts, customer’s options and financial data. This database

is generally not directly involved in data processing during

1164 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



either hot-path or cold-path. During the lifetime of an active

device generally the system will need to interact with this

database only during power-on, poweroff and special main-

tenance procedures. For this reason its impact on the overall

performance is limited. The main requirement for this data

storage are support for transactions and consistency. For this

reason, and because data contained exhibits strong relations it

was decided to use a relational database management system.

Research on related work pointed to two possible candidates,

PostgreSQL and MySQL. While the former has an extensive

and powerful feature set and PostgreSQL was already used

inside the location service of the company, its complexity

limited the obtainable performance. MySQL on the other hand

was a proven database with which the team had significant

experience. A concern was raised regarding the costs of

licenses that can have a high impact on yearly operational

costs of the system.

Despite the support and service provided as benefit of the

annual subscriptions, once again similarly to what happened

when evaluating cloud providers it was necessary to con-

sider alternative solutions. In 2009 before the acquisition of

MySQL, an open source fork of the original project was

released under the name MariaDB.

The deviceDB contains metadata related to the device and

messages that need to be sent to the device. This storage

must be optimized for read and update speed. The DeviceDB

has a crucial role in the system and its performance influ-

ences mostly processing time of incoming data. Following

the general architecture of the system, this is the component

that required most attention from the R&D department of the

company. The DeviceDB contains two important components

that are necessary for handling incoming data. These are the

message box for data to be returned to the device and the

metadata associated to it. The latter is used by the rules engine

to know how to interpret data, actions to be performed on it

and state of the device. The requirements of this storage:

• Flexibility - Metadata related to a device can vary a lot.

Smart sensing devices can monitor a large number of

parameters with different encoding schemes. It must be

possible to embrace this difference and not be limited by

a fixed scheme.

• Performance As previously noted, read operations must

be extremely fast in order to obtain low response times.

Write performance is less crucial since this would happen

with a low frequency.

The first database management system that went under

examination for this task was MongoDB. The main reason

was the required flexibility of the data structure used to

describe metadata. Repeated tests demonstrated however that

it’s performance wasn’t up on par with the high speed key-

value NoSQL database or MariaDB tables powered by a

TokuDB engine. Redis was taken into consideration due to

the fact that it minimizes disk access by keeping the database

in memory. This is a problem for scalability since the size

of the database is limited by the quantity of available RAM.

Furthermore some form of persistance on disk needed to be

provided, since the stored data isn’t short lived. Additionally

it was found that read performance wasn’t very different

from an optimized MySQL/MariaDB database for comparable

queries. Similar results were confirmed in literature [18].

These findings quickly made us discard Redis as a possible

candidate. Ultimately one of the company policies was to keep

the set of adopted technologies as narrow as possible in order

to favor interoperability of expertise of the team. Ultimately

this led us to explore what we defined as a hybrid solution

that was to use a SQL database as a key-value storage and

use a text field to store a JSON files representing metadata and

message inbox. Each row would represent a device and would

be indexed upon the device id. This unorthodox approach to

data management proved over time one of the most valuable

decisions in the design of data storage support to the system.

Performance wise we were achieving read and update speeds

comparable to the top class key-value memory based data

storages and flexibility was on the same level of the NoSQL

databases thanks to the adoption of JSON objects. However,

the most important benefit was that, while braking some of the

ACID properties for the data contained inside the JSON fields,

these were guaranteed for the other fields. This allowed us to

integrate the DeviceDB tables with the BusinessDB, enforcing

all consistency benefits of a traditional SQL RDBMS. Not

being able to query single fields of JSON files such as in

MongoDB was not a problem since each incoming packet

would require all the data contained inside the row and never

a part of it.

Once incoming data has traversed all the processing path in

the system and has been augmented by external data and real

time manipulation it must be stored in a database management

system for offline analysis and visualization. Write operations

at this stage are very well defined if not unique. Conceptually

the only storing procedure that is necessary is saving a data

point. This piece of information is essentially a collection of

sensor readings and location photographed at a given moment

in time. However the structure of a data point is extremely

dynamic and heterogeneous.

Evidence in literature coupled with advice provided by IT

consulting companies pointed in the direction of a document

based NoSQL database, particularly MongoDB. The widely

recognized features of this database were soon confirmed

in the prototyping stage of the architecture. The document

based nature of MongoDB allowed for a simplification of

data representation across the system. It uses BSON, a binary

representation of JSON files. The latter was the format under

which data was managed across the system and particularly

fed through the customer accessed APIs. While it might appear

as a trivial detail, it allowed for a more compact code base

that would reduce the abstraction and translation layers across

systems. For a developer a data point is created, manipulated,

stored and finally returned to the client API in the same

format: a simple semi structured JSON file. This allows for

much faster integration, debugging and analysis of the system,

particularly data flow. Ultimately, but most importantly, it was

VINCENZA CARCHIOLO ET AL.: AN EFFICIENT REAL-TIME ARCHITECTURE FOR COLLECTING IOT DATA 1165



the support for massive scale dataset that confirmed MongoDB

as the key solution. Support for auto sharding and distribution

reduced the need of designing a complex mechanism for

horizontal scaling of the system. The only true challenge

that was encountered when developing this component was

the interference of the read and write operations. Sudden

slowdowns and reduction in performance was experienced

when these two operations would happen at the same time.

The solution was to implement a semaphore system that would

lock writes when a read operation was performed.

V. CONCLUSIONS

The IoT industry has experienced an exponential growth

in the last years. It has been pushing the boundaries of

conventional architectures by challenging developers with

massive quantities of data to be processed with near real time

requirements. Scale, heterogeneity and velocity of data have an

immense impact on the system design. We analyzed how two

of the major cloud computing providers tackled the challenges

of the IoT in their comprehensive service suites. With a strong

focus on modularity, composability and horizontal scaling they

both offer valuable solutions for an array of scenarios. The

commodity of a turn-key cloud based platform comes at a

cost that could potentially grow out of control, impacting the

finances of a company quite heavily. Costs don’t always grow

linearly with the scale of the system due to the nature of some

computational operations that are performed on data or on

pricing model.

Cloud based platforms enable startups to quickly penetrate

the market. However, for young companies it is not only

a matter of balancing NRE and operating costs. Turn-key

solutions like Paas and Iaas allow startups to focus on building

a team with skills closer to the business core technology and

penetrate the market faster and more effectively. Ultimately

deciding for a cloud based solution or an in-house one requires

balancing interests from different points of view that are

not strictly IT related. According to the specific application

scenario a bespoke system with a custom architecture, despite

a significantly higher NRE can represent a better solution.

The proposed architecture is a brokered task queue system

distributed over a private cloud infrastructure. Incoming mes-

sages from devices are paired with metadata stored in a hybrid

SQL data storage that combines the flexibility of NoSQL

key-value or document based DBMSs and reliability and

ACID compliance of an SQL traditional relational database

management system.

Ultimately the designed system, presented in this work, has

been implemented and released onto the market. After 12

months and over 1 million data points collected, the system has

proven to be stable and meet the preset requirements, enabling

the company to expand its business and acquire new clients.

REFERENCES

[1] A115. How cloud-powered FinTech start-ups are disrupting the banks.
2016. http://a115.co.uk/publications/awsfintech-startups.html.

[2] Inc. Aerospike. What is a Key-Value Store? 2016. http://www.aerospike.
com/what-is-a-key-value-store/

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito. "The
Internet of Things: A survey". In: Computer Networks 54.15
(2010), pp. 2787 -2805. ISSN: 1389-1286. DOI: http://dx.doi.org/
10.1016/j.comnet.2010.05.010. http://www.sciencedirect.com/science/
article/pii/S1389128610001568

[4] Amazon AWS. About Us. 2016. https://aws.amazon.com/about-aws/
[5] Amazon AWS. What Is AWS IoT? 2016. http://docs.aws.amazon.com/

iot/latest/developerguide/whatis-aws-iot.html
[6] Galip Aydin, Ibrahim Riza Hallac, and Betul Karakus. "Architecture and

Implementation of a Scalable Sensor Data Storage and Analysis System
Using Cloud Computing and Big Data Technologies". In: Journal of
Sensors 2015 (2015), p. 11. URL: 10.1155/2015/834217.

[7] V. Carchiolo at Al. "Users’ attachment in trust networks: reputation vs.
effort". In International Journal of Bio-Inspired Computation, 2013, pp.
199–209, ISSN: 1758-0366. DOI: 10.1504/IJBIC.2013.055450

[8] A. Chianese, F. Piccialli, and G. Riccio. "SMuNe: A Smart Multi-
sensor Network Based on Embedded Systems in IoT Environment".
In: 2015 11th International Conference on Signal-Image Technology
Internet-Based Systems (SITIS). 2015, pp. 841-848. DOI: 10.1109/SI-
TIS.2015.51.

[9] CompareBusinessProducts.com. Top 10 Largest Databases
in the World. http://www.comparebusinessproducts.com/fyi/
10-largest-databases-in-the-world

[10] Microsoft Corporation. Microsoft Azure IoT Reference Architecture.
2016.

[11] DB-Engines. DB-Engines Ranking. 2016. http://db-engines.com/en/
ranking

[12] Bryan Helmig. Why Task Queues - ComoRichWeb. 2012. http://www.
slideshare.net/bryanhelmig/task-queuescomorichweb-12962619.

[13] Marc Jadoul. How Big is the Internet of Things? 2016.
http://www.business2community.com/business-innovation/
big-internet-things-01593563

[14] L. Jiang et al. "An IoT-Oriented Data Storage Framework in
Cloud Computing Platform". In: IEEE Transactions on Industrial
Informatics 10.2 (2014), pp. 1443-1451. ISSN: 1551-3203. DOI:
10.1109/TII.2014.2306384.

[15] J. Jin Kang et al. "Predictive data mining for Converged Internet of
Things: A Mobile Health perspective". In: Telecommunication Networks
and Applications Conference (ITNAC), 2015 International. 2015, pp. 5-
10. DOI: 10.1109/ATNAC.2015. 7366781.

[16] T. Li et al. "A Storage Solution for Massive IoT Data Based on NoSQL".
In: Green Computing and Communications (GreenCom), 2012 IEEE
International Conference on. 2012, pp. 50-57. DOI: 10. 1109/Green-
Com.2012.18.

[17] DigitalOceanTM Inc. O.S. Tezer. SQLite vs MySQL vs PostgreSQL: A
Comparison Of Relational Database Management Systems. 2014.

[18] C. Perera et al. "Context Aware Computing for The Internet of Things:
A Survey". In: IEEE Communications Surveys Tutorials 16.1 (2014), pp.
414-454. ISSN: 1553-877X. DOI: 10.1109/ SURV.2013.042313.00197.

[19] T. A. M. Phan, J. K. Nurminen, and M. Di Francesco. "Cloud Databases
for Internet-of-Things Data". In: Internet of Things (iThings), 2014
IEEE International Conference on, and Green Computing and Com-
munications (GreenCom), IEEE and Cyber, Physical BIBLIOGRAPHY
53 and Social Computing(CPSCom), IEEE. 2014, pp. 117-124. DOI:
10.1109/iThings.2014.26.

[20] Evangelos Psomakelis et al. "Big IoT and social networking data for
smart cities: Algorithmic improvements on Big Data Analysis in the
context of RADICAL city applications". In: CoRR abs/1607.00509
(2016). http://arxiv.org/abs/1607.00509.

[21] Redis. Redis Documentation. 2016. http://redis.io/
[22] C. Rommel at al.. Amazon AWS & Microsoft Azure IoT Deep Dive.

2016.
[23] Bryce Merkl Sasaki. Graph Databases for Beginners:

ACID vs. BASE Explained. 2015. https://neo4j.com/blog/
acidvs-base-consistency-models-explained/

[24] W. Shi and M. Liu. "Tactics of handling data in Internet of things". In:
2011 IEEE International Conference on Cloud Computing and Intelli-
gence Systems. 2011, pp. 515-517. DOI: 10.1109/ CCIS.2011.6045121.

[25] F. Xhafa et al. "A Software Chain Approach to Big Data Stream Pro-
cessing and Analytics". In: Complex, Intelligent, and Software Intensive
Systems (CISIS), 2015 Ninth International Conference on. 2015, pp.
179-186. DOI: 10.1109/CISIS.2015.24

1166 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


