
Aspect-driven Context-aware Services

Karel Cemus, Filip Klimes

Dept. of Computer Science

Czech Technical University in Prague

Prague 2, 121 35, Czech Republic

Email: {cemuskar,klimefi1}@fel.cvut.cz

Tomas Cerny

Dept. of Computer Science

Baylor University

Waco, TX, 76798, USA

Email: tomas_cerny@baylor.edu

Abstract—Nowadays enterprise software solutions must deal
with ever-growing complexity and a multitude of business pro-
cesses. The mainstream system design decomposes the system
into small reusable services. While these services isolate certain
system logic and address efficient elasticity towards growing user
demands, there are multiple issues related to such a design, such
as limitations to deal with restated information, information reuse
or the ability to address cross-cutting concerns across multiple
services. This paper highlights limitations of service-oriented
architecture and proposes an alternative decomposition through
aspect-driven service-oriented architecture. Such architecture
involves adaptive, context-aware services preserving simple main-
tenance while addressing information reuse and crosscuts across
services. The paper provides a formal description of the proposed
architecture as well as a demonstration through a case study,
showing approach properties and benefits.

I. INTRODUCTION

C
ONTEMPORARY Enterprise Information Systems

(EISs) grow in both scale and complexity. Functional

requirements are becoming more advanced because they

require context-awareness. Considering various aspects of a

business domain within current execution context, i.e., within

time, user’s privileges, and state of the system. Non-functional

requirements often include scalability and distribution, handle

and serve a large amount of requests or process large volumes

of data [1].

Having this mind, conventional systems have to deal with

several aspects of a business domain. Besides complex domain

models [2], there are access policies and business rules that

need to be implemented to properly secure and maintain data.

For illustration, consider a basic e-shop system as an

example of conventional EIS. There are users representing

both customers and employees with various access roles and

responsibilities. Next, there are products with description and

photo gallery, organized into categories, and connected to

the store to manage delivery and stock. Finally, the system

maintains orders, their state, changes in time, billing, and state

of delivery. Obviously, even this simple and reduced example

is quite complex. The business model is tangled and there

are a few stateful objects implying conditional business rules

and access policy. Finally, there exist 3rd party services for

billing, shipping, and emailing. For the sake of simplicity,

we do not consider sales introducing time-based conditions

combined with the stock.

One common way to implement these systems is to use

conventional technologies that head towards monolith appli-

cations with poor scalability and maintenance. This results

from difficult domain decomposition and high information rep-

etition due to significant concerns tangling [3]. Alternatively

and more likely, to deliver a highly scalable and distributed

system, there exists Service-Oriented Architecture (SOA) [1],

[4], [5] decomposing a system into many smaller services

following Single Responsibility Principle [6]. However, while

this decomposition increases scalability and throughput, its

maintenance gets more difficult as the services are more

encapsulated, self-standing, isolated, and possibly written in

different programming languages, which significantly reduces

a possibility of information reuse and forces manual repetition

instead.

In this paper, we discuss system decomposition into ser-

vices, and highlight limitation of the overall architecture. Next,

we propose an enhancement of SOA through adaptive context-

aware services preserving simple maintenance and keeping

minimal information restatement.

This paper is structured as follows. In Section II, we discuss

SOA more deeply and in Section III highlight its limitations

and opened challenges. In Section IV, we present Aspect-

Oriented Design Approach efficiently dealing with business

rules repetition and transformation, and we generalize and

modify this approach to fit SOA environment and present the

design in Section V. We show a case study in Section VI and

in Section VII we elaborate and briefly evaluate the alternative

existing approaches. We conclude the paper in Section VIII.

II. CONVENTIONAL DESIGN

Complexity and wide use of EISs emphasize their ro-

bustness and scalability. The common approach in SOA to

design a large distributed system suggests decomposition of

the application logic into small encapsulated standalone units

called services responsible for and encapsulating a part of

the business domain [4]. For example, in the e-shop system,

one service is responsible for the user management, while

the other for the product management. These services are

then composed together to deliver more complex functionality.

An example of such a composite service [7] is the orders

management. It depends on both users and products plus adds

additional features.

Definition. A service is a reusable, cohesive, managed,

deployable, and independent process interacting via mes-

sages. [7] [8]

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1307–1314

DOI: 10.15439/2017F397

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1307



Fig. 1: E-shop design in conventional SOA

Definition. A composite service accesses and combines infor-

mation and functions from existing service providers. [7]

SOA suggests a system infrastructure following the structure

of the real business [4]. In consequence, when the e-shop has

departments responsible for the store (products and stock) and

customer service (orders), then these are also components [1],

[7] in the system. The internal design of these components

may differ based on their implementation. Properly imple-

mented SOA emphasizes scalability and testability because it

significantly reduces the complexity of services comparing to

monolith applications [8]. On the other hand, it significantly

reduces and complicates information reuse and enforces man-

ual repetition instead, which easily leads to inconsistencies [3]

and error-prone and expensive maintenance.

Definition. SOA is set of design principles organizing soft-

ware components (services) around business capabilities and

connects them through standard interfaces and messaging

protocols. Each component is self-contained, black box for

consumers, and exposes only its interface [7], [9].

Having the e-shop example from the previous section, Fig-

ure 1 presents the system architecture applying conventional

SOA, more specifically Microservices1 pattern. The User,

Store, and Customer service components represent depart-

ments of the business with a Web service as a composite

service implementing a user interface. The services interact

through a RESTful protocol2 [11]. We use this example as a

reference later in this paper.

III. CHALLENGES IN SERVICE-ORIENTED ARCHITECTURE

Decomposition of a system into these small units delivers

much simpler design, evolution, and maintenance of both units

and the system itself. Furthermore, the communication through

a neutral environment such as HTTP protocol makes the ser-

vices independent of a particular technology. That enables us

1There exist attempts to deprecate SOA due to poor implementation and
many failed projects in past. However, the approach itself is general and there
are more evolved specializations such as Microservices pattern [9].

2Microservices pattern suggests a use of a simple connection and smart
endpoints [9], but we could also use more complex alternatives such as
catalogs, service locators, and Enterprise Service Bus [5], [10]. It would
be major overhead in this example plus conventional approaches highlight
choreography over orchestration [8].

to develop each service in a different programming language

and to use different frameworks. Next, the natural decompo-

sition by the business structure clearly defines responsibilities

of components, which supports agile programming [1], multi-

team development, and rapid delivery. Unfortunately, there still

remain some challenges we face. Among others, we address

the following issues in this paper.

A. Composition of Business Rules

First, while decomposition brings clear design, the compo-

sition requires reuse of information from services it depends

on. For example, Order composite service needs to know

the model structure and the business rules of the underlying

services User and Product to be able to validate incoming

orders or even additionally transform and expose the rules to

web API, e.g., for client-side validation necessary for a user-

friendly user interface. However, distributed environment and

possibly different technologies basically prevent the simple

sharing. The model description can be exposed through API

schema3, but reuse of business rules is very difficult even in

monolithic applications [3], [14].

B. Business Domain Configuration

Business domain configuration is a special case of service

composition. In an existing system, multiple services often

need to share some configuration, for example, a VAT percent-

age or business hours definition. While the VAT computation

could be extracted to a single specialized microservice, a

specialized service determining whether now are business

hours or not seems to be unnecessary overhead. Instead,

shared simple configuration would be the much easier solution.

Unfortunately, either we configure each service separately and

have difficult maintenance due to information restatement,

or we basically hit a special case of service composition;

this is similar the reuse of business rules of a basic service

configuring the domain. Neither way it is efficient and easily

maintainable using conventional technologies.

C. Business Rules Maintenance

Having the business logic distributed into many self-

standing services carries besides benefits also difficult evolu-

tion. When a change request occurs, we must manually update

each affected service. The effort might be too high to make

a small change such as an adjustment of business rules due

to changes in the business domain. Unfortunately, there is no

way to share the rules or update them in a batch.

D. Business Documentation Extraction

Finally, the overall system can get quite complex especially

when the system is large or grows. Acquisition of current

business documentation covering the services, their operations,

model, and applied business rules is very challenging and often

requires a lot of manual efforts. Extraction of this information

from distributed systems is very limited.

3We may use SOAP with WSDL [12] or RESTful services optionally with
controversial WADL [13].

1308 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



In this paper, we present a novel adjusted aspect-driven

design approach to fit SOA and distributed systems. The

approach focuses on simplification of development and main-

tenance through the elimination of manual information rep-

etition. Instead, it automates transformation, reuse, and re-

statement of business rules, which enables us to provide an

alternative and efficient solution to these challenges.

IV. ASPECT-DRIVEN DESIGN APPROACH

As we demonstrated in the previous sections, there are

concerns in EISs, which are hard to effectively capture within

SOA, e.g. business rules composition and maintenance. We

call them cross-cutting concerns because they affect other con-

cerns throughout the system. For instance, multiple services

are affected by the underlying data model, or they are subject

to a global business rule. By using conventional approach,

these concerns usually get tangled into the underlying code in

multiple points, making it hard to develop and maintain.

Definition. A cross-cutting concern, or aspect, is a system

property which affects other system components by cross-

cutting their functionality. [15]

Aspect-Driven Design Approach (ADDA) utilizes princi-

ples of Aspect-Oriented Programming [15] (AOP) to tackle

problems introduced by cross-cutting concerns in monolithic

EISs. It reduces information restatement through extraction

of tangled concerns and their isolation in the single focal

point [3]. The concerns are then automatically distributed

throughout the system by aspect weavers at runtime. This

leads to more efficient development and maintenance of such

system, as well as it reduces the risk of human error, com-

pared to manually repeated and tangled concerns. Furthermore,

the concern distribution can be carried out across different

platforms [16]. This helps us to use various technologies for

individual modules while preserving the single point of truth.

ADDA uses Domain-Specific Languages (DSLs) rather than

General Programming Languages to capture the cross-cutting

concerns. DSLs are more efficient in describing domain-

specific logic, as they are tailored for that particular domain

while relaxing stress on generality. This reduces development

efforts and enables domain experts to directly participate in

the system development [17].

In ADDA, EIS is perceived as a multi-dimensional

space [3], with the concerns as individual axes and the states of

the system as points in such a space. The state of the system

is determined by its current execution context and business

context [18], e.g., a locale of the user, a business operation, and

the current time. Based on the information from the current

context, respective concerns are dynamically weaved together

at runtime.

Definition. The Execution context is a complex information

structure including information about the current Application

context, User context, and operation parameters. [18]

Definition. The Application context of EIS is a set of global

variables and their values at the current point in time. [18]

Definition. The User context of EIS is a set of information

about the current user of the system. [18]

Definition. The Business context is a set of preconditions and

post-conditions defined by a business operation. [18]

As we have established, ADDA simplifies separation of

cross-cutting concerns through their description in DSLs and

automated transformation and distribution from the single

point of truth. Therefore, it reduces maintenance efforts

through reduction of manual information restatement. How-

ever, this comes with a significant cost of initial investment,

as the weavers and DSLs need to be implemented first. They

are not project-specific and can be reused, though.

V. ASPECT-DRIVEN SERVICE-ORIENTED ARCHITECTURE

In SOA, composite services face to the challenge of limited

inspection of business contexts, i.e., limited reuse of business

rules declared by services they depend on. It results from

difficult information extraction. In this chapter, we introduce

modified service design to ease information inspection and

exposition. That enables us to define all the information in the

single point of truth and then automatically transform, reuse,

and distribute it at runtime. Next, with runtime composition,

we are able to consider current execution context and thus

make the services context-aware. In order to apply AOP-based

principles, we identify the cross-cutting concerns, i.e., the

aspects, and formalize the challenge in terms of AOP.

Note. In this section, we demonstrate the concept on the

e-shop system example described in Section II.

A. Formalization

First, we identify the aspects in the system:

(i) Business context of a business operation defines business

rules and business domain configuration. Operations of

composite services often reference business contexts, or

their subsets, from services they depend on. Consider

the Order Service. For example, order creation validates

the input also by the rules specified by the user creation

operation in the User service. It also references business

domain configuration of the Billing service, e.g., VAT

percentage to properly compute the price.

(ii) Model structure, or more specifically the structure of the

model in the protocol, has to be always considered on

both sides of the communication to serialize and deseri-

alize the data. This aspect is usable for verification that

both communicating services expect the same protocol

structure and there are no inconsistencies.

Second, the advice represents the functionality to weave in:

(a) Business context preconditions advice is a set of rules to

meet before a business operation is executed, e.g., the

user is logged in and has the required privileges.

(b) Business context post-conditions are rules applied after a

business operation is executed, e.g., data filtering based

on the logged user’s privileges or expected results.

(c) Business domain configuration is part of the application

context represented by a map of business domain-related

KAREL CEMUS ET AL.: ASPECT-DRIVEN CONTEXT-AWARE SERVICES 1309



Fig. 2: Service life-cycle and application of the advice

variables used within a service, i.e., during rules evalua-

tion or business logic execution, e.g., the VAT percentage.

(d) Model structure advice contains information about the

public business objects defined within each service, i.e.,

a name of the objects and name and type of each field.

Third, we identify the join points, i.e., the points, where advice

is applied. Those are denoted in Figure 2:

1 First join point triggers during service initialization when

the service establishes its application context.

2 Before the execution of a business operation, it validates

preconditions of the addressed business context.

3 After the execution of a business operation, it applies post-

conditions of the business context.

Finally, the aspect weaving combines all the advice into proper

join points with the respect to current execution context. It

is conducted by platform-specific aspect weavers, included

within each individual service.

B. Architecture

We modify the conventional layered architecture of a ser-

vice [19] to accommodate the needs of runtime aspect weav-

ing, as displayed in Figure 3. Each service separates the con-

cerns and stores them in registries. This helps to decompose

the system into smaller units with a single responsibility. On

the other hand, it prevents simple reuse of such information

as they are in platform-agnostic form outside the execution

point. We apply ADDA to overcome this limitation.

First, the business contexts defined by operations of a

service, e.g., access policies and order validation rules, are

stored in platform-independent DSL in a Business Context

Registry. Second, the business domain configuration, e.g., VAT

percentage or business hours definition, is represented by a

map of variable names and their values. Those are stored in

a Domain Configuration Registry. Third, the Model Structure

Repository maintains the metadata of the structure of its public

model. Finally, in order to distribute the information among

services, each service must expose its registers through a Meta

API. Then other services access this API and retrieve the

information they need.

Fig. 3: Service architecture using ADDA for SOA

C. Service initialization

When a service starts, it initializes its application context

including environmental variables and all business contexts. In

an environment with shared business contexts, the service must

fetch addressed contexts and business domain configuration

from services it depends on. For example, the Order Service

requires business contexts and domain configuration defined

by the Billing, Shipping, Product, and User services.

First, the Order Service discovers all the other services so

that it can contact them. This could be achieved in different

ways, depending on particular SOA implementation. For ex-

ample, we can use Service catalogs or Enterprise Service Bus.

For the sake of simplicity, we will not discuss this problem,

because it is not relevant to the ADDA approach.

Second, the Order Service downloads the business domain

configuration from its dependencies. As we have established,

the domain configuration is a set of environment variables, so

the service merges them into its application context straight

away and exposes them in the registry.

Third, the Order Service downloads the business contexts

from its dependencies. Then, it compiles them with its own

business contexts. Finally, it inserts them into the application

context in the platform-specific format, and into the registry

in the platform-independent format.

Finally, it extracts the public model structure metadata and

stores them within the Model Structure Registry. Then, it

verifies the structure of the communication protocol comparing

its own metadata to the metadata of the dependencies.

D. Business operation execution

Once the service is initialized and running, it expects

requests to execute business operations. For each business op-

eration, there is a business context defining the preconditions

and post-conditions.

1310 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



First, when the execution of a business operation is re-

quested, the aspect weavers intercept the request and check

the current business context and validate the applicable pre-

conditions of business rules with the execution context. For

example, they verify the user is logged in. If the validation

fails, the business operation execution is prevented, and the

service returns an error message.

Second, when the execution of the business operation fin-

ishes, the aspect weavers intercept the response and apply the

corresponding post-conditions to restrict the returned data. For

example, they drop a link into the application backend when

the user is not an administrator.

E. Summary

Application of ADDA into SOA achieves information reuse

while keeps the concerns of each service separated. It main-

tains the business contexts and business domain configuration

in platform-independent format within the individual services

and exposes them to other services via API. This allows easier

composition of services, where one service executes business

operations of other services. The service it is able to apply up-

to-date restrictions defined by the other services on its input.

This approach reduces overall development and mainte-

nance efforts in the long run. We achieve this through re-

duction of manual information restatement and separation and

reuse of the cross-cutting concerns, i.e., the business rules,

the business domain configuration and the model structure.

Having them in the single point of truth reduces the size of

the codebase, as well as lowers the risk of human error because

the restated information does not have to be synchronized

manually, which is a highly error-prone activity.

On the other hand, this approach introduces significant

initial overhead. It requires implementation of the aspect

weavers and registers for each platform. However, these can

be reused across services built on the same platform, and also

across different projects.

VI. CASE STUDY

In order to evaluate ADDA for SOA and receive a prelimi-

nary feedback, we conduct a case study and elaborate how we

tackled the challenges discussed in Section III. Consider the

e-shop system example introduced in Section II. There are six

individual services, which provide different functionality. First,

there is the Users service, which maintains both customers and

employees, and their profiles and privileges. Second, there is

the Store service, which deals with storage supplies. Third,

the Emailing service sends e-mails to both customers and

employees. Finally, the component Customer service, which

includes the composite Order service maintaining orders, the

Billing service providing API to the 3rd party billing services,

and the Shipping service providing a facade to the 3rd party

shipping services.

Consider the services are implemented using different tech-

nologies, due to the fact that there are multiple teams working

on the system. Each team has different a experience and fulfills

different non-functional requirements through the solution

stack. The Billing, Store, and Emailing services are imple-

mented in Java, because of its reliability and performance.

The Customer and Order services are implemented using

Python, because it provides the best libraries for data analysis,

and the company needs to analyze the orders to support

business decisions. The Shipping service is written in server-

side JavaScript, because it deals with various third-party APIs

and JavaScript provides the most libraries for such tasks.

A. Business rules centralization

First, we implemented the Business Context Registers for

each platform to persists business contexts and expose them

through API. We also tailored a DSL similar to JBoss Drools4,

which a powerful DSL for rule-based systems. We imple-

mented the language in JetBrains MPS5, which is a tool

designed for tailoring custom DSLs. It also provides a parser

and a compiler into customizable output. This enabled us

to define, store, and distribute business rules in platform-

independent format.

Second, we implemented DSL compilers, which merge

local and remote6 business rules and translate them from the

platform-independent format into platform-specific executable

languages. Moreover, we implemented aspect weavers, which

intercept the business operations and apply the business rules

advice.

The composite Order service is now able to apply transitive

business rules of the User, Billing, and Shipping services

without their manual restatement.

B. Configuration centralization

As we stated earlier, the business domain configuration is a

special case of service composition. We solved this problem

similarly as the business rules centralization. We implemented

the Business Configuration Registers for each platform. These

registers store the configuration variables in a name-value

dictionary and provide access to them through API. Then, we

also added aspect weavers, which download and merge the

business domain configuration from dependencies.

Alternatively, having more powerful DSL, we might declare

the configuration as a part of the root business context, i.e.,

the parent context to all other contexts. Then, we could drop

the Business Domain Configuration Registry and all related

weavers as the configuration would be included in the Business

Context Registry as another context. However, for simplicity,

we maintain the configuration separately.

C. Documentation extraction

ADDA approach already provides a mechanism to extract

an up-to-date business documentation of a monolithic sys-

tem [20]. As all the services follow ADDA, we can also extract

their documentation. Since each service exposes its metadata

through public API, we implemented advanced documentation

4https://www.drools.org/
5https://www.jetbrains.com/mps/
6The business rules definitions are downloaded from Business Contexts

Registers of services this service depends on.

KAREL CEMUS ET AL.: ASPECT-DRIVEN CONTEXT-AWARE SERVICES 1311



generator discovering all services in the system and fetching

their metadata. Then, similarly to pure ADDA, we combine the

information together to identify the services, their operations

and business contexts, their dependencies, and the structure

of their public model, i.e., the structure of business objects.

The generator implementation follows the suggestion for pure

ADDA documentation generator, only it loops over all services

and identifies their dependencies.

Having this documentation generator opens new possibili-

ties. First, we can produce the result as HTML to overview the

system and archive it or give it to the architects. We can also

give it to domain experts to review and validate the flow and

business rules. Having the overview of the entire SOA system

significantly simplifies their work. Finally, we can produce

the documentation in a formal language and then reason over

it. For example, we can verify the feasibility of all contexts

or find contradictions, which may result from the automated

composition of business contexts.

D. Summary

We described the implementation of ADDA concept into

SOA to reduce information restatement and simplify develop-

ment of the system. Furthermore, ADDA for SOA opens new

ways to use the extracted and exposed information, e.g., for au-

tomated business documentation extraction and its validation

and verification. Unfortunately, the efficient implementation

requires that all services in SOA follow ADDA for SOA

concept. Otherwise, the concern reuse is significantly limited.

Next, the concept implementation relies on complex tools as

a DSL for business context description and platform-specific

aspect weavers, which introduces a significant initial overhead.

In consequence, migrating an existing system to ADDA for

SOA concept seems to be highly challenging.

VII. RELATED WORK

SOA is one of existing architectural solutions for large

applications with difficult maintenance, performance issues,

and multiple development teams. Deployment, composition,

and maintenance of services belong among the most significant

issues. In this paper, we propose a novel approach addressing

composition and maintenance difficulties, and this section

elaborates them in the context of existing work.

A. The architecture

Nowadays, SOA itself is considered outdated and replaced

by a novel and more evolved approaches. Microservices pat-

tern is the leading architecture replacing SOA [9]. However,

this architecture preserves existing SOA principles and adds

additional constraints addressing deployment and maintenance

issues. For example, it emphasizes simple services and rapid

delivery. Next, it suggests the use of multiple agile teams

and service communication through an independent, usually

HTTP-based, protocol such as REST and SOAP. Finally,

it stresses decentralization through choreography [8], [21].

Contrary, plain SOA often uses orchestration, e.g., Enterprise

Service Bus, which brings centralization.

Nevertheless, the basic principles persist and this work

applies to them. The proposal expects distributed environment,

independent standalone services, and communication through

the network. Development workflow, service deployment or

actual composition of services are orthogonal to the approach.

B. Service composition

There are two basic approaches to the service composition.

First, the services are orchestrated in a network with a director

validating and forwarding messages, or the services know their

dependencies and somehow they look up them themselves [8].

While the first more centric approach is known as an orches-

tration, the other is known as a choreography. None of these

actually apply to the proposed approach. Whether the services

are discovered through a service registry such as Universal

Description, Discovery, and Integration (UDDI) catalog, their

addresses are hard-coded in services, or the configuration is

provided by a central component is not significant [22]. The

proposed ADDA for SOA approach assumes the existence of

the dependencies but does not deal with the implementation

of a discovery process.

Novel approaches to service composition often use Artificial

Intelligence (AI) due to increasing number of existing services

and their complexity [10]. There are these automated com-

position approaches as manually maintaining and evaluation

the services is difficult and exacting. The proposed techniques

use AI to optimize deployment of the services into a cloud to

utilize the performance, to compose services together, to find

the best implementation of the dependency etc. All these are

performed based on the conducted analyses by an AI.

Each composition service has to consider at least a subset of

the business rules declared by services it depends on, but un-

fortunately, none of these composition approaches efficiently

supports the composition of business rules. There exist too

many implementations of service description, discovery, and

meta-data extraction techniques that it is nearly impossible

to gather and reuse this information. Thus, in this work, we

propose the approach focusing on reuse of business rules,

which does not interfere with existing service composition

approaches.

C. Business rules representation and composition

The major part of this paper deals with extraction, reuse,

and composition of business rules within composite services.

Inspection of dependencies and extraction of business rules

requires suitable and inspectable representation of the rules.

Model-Driven Architecture (MDA) belongs among both

major research and industrial approaches to SOA design. It

describes the business domain in multiple models on different

levels of abstraction to avoid manual information restatement

and enable information reuse. The more specific models are

generated from the more abstract models using transformation

and forward engineering techniques. In the end, the service

source code is produced [23]. Unfortunately, this technique

suffers from the lack of support of backward transforma-

tion, i.e., when the more specific model is modified, we are

1312 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



unable to propagate these modifications into more abstract

models. Then regeneration of this model overwrites these

modifications. In addition, MDA for SOA usually uses special

languages with the better focus on services, service providers,

etc., and lacks the support of business rules [24]. Unfortu-

nately, the business rules with their cross-cutting nature are

difficult to encapsulate in object-oriented techniques such as

MDA [25]. Although there are options such as OCL to extend

the models, but they are still unable to encapsulate and reuse

repeated rules, they restate them manually instead [18].

Similar intentions as ours are discussed in [26]. The authors

claim that business rules are often a subject of change,

while implementation of services and SOA structure changes

less frequently. Thus, then separation of concerns, more par-

ticularly business rules, leads to maintainable implementa-

tion. They propose a Business Process Execution Language

(BPEL) [27] extension separating the business rules from

services and declaring them using DSLs. As business rules

are more about declaration what to do than how to do

it, they introduce several new central meta-services dealing

with business declaration, transformation, and business pro-

cess interception to trigger actions. These services run rule-

based engines to deliver high-performance rules evaluation.

While this approach surely simplifies the maintenance, it has

significant limitations. First, BPEL is designed for a centric

orchestration, while recent research and best practices suggest

decentralization through a choreography. Then, having DSLs

simplifies maintenance comparing to hard-coding the rules into

source code, but their further inspection and transformation

is still difficult as there are multiple different languages.

Finally, as the rules are part of the orchestration description in

BPEL, then when they change, the whole orchestration must

be updated. Contrary, our approach is more restrictive about

used DSL, but it is agnostic to used composition method.

Furthermore, when a single service changes, only the services

depending on it are notified by a push event and then are

internally reloaded.

The alternative approach focuses on identification of busi-

ness contexts and reuse of business rules from dependen-

cies [28]. The authors propose a framework for the con-

struction of composite services. For each dependency service,

they describe its API including business operations, their

preconditions and post-conditions, which is a business context

in terms of this paper. Then, using their framework, they

produce a composite service considering the contexts of the

dependencies. While the intentions are similar, this paper

proposes more generic approach. Instead of the manual de-

scription of each dependency, it reuses their contexts through

inspection of automatically exposed meta-data, which it does

through separation of concerns using AOP.

D. Documentation extraction

Maintaining up-to-date business documentation of existing

SOA is very challenging. SOA is vast living system and

with many performed changes, the documentation gets quickly

obsolete. Acquiring then up-to-date documentation is barely

possible, we must fall back to reverse engineering methods.

Extracting the business documentation, i.e., the list of services,

their operations with business contexts and a structure of

communication protocol from SOA is basically like extracting

it from a monolithic application plus dependencies.

Reverse engineering of monolithic applications is well dis-

cussed. For example, we may apply phrasal pattern matching

on the source code to extract the rules [29] or construct a call-

graph and look for branching [30]. Either way, we must iden-

tify the execution context, i.e., variables and their origin used

in extracted expressions. Generation of such documentation is

challenging and the result may be inaccurate depending on the

technology and code conventions. Importance but the difficulty

of business rules extraction from legacy information systems

is discussed in [31]. The authors propose a semi-automated

technique to extract the rules, but as it is obvious, such a

documentation would require significant efforts, be inaccurate,

and might not be up to date.

The difficulty of business rules encapsulation and subse-

quent automated extraction lies in their characteristic. As they

are considered throughout the whole system, they cross-cut

multiple layers, components, and often technologies. Unfor-

tunately, commonly used Object-oriented programming fails

in the encapsulation of such cross-cutting behavior [15], and

tends to their manual tangling and duplication in a code base.

Their separation is very difficult [25] due to the necessity to

apply them in various places and technologies [3]. However,

there exists an efficient documentation extraction technique

for applications using ADDA to separate business rules [20].

Having business contexts described in DSLs and available for

transformation, we are able to read this meta-data to construct

the documentation. This technique applies to this paper. As we

propose, each service uses some implementation of ADDA and

exposes this meta-data through public API. Then, we are able

to browse the SOA and fetch all meta-data to construct the

documentation of the overall system.

VIII. CONCLUSION

There exist many open challenges in SOA. For example

domain decomposition, service discovery, composition, de-

ployment, and evolution, or inter-team communication. In this

paper, we focused on the separation of concerns and their

reuse among composite services. We proposed a novel aspect-

based approach ADDA for SOA. It introduces several new

components into a conventional service architecture. They

maintain separated concerns such as business contexts describ-

ing preconditions and post-conditions of business operations,

business domain configuration, and the structure of the public

model in the platform-independent format. These isolated

concerns are exposed via API to other services. That enables

them to fetch this metadata, transform them and combine

with their own business contexts and configuration. The model

structure is used for the verification of the communication

protocol. Besides the simplification of service composition,

we show the simplicity of generation of up-to-date business

KAREL CEMUS ET AL.: ASPECT-DRIVEN CONTEXT-AWARE SERVICES 1313



documentation listing the services, their operations, precondi-

tions, post-conditions, and the structure of the communication

protocol, which often reflects the structure of business objects.

ADDA for SOA delivers significant maintenance improve-

ment, codebase reduction, and context-awareness to services.

It isolates business rules into the single point of truth in DSL

and weaves the rules together at runtime with the respect to the

current execution context. Use of DSL enables the involvement

of domain experts into development. Automated distribution

and restatement of business rules remove the need for manual

synchronization of all places, which reduces maintenance

efforts and lowers the risk of human error.

One the other hand, ADDA itself introduces significant

overhead, as it requires design and implementation of the DSL,

and platform-specific application-independent aspect weavers.

In SOA, there are multiple programming languages and plat-

forms involved, which increases the number of required aspect

weavers. Development of the technological stack requires

major efforts. Furthermore, all services in SOA have to follow

ADDA for SOA concept, otherwise, no automated concerns

composition and reuse can happen. Moreover, separation of

concerns slightly reduces cohesion and thus maintaining the

business rules apart of the related code is more demanding.

There is still work to do in future. Besides the need for the

production-ready implementation, we will focus on delivery

of larger evaluation of development efforts comparing ADDA

for SOA to pure SOA or some its alternative. Finally, we will

focus on design and formalization complex but easy to use

DSL for business rules in SOA. There is the need for many

features such as inheritance, rules modifiers, and declaration of

constants. Use of ADDA for SOA also opens new possibilities.

For example, having all metadata exposed via API, we are

able to maintain business rules for all services from a single

place, e.g., a maintenance application. We might visualize the

relations, modify the rules, and then let the services update

themselves and reload the configuration.

ACKNOWLEDGEMENT

This research was supported by the Grant Agency

of the Czech Technical University in Prague, grant No.

SGS16/234/OHK3/3T/13 and Czech UPE and Avast Foun-

dation grant at the Czech Technical University No.

DP17\2017010007.

REFERENCES

[1] C. Larman, Applying UML and Patterns: An Introduction to Object

Oriented Analysis and Design and Iterative Development. Pearson
Education India, 2012.

[2] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[3] K. Cemus and T. Cerny, “Aspect-driven design of information systems,”
in SOFSEM 2014: Theory and Practice of Computer Science, LNCS

8327. Springer International Publishing Switzerland, 2014, pp. 174–
186. ISBN 978-3-319-04298-5

[4] R. Perrey and M. Lycett, “Service-oriented architecture,” in Applications

and the Internet Workshops, 2003. Proceedings. 2003 Symposium on.
IEEE, 2003, pp. 116–119.

[5] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl,
M. Luo, and T. Newling, Patterns: service-oriented architecture and

web services. IBM Corporation, International Technical Support
Organization, 2004.

[6] M. R. Cecil, Agile software development: principles, patterns, and

practices. Prentice Hall PTR, 2003.
[7] M. P. Papazoglou, “Service-oriented computing: Concepts, character-

istics and directions,” in Web Information Systems Engineering, 2003.

WISE 2003. Proceedings of the Fourth International Conference on.
IEEE, 2003, pp. 3–12.

[8] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” arXiv preprint arXiv:1606.04036, 2016.

[9] M. Fowler and J. Lewis, “Microservices,” ThoughtWorks.

https://martinfowler.com/articles/microservices.html [accessed on

March 21, 2017], 2014.
[10] J. Rao and X. Su, “A survey of automated web service composition

methods,” in International Workshop on Semantic Web Services and

Web Process Composition. Springer, 2004, pp. 43–54.
[11] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[12] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web
services description language (wsdl) version 2.0 part 1: Core language,”
W3C recommendation, vol. 26, p. 19, 2007.

[13] M. J. Hadley, “Web application description language (WADL),” 2006.
[14] T. Cerny and M. J. Donahoo, “How to reduce costs of business

logic maintenance,” in Computer Science and Automation Engineering

(CSAE), vol. 1. IEEE, 2011, pp. 77–82.
[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.

Loingtier, and J. Irwin, Aspect-oriented programming. Springer, 1997.
[16] K. Cemus, F. Klimes, O. Kratochvil, and T. Cerny, “Separation of

concerns for distributed cross-platform context-aware user interfaces,”
Cluster Computing, pp. 1–8, 2017.

[17] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM computing surveys (CSUR), vol. 37,
no. 4, pp. 316–344, 2005.

[18] K. Cemus, T. Cerny, and M. J. Donahoo, “Automated business rules
transformation into a persistence layer,” Procedia Computer Science,
vol. 62, pp. 312–318, 2015.

[19] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil, “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud,” in Computing

Colombian Conference (10CCC), 2015 10th. IEEE, 2015, pp. 583–590.
[20] K. Cemus and T. Cerny, “Automated extraction of business docu-

mentation in enterprise information systems,” ACM SIGAPP Applied

Computing Review, vol. 16, no. 4, pp. 5–13, 2017.
[21] A. Sill, “The design and architecture of microservices,” IEEE Cloud

Computing, vol. 3, no. 5, pp. 76–80, 2016.
[22] E. Al-Masri and Q. H. Mahmoud, “Discovering the best web service,”

in Proceedings of the 16th international conference on World Wide Web.
ACM, 2007, pp. 1257–1258.

[23] A. Rahmani, V. Rafe, S. Sedighian, and A. Abbaspour, “An mda-based
modeling and design of service oriented architecture,” Computational

Science–ICCS 2006, pp. 578–585, 2006.
[24] S. K. Johnson and A. W. Brown, “A model-driven development approach

to creating service-oriented solutions,” in International Conference on

Service-Oriented Computing. Springer, 2006, pp. 624–636.
[25] R. Kennard, E. Edmonds, and J. Leaney, “Separation anxiety: stresses

of developing a modern day separable user interface,” in Human System

Interactions. HSI’09. 2nd Conference on. IEEE, 2009, pp. 228–235.
[26] F. Rosenberg and S. Dustdar, “Business rules integration in bpel-a

service-oriented approach,” in E-Commerce Technology. Seventh IEEE

International Conference. IEEE, 2005, pp. 476–479.
[27] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,

K. Liu, D. Roller, D. Smith, S. Thatte et al., “Business process execution
language for web services,” 2003.

[28] J. I. Fernández Villamor, C. A. Iglesias Fernandez, and M. Gar-
ijo Ayestaran, “Microservices: Lightweight service descriptions for rest
architectural style,” 2010.

[29] E. Putrycz and A. W. Kark, “Connecting legacy code, business rules and
documentation,” in Rule Representation, Interchange and Reasoning on

the Web. Springer, 2008, pp. 17–30.
[30] X. Wang, J. Sun, X. Yang, S. Maddineni et al., “Business rules

extraction from large legacy systems,” in Software Maintenance and

Reengineering. IEEE, 2004, pp. 249–258.
[31] J. Shao and C. Pound, “Extracting business rules from information

systems,” BT Technology Journal, vol. 17, no. 4, pp. 179–186, 1999.

1314 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


