
Abstract—Brain  injuries  seem  to  be  one  of  the  most

widespread diseases. Hence, the main goal of our research was

to investigate feature importance in the severe brain damages

dataset according to the Glasgow Outcome Scale. This scale is

recognized as one of several measures used to evaluate patients'

functional  ability  as  well  as  their  conditions  after  applying

brain damage therapy. The current approach is focused on an

identification  of  a  relevant  subset  of  features  with  a  similar

influence on quality of classification models. According to the

results gathered, about 12 from 42 descriptive features could be

treated  as  important  without  the  decrease  of  classification

results.

I. INTRODUCTION

CCORDING to  many  sources  [1-8],  brain  damages

seem  to  be  one  of  the  most  widespread  civilization

illnesses,  occurring  at  different  levels  of  severity,  usually

described by means of various measures  (scales)  [9].  It  is

important  to  say  that  there  is  no single  outcome measure

which can describe or predict all dimensions of recovery and

disability  after  acute  stroke.  Several  scales  have  proven

reliability  and  validity  in  stroke  trials  [10],  including  the

National  Institutes  of  Health  Stroke  Scale (NIHSS),  the

modified  Rankin  Scale [8]  (mRS,  patient’s  functional

agility), the Barthel Index (BI), the Glasgow Outcome Scale

(GOS, assessment of patient’s condition after therapy),  the

Extended Glasgow Outcome  Scale (GOS-E)  [11]  and  the

Stroke  Impact  Scale (SIS).  In  this  domain,  several  scales

have been applied in stroke trials to derive a global statistic

for  better  recognition  of  the  effect  of  acute  interventions,

although this composite statistic is not clinically tenable. In

practical  applications,  the  NIHSS  is  efficient  for  early

prognostication and serial assessment. In turn, the BI index

is  helpful  for  rehabilitation  planning.  The mRS and GOS

parameters specify cumulative values of outcome and they

are appropriate for clinicians and patients considering early

intervention, while the SIS scale was created to evaluate the

patient's  perspective  on the effect  of stroke. However,  the

GOS-E extends five original GOS scale categories to eight.

It  is made to apply wide categories  that are insensitive to

change and to deal with difficulties with reliability due to

lack of a structured interview format. Familiarity with these

A

different  scales  could  support  clinicians'  interpretation  of

stroke research and improve their clinical diagnosis. 

The Glasgow Outcome Scale (GOS) is a scale in which

patients with brain injuries, such as cerebral traumas, can be

divided into groups that allow standardized descriptions of

the objective degree of recovery. This scale was very often

applied  before  other  scales  were  introduced.  After  the

improvement  of  disability  recognition,  the  GOS has  been

replaced  by  the  Disability  Rating  Scale (DRS)  [12].

However, it is still cited occasionally in the literature, often

in research  investigating early acute medical  predictors  of

gross outcome. In these type of approaches, five classes of

the  original  scale  are  defined:  dead,  vegetative,  severely

disabled, moderately disabled, and good recovery.

II.  METHODS AND TOOLS

A. Input data

An investigated data set contains the  Glasgow Outcome

Scale characterization  for  161  anonymous  patients.  For  a

description  of  each  object,  42  features  were  defined  [7].

Objects  were  assigned  into  five  different  categories,

according to the Glasgow Outcome Scale: 1 means death, 2

means persistent vegetative state, 3 means severe disability,

4 means moderate disability and 5 means good recovery. 

Additionally,  features  are  divided  into  six  groups

according to their context:

A1-A9 – General data about patient.

B1-B14 – Patient’s specific features.

C1-C7 – Condition of health.

D1-D3 – Disorders.

E1-E6 – Treatment.

F1-F3 – Rehabilitation.

Detailed  information  about  features  and  their  values  is

presented in Table I.

B. Methods

The  main  focus  during  the  research  is  to  investigate

presented  data  in  the  context  of  finding  relevant  features

inside data that provide similar information after reduction

of  a  feature  space  [13].  For  this  purpose,  four  different

approaches  for  ranking  measures  and  algorithms  were
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applied. Classification quality was computed before and 

after an application of a feature selection procedure. Firstly, 

a simple filter method using a ranking measure in a form of 

Information gain was applied to calculate ranking values for 

each feature [14]. In this step, the dataset was extended by 

adding contrast variables to define the threshold between 

informative and non-informative features [15]. It means that 

each original feature was duplicated and its values were 

randomly permuted among all objects. In this way, a set of 

non-informative, by design shadow, features was added to 

the set of original features. The features, selected as 

important rather than random, were treated further as an 

important feature subset. Then, the classification process 

using five learning algorithms (CN2 rules, Classification 

Tree, kNN, SVM, RandomForest) was executed. After that, 

to extract a relevant feature subset, two other algorithms 

were applied [16]. The first one is based on the frequency of 

presence of features contained in the rule model that is 

created on the basis of the original dataset and additionally 

takes into account the quality of rules in which an analyzed 

feature occurs. Thus, the importance value of the i
th

 attribute 

(DRQualityImp) could be presented as: ݑܴܳܦ𝑎݈݅ݐ𝑦𝐼݉𝐴 = ∑ ܳ𝑅ೕ ∙ ሺ𝐴ሻݏ݁ݎܲ
=1  

 

where n is a number of rules in the learning model, QRj is the 

classification quality of the rule Rj and Pres(Ai) describes the 

presence of the i
th

 attribute, usually either 1 (feature 

occurred) or 0 (feature did not occur). In turn, the quality of 

a given rule Rj is defined as: ܳ𝑅ೕ = 𝑟𝑟ܧ𝑟𝑟ܧ + 𝑟𝑟ܧ  

 

where Ecorr is a number of correctly matched learning objects 

by the j
th

 rule and Eincorr is a number of incorrectly classified 

objects by this rule. In turn, the second algorithm 

(DTLevelImp) is based on the presence of a feature in the 

decision tree nodes generated from the original dataset and 

also takes into consideration the product of a weight Wj 

assigned to a given level j of the tree and the number 

Inst(node) of cases classified in a given node at this level in 

which the feature Ai occurs. Thus, the DTLevelImp of the i
th

 

attribute can be presented as: ܦ𝑇𝐿݈݁݁ݒ𝐼݉𝐴 = ∑ ∑ 𝑊 ∙ 𝐼݊ݐݏሺ݊݁݀ሻ ∙ ሺ𝐴ሻ𝑥ݏ݁ݎܲ
ௗ=1

𝑙
=1  

 

where l is a number of levels inside the model, x is a number 

of nodes inside at a given level and Pres(Ai) denotes the 

presence of the i
th

 attribute, usually either 1 (feature 

occurred) or 0 (feature did not occur).  

In turn, a weight W of the level j is defined as: 𝑊 = { ͳ if ݆ = ͳ, ݆ ∈ 𝑁,ݓ−1ʹ if ͳ ≤ ݆ ≤ ݈.  

 

The last approach to feature selection is based on rough set 

theory. In rough set theory, feature selection refers to finding 

the so-called decision reducts in a dataset (called a decision 

table). In general, a decision reduct is an optimal (minimal) 

subset of attributes preserving the classification ability as the 

TABLE I. 

FEATURES DEFINED ACCORDING TO THE GLASGOW OUTCOME 

SCALE 

C
o

d
e 

N
a

m
e 

V
a

lu
es

 

A1 Gender Male; Female 

A2 
Admission_diagnosis 

(Acc. to ICD-10 classification) 

Subarachnoid_hemorrhage; 

Intracerebral_hemorrhage; 

Cerebral_infarction; Stroke; 

Other_cerebrovascular_ 

diseases 

A3 
Final_diagnosis 

(Acc. to ICD-10 classification) 

Subarachnoid_hemorrhage; 

Intracerebral_hemorrhage; 

Cerebral_infarction; 

Stroke;  

Other_cerebrovascular_ 

diseases 

A4 Body_temperature [0C] Discrete variable 

A5 Age [years] Discrete variable 

A6 Abode Town; Village 

A7 Time spent in hospital [days] Discrete variable 

A8 

Time_elapsed  

(from observation of illness 

occurrence to hospital admission) 

Less_than_1_hour; 

Less_than_3_hours; 

3-6_hours; 6-12_hours; 

12-14_hours; 2-3_days; 

More_than_3_days 

A9 Patient_cure_location 
Stroke_ward; 

Neurology_ward 

B1 Arterial_hypertension Present; Absent 

B2 Ischemic_heart_disease Present; Absent 

B3 Past_cardiac_infarct Present; Absent 

B4 Atrial_fibrillation Present; Absent 

B5 Organic_heart_disease Present; Absent 

B6 Circulatory_insufficiency Present; Absent 

B7 Diabetes Present; Absent 

B8 Hypercholesterolemia Present; Absent 

B9 Obesity Present; Absent 

B10 Transient_ischemic_attack Present; Absent 

B11 Past_stroke Present; Absent 
B12 Infection_in_a_week_to_stroke Present; Absent 
B13 Alcohol_addiction Present; Absent 
B14 Nicotine_addiction Present; Absent 

C1 Systolic_pressure Present; Absent 

C2 Diastolic_pressure Present; Absent 
C3 Pulse Discrete variable 

C4 Heart_action 

Normal_rythm; 

Atrial_fibrylation; 

Other_dysrythmia 

C5 General_state_at_admission 

Getting_up_alone; 

Staying_in_bed_ 

consciousness; 

Consciousness_disturbances 

C6 Consciousness_at_admission 
Conscious; Coma; 

Consciousness_disturbances 

C7 

Stroke_type* 

(Acc. to Oxford classification,  

OCSP) 

LACS; PACS; POCS; 

TACS; Hard_to_class 
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original set of attributes. Various rough set methods were 

proposed to calculate decision reducts in decision tables, 

however calculation of all decision reducts is the NP-hard 

problem (see [20]). Therefore, in the experiments, we have 

used a more efficient method, called the QUICKREDUCT 

algorithm proposed in [21] and implemented in the Rough 

Sets package for the R environment. It is an example of a 

method producing the so-called decision superreduct that is 

not necessarily a decision reduct (i.e., it is a subset of 

attributes that may be not minimal). 

After subset selection, the classification process was 

applied. All results of classification, before and after feature 

selection, are presented in Table II. In this table, results were 

obtained using a dataset divided into five concepts. 

However, we also provide results gathered using a modified 

dataset, where five primary concepts were replaced by two 

more general categories: healthy and sick. Healthy concept 

corresponds to the 5
th

 concept, i.e., good recovery, in turn, 

the sick concept corresponds to the remaining concepts 

merged into one. 

 During the experiments, the Orange data mining tool 

[17] and the R environment were applied. Our own 

implementation of algorithms in this environment was also 

involved. The 10-fold cross validation paradigm was also 

applied during the classification process. 

III. RESULTS AND CONCLUSIONS 

The results of feature selection and calculation of quality 

of classification are acquired in Table II and Table III. 

Additionally, the average results are presented in a form of a 

chart, see Figure 1. It could be observed that each method 

caused decreasing a number of features in comparison to the 

original dataset. Particularly, in case of the five-class 

problem, application of contrast features led to selection of 

12 relevant features from 42 original features, and at the 

same time classification accuracy (CA) and area under ROC 

curve (AUC) [18,19] slightly increased. Other three methods 

also reduced a feature space, from 42 features to 29, 17 and 

9 using DRQualityImp, DTLevelImp, and Rough Set  

approaches respectively. However, in these approaches, CA 

and AUC parameters slightly decreased. In turn, in case of 

the two-class problem, there could be observed substantial 

improvement of classification accuracy. 

 

 

Fig.  1 Average results of classification accuracy (CA) and area under 

ROC curve (AUC) using five learning models.  

 

  

During the experiments, some of the features achieved 

significant values of ranking measures. In turn, other 

features were estimated as much less important. In this way, 

it could be stressed that the most important features should 

be diagnosed very carefully. 

The future research should be focused on simplification of 

the descriptive parameters, finding the compromise of a low 

classification error rate according to high efficiency of the 

Glasgow Outcome Scale. Some constructive induction 

methods could be applied to find general measures that may 

simplify diagnosis support for medical specialists. 
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D1 
Consciousness_disorders 

(during cure) 

Present; Absent 

D2 
Speech_disorders 

(during cure) 
Present; Absent 

D3 
Swallowing_disorders 

(during cure) 

Present; Absent 
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4  (moderate disability) 

5  (good recovery) 
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TABLE II. 

CLASSIFICATION RESULTS USING THE ORIGINAL SET AND THE SELECTED SUBSET OF IMPORTANT FEATURES, APPLYING FIVE CLASSES.  

Dataset Original 
After contrast 

features 
DRQualityImp DTLevelImp Rough Set 

# of features 42 12 29 17 8 

Classification  

quality 
CA AUC CA AUC CA AUC CA AUC CA AUC 

CN2 0.4279 0.6541 0.5081 0.7512 0.4482 0.6320 0.3662 0.5618 0.4471 0.6228 

CT 0.4338 0.6734 0.4165 0.6848 0.3912 0.6453 0.4592 0.6820 0.4904 0.7221 

kNN 0.4904 0.6963 0.5397 0.7482 0.4103 0.6718 0.4210 0.7576 0.4217 0.7012 

SVM 0.4772 0.7846 0.5151 0.8051 0.4901 0.7393 0.4397 0.7358 0.4401 0.6705 

RF 0.5279 0.8145 0.5213 0.8132 0.4529 0.7913 0.4960 0.8117 0.4526 0.7755 

AVG 0.4714 0.7246 0.5001 0.7605 0.4385 0.6959 0.4364 0.7098 0.4504 0.6984 

TABLE III. 

CLASSIFICATION RESULTS USING THE ORIGINAL SET AND THE SELECTED SUBSET OF IMPORTANT FEATURES, APPLYING ONLY TWO 

CLASSES.  

Dataset Original 
After contrast 

features 
DRQualityImp DTLevelImp Rough Set 

# of features 42 12 24 17 9 

Classification  

quality 
CA AUC CA AUC CA AUC CA AUC CA AUC 

CN2 0.6640 0.6858 0.7518 0.7585 0.6702 0.7452 0.6835 0.7471 0.6890 0.7519 

CT 0.6452 0.6532 0.6768 0.7074 0.6765 0.7004 0.6640 0.7123 0.6890 0.6778 

kNN 0.6640 0.7581 0.6963 0.7301 0.6827 0.7242 0.6893 0.7516 0.6574 0.7082 

SVM 0.7511 0.7756 0.7577 0.7842 0.7452 0.7860 0.7151 0.7687 0.7199 0.7610 

RF 0.7261 0.7975 0.7386 0.7848 0.7257 0.8067 0.7077 0.7862 0.7449 0.8076 

AVG 0,6901 0,7340 0,7242 0,7530 0,7001 0,7525 0,6919 0,7532 0,7000 0,7413 
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