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Abstract—In this paper we propose a fast method for detecting
the ground plane in 3D scenes for an arbitrary roll angle rotation
of a stereo vision camera. The method is based on the analysis
of the disparity map and its “V-disparity” representation. First,
the roll angle of the camera is identified from the disparity
map. Then, the image is rotated to a zero-roll angle position
and the ground plane is detected from the V-disparity map. The
proposed method was successfully verified on a simulated 3D
scene image sequences as well as on the recorded outdoor stereo
video sequences. The foreseen application of the method is the
sensory substitution assistive device aiding the visually impaired
in the space perception and mobility.

I. INTRODUCTION

T
HE TASK of ground plane detection in images of 3D

scenes is an important step in many computer vision

algorithms [1], [2], [3], [4], [5], [6], [7], [8]. Segmentation of

the ground plane region and estimation of its spatial orientation

allows for detecting free space that is devoid of obstacles in

the imaged 3D scenes. Such knowledge is of high importance

for depth sensing stereo vision based techniques that are

applied e.g. in an automotive industry and systems for guiding

autonomous robots [1], [2], [3], [9], [10]. Stereo vision camera

modules in such systems are mounted in rigs, which limit

camera movement versus the world coordinate system to just

a single degree of freedom (1 DoF), that is left and right turn

(the yaw angle). Such a constraint simplifies image analysis

techniques of the scene that are based on the depth maps

computed from the stereo matching algorithms [11].

There are, however, mobile applications of the computer

vision systems (e.g. in humanoid robots, or electronic travel

aids (ETAs) for the visually impaired and blind [8], [12], for

which this work is intended to) in which camera movements

are not restricted and need to be defined by 6 DoF ego-motion

parameters [8], [13]. That is, three parameters defining 3D

translational motion vector T = [U V W ] and three parame-

ters ω = [α β γ] defining angular motion of the camera. These

rotation angles are known as pitch, yaw and roll, respectively

(Fig. 1). In such systems the value of roll angle changes during

the movement. Moreover, if a camera is attached to the user’s

body, a constant error value may be added if the camera is

not positioned properly or undergoes slight position changes
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Fig. 1. Parameters defining the 3D translational and rotational motion vectors
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Fig. 2. An example illustrating how the camera roll angle changes during
the walk in an open-space outdoor environment with a limited number of
obstacles. The camera was mounted on a helmet and the roll angle was
estimated using the method described in the article

during the user’s movement. Fig. 2 shows how the roll angle

of the camera varies during the walk.

In this paper we propose a fast method for detecting the

ground plane in 3D scenes for an arbitrary roll rotation of

a stereo vision camera. The method is based on the analysis

of the disparity map and its histograms termed “V-disparity”

representation [14] (Fig. 3). The disparity map is the horizontal

displacement d = xl − xr of a position at which the scene

object is projected onto the left and right image of the stereo

vision camera. Note that the larger the disparity the smaller is

the depth of the scene point in relation to the position of the

stereo vision camera [15]. An example disparity map is shown

in Fig. 4a, in which the disparity value is coded by a greyscale

level. The larger the disparity the brighter is the pixel in the

disparity image [14].
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Fig. 3. A visual explanation of how the “UV-disparity” representation of the
disparity is calculated

The so-called “V-disparity” representation is built by com-

puting histograms of consecutive rows of the disparity map and

presenting them as a monochrome image. Similarly, the “U-

disparity” representation contains histograms of consecutive

columns of the disparity map. The scheme for calculating

those representations is explained in Fig. 3. The number of

columns of the U-disparity map equals the number of columns

of the disparity map and number of rows of the V-disparity

map equals the number of rows of the disparity map. The

remaining dimensions (rows of the U-disparity and columns of

the V-disparity, respectively) are the histogram bins defined by

disparity values d. The UV-disparity maps can be directly built

for the disparity maps calculated with pixel-accuracy only. It

is worth noting, that the maximum value of the U-disparity

image is the number of columns in the disparity map, and the

maximum value for the V-disparity image is the number of

rows of the disparity map.

The rest of this paper is organized as follows: in Section II

we review the ground plane detection algorithms and discuss

advantages and disadvantages of different image processing

approaches to this problem. The proposed algorithm for esti-

mating camera roll angle is explained in Section III. Results

verifying the performance and robustness of the proposed

algorithm are presented and commented in Section IV. Fi-

nally, Section V concludes the paper with a summary of the

presented work and outlines the foreseen application of the

algorithm in an electronic travel aid for the visually impaired.

II. RELATED WORK

For arbitrary pitch and yaw angles and zero roll rotation of

the camera, horizontal line segments of constant depth in a 3D

scene are represented by line segments aligned along rows of

the disparity map (for a calibrated and rectified stereo vision

camera [16]). However, for non-zero roll camera rotations

(Fig. 4a) these horizontal lines are no longer aligned along

disparity map rows. Thus, detection of the ground plane based

on the V-disparity map (note that the V-disparity is computed

as a collection of histograms of consecutive rows of the dispar-

Fig. 4. Test scene imaged by a camera rotated by a roll angle γ = −10◦:
disparity map calculated by using the Block Matching (BM) technique [13]
for the scene from Fig. 5 (a), V-disparity maps computed for the camera
rotated by γ = 0◦ (b), γ = −10◦ (c), γ = −20◦ (d) and γ = −45◦ (e),
respectively

Fig. 5. Results of the ground plane detection based on the V-disparity and
Hough Transform in two almost identical artificial scenes rotated by a roll
angle γ = −10.0◦. The scenes differ just by a presence of a small bench in
one of the scenes. Bright regions represent the detected ground plane (note
the poor result, especially for the scene shown in the right hand image)

ity map) becomes a difficult task. This is because the ground

plane in the V-disparity domain is no longer represented by

a single line segment but by a rather “fuzzy” region for which

its angular orientation is difficult to identify (see Fig. 4c–e

obtained for the increasing camera roll rotations).

It can be noticed, that results of ground plane detection with

the use of the Hough Transform (HT) on the V-disparity map

are very sensitive even to minor changes in the content of

the scene. Note an example of two almost identical scenes

shown in Fig. 5. The two scenes differ just by a presence of

a small bench in the scene shown on the left. This seemingly

minor change has yielded significantly different ground plane

detection results (indicated by white regions). In order to

improve the plane detection precision, prior to application

of the HT technique, the scene image should be rotated by

an adequate angle to compensate for the roll angle of the

camera (Fig. 6, step 3).

The findings of our literature search on applications of the

V-disparity representation for ground plane detection show that

the problem of a non-zero camera roll angle is addressed or

noticed in very few studies, e.g. [1], [3], [9], [17] among

others.

Cong et al. [1] propose a method for detecting ground

surface based on the maximum local energy in the V-disparity

map. This approach seems to work even if the ground is not

a flat surface. However, the problem of a non-zero roll angle

was not directly addressed.
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Fig. 6. Consecutive steps of the proposed V-disparity based ground plane
detection method (including step 3rd, which is specific to our method)

Wu et al. [3] introduce a special method for mounting the

camera that allows to ignore a non-zero roll angle. On the

other hand the ground plane parameters are calculated by

using the V-disparity map after removing large image regions

representing obstacles identified in the U-disparity domain.

An initial road profile is calculated without using the Hough

Transform. Instead, the assumption that the maximum intensity

in each row of the V-disparity map corresponds to the road

lanes is used.

Lin et al. [9] use a RANSAC-based plane fitting algorithm

to find the plane equation. The method allows to calculate the

road lane of the same depth, which need not to be parallel

to the horizontal axis of the disparity image. The authors

have noticed the problem of non-zero roll angle for images

of sloping roads but they assumed that the proposed plane

fitting algorithm is performing well for small values of the

roll angles.

Finally, Labayrade and Aubert [17] propose an estimation

of the roll, pitch and yaw camera angles. A combined iterative

and linear regression methods were applied to the projections

of the plane to the V-disparity map to estimate the roll and

pitch angle. The Authors noted, however, that this method can

be computationally expensive. The value of yaw angle was

estimated indirectly by determining the vanishing point.

III. A METHOD FOR ESTIMATING CAMERA ROLL ANGLE

A general scheme for detecting the ground plane in images

of 3D scenes is shown in Fig. 6. The region corresponding

to the ground plane is detected in the disparity map through

its V-disparity representation. Namely, a plane equation that

best fits the surface of the ground is computed on the basis of

the line identified in the V-disparity map, e.g. by applying the

classical Hough Transform [3], [4], [6], [12], [14].

Our method for camera roll angle estimation is based on

the observation, that for zero-roll angles any line segment, that

is taken from the ground plane and is coplanar with the line

OLOR connecting optical centers of the stereo vision cameras,

is projected onto the same y-coordinates in the stereo vision

images and in the corresponding disparity map. Note that any

point from such a line assumes the same depth. However,

for non-zero camera roll angles these ground plane lines are

no longer coplanar with the OLOR line. Consequently, these

scene line segments (of equal depth) are projected onto the

disparity map at an angle that is equal to the camera roll angle.

In order to identify the camera roll angle a method is proposed

in which the disparity map is cross-sected by a series of lines

l at varying angles. For each angular position of line li, i ∈ N

disparity map values at points P1 and P2 equidistant to li are

collected (see Fig. 7).

Fig. 7. An example ground truth depth image for camera roll angle γ = 30◦

with superimposed line li and points P1, P2 (w is the number of pixels in
a single row of the disparity map and d = 0.1w was selected in computations)

Note, that only for lines l that are vertical to lp the disparity

map points P1 and P2 take similar values.

The slope intercept form of line li in the image coordinate

system is y = Ax+B1 with A = − tan (90◦ − γ) and B1 =
h + w

2
tan (90◦ − γ). Likewise, line lP such that lP ⊥ li is

given by y = − x

A
+B2. If |PP1| = |PP2| = d, then:

(∆x, ∆y) =

(

d
√

1 + (tan γ)2
, |∆x tan γ|

)

(1)

Because | tan γ| = | 1
A
|, coordinates of points P1 and P2 are:

P1

(

⌊x−∆x⌋ ,

⌊

y +
∆x

A

⌋)

P2

(

⌊x+∆x⌋ ,

⌊

y −
∆x

A

⌋) (2)

where ⌊x⌋ denotes the floor function of x. Let us assume, that

the total number of points P = (x, y) is Q, i.e. it is equal to

the number of analyzed point pairs.

The proposed method assumes that: the dominant part of

the disparity image is occupied by a ground plane and if the

image is rotated by γ-degrees, the disparity values at points

P1 and P2 shall remain the same for a series of lines l for

a given γ. To estimate the roll rotation angle of the camera,

the disparity map is dissected by lines l at different γ angles

(γ ∈ [γmin, γmax]), with a predefined step of ∆γ = 0.5◦. For

each γ value the parameter q(γ) is calculated:

q (γ) =
NE

NA

(3)

where NE is the number of pairs (P1, P2) for which the

disparity values are the same and NA is the total number of

all analyzed pairs.

Finally, the camera roll angle is such a γr value for which

(3) reaches the maximum (see Fig. 9). The algorithm of the

proposed method is shown in Fig. 8.
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Fig. 8. The block diagram of the proposed method for roll angle estimation
of a stereo vision camera
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Fig. 9. Plots of q (γ) values for different angles of line li dissecting the
disparity map obtained from the two proposed methods (based either on point
or grid resolution). Note pronounced maxima for γ = −10◦ obtained from
both methods. These are correct estimations of camera roll angle (see Fig. 4a)

Fig. 10. Example results of the ground plane detection for the scene from
Fig. 4: Ground truth region (MGT ) from the SESGen [13] software (a),
Region detected using only the classical HT-based approach (b), Region
detected using the proposed method (c)
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Fig. 11. Ground plane detection accuracy measured by means of the JC
obtained for different camera roll rotations and variants of the ground plane
estimation algorithms
GT: ground truth disparity map
BM: disparity map obtained using the Block Matching technique
RE: camera roll angle estimation (Fig. 6, step 3)
HT: plane detection using the Hough Transform (Fig. 6, steps 4–5)

IV. RESULTS

The proposed method for ground plane detection was veri-

fied on test image sequences rendered by our SESGen software

[13]. The sequence consists of 600 images, for which the roll

rotation of the camera ranges from −60◦ to +60◦ with a step

of 0.2◦. For each rendered image the SESGen computes the

ground truth segmentation map and the ground truth disparity

map with a pixel and subpixel accuracy correspondingly.

To measure the accuracy of the plane detection results we

used the Jaccard similarity coefficient (JC):

J(MD,MGT ) =
area(MD ∩MGT )

area (MD ∪MGT )
(4)

where MD∩MGT denotes the intersection of the detected and

“ground truth” ground plane regions, and MD ∪MGT is their

union. Those regions are represented by bright regions shown

in Fig. 10. The JC is calculated for both the ground truth

disparity maps and for the disparity maps calculated using the

Block Matching (BM) technique [13]. Results are shown in

Fig. 11. Note, that the ground plane detection algorithms with

no camera roll angle correction tend to fail for roll rotations of

more than ±5◦ for which a significant drop of the JC occurs.

In order to reduce the computational complexity, both the

number of steps and the number of lines dissecting the

disparity map can be adjusted appropriately. Additionally, in

most cases just the bottom part of the disparity image shall

be taken into account. We also tested a modification of our

method in which P1 and P2 are nodes of a grid (with grid

size up to 30 pixels). Such a modification slightly decreases

the roll angle estimation accuracy (see Fig. 9), but significantly
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Fig. 12. Results of the ground plane estimation using the proposed method

Fig. 13. Point pairs from Fig. 12b for which the disparity values are the
same for the camera roll angle is such a γ value for which (3) reaches the
maximum

reduces the computational complexity which is essential in

mobile and wearable platforms. Fig. 12 shows example results

of the ground plane estimation methods for the pre-recorded

and artificial sequences. Then, Fig. 13 shows point pairs from

the scene shown in Fig. 12b for which the disparity values are

equal to the camera roll angle for such a γ value for which

(3) reaches the maximum. Please note, that these points can

be successfully used in the plane fitting algorithm.

An average calculation time of the proposed algorithm (Fig. 6

step 3) for the test images is 0.7ms on an Intel Core i7-4770

3.4 GHz processor. The computational complexity is estimated

as O(n2). The obtained Root-Mean-Squared Error (RMSE) for

the SESGen sequences equals RMSE = 0.466◦.

The proposed method was also verified on a set of disparity

images captured in an indoor environment along with the

readouts from a digital inclinometer permanently attached to

the stereo vision camera. Images were captured using the ZED

Stereo Camera (1920 × 1080 image resolution, 110◦ field

of view and 120mm baseline [18]). Camera roll estimation

results are shown in Fig. 14. The obtained Root-Mean-Squared

Error value for this sequence is RMSE = 1.76◦

We encourage the reader to view our material supplementary

to this paper [19] (e.g. result video sequences, images in higher

resolution, etc.) available at http://uv-disparity.naviton.pl/.
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Fig. 14. Results of the roll angle estimation for the recorded indoor sequence.
Images were captured using the ZED stereo vision camera. The disparity map
was computed using the API provided by the camera manufacturer [18]. Green
dots denote roll angle read from the digital inclinometer, red dots denote
roll angle values for the corresponding readouts from the inclinometer and
calculated using the proposed method

V. CONCLUSIONS

In this paper we propose a reliable algorithm for ground

plane detection in 3D scene images from the disparity maps

and their V-disparity representation under large roll angle

values. From our literature survey we note that the problem of

non-zero roll angle in ground plane detection tasks has been

noticed in just few earlier studies [1], [3], [9], [17]. Moreover,

only the authors of the latter work undertook the problem of

roll angle estimation. They, however, did not provide any time

performance of their iterative algorithm.

The strong advantage of the algorithm we propose is its

computing efficiency and capability of estimating camera roll

rotations for large angles (tested from −60◦to +60◦) with the

RMSE < 0.5◦. Such rotations can occur for 6 DoF motions

of the camera, e.g. in cameras mounted on drones, robots or

3D scene analysis systems aiding the visually impaired. The

identified roll angle allows to rotate the disparity image to

zero-roll angle. The so corrected disparity map is then used

for detecting the ground plane through the corresponding V-

disparity map. The reliably detected ground plane region is a

basis for successful performance of further 3D scene analysis

algorithms. Finally, we have shown high robustness of our

ground plane detection algorithm on simulated 3D scene image

sequences and real-world outdoor image sequences.
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