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Abstract—Hardware description language (HDL) Verilog has
been standardized and widely used in industry. To describe the
features such as event-driven computation, time and shared-
variable concurrency of hardware, a Verilog-like language
MDESL (multithreaded discrete event simulation language),
has been introduced. In this paper, we put forward a proof
system for MDESL which is based on the classical Hoare Logic
(precondition, program, postcondition). To deal with the guard
statement, we add a new element trace to Hoare triples. We
extend the primitives of assertion to express the global time of
current program, and interpret the triples so that it can verify
both terminating and nonterminating computations. To verify
a concurrent program, we use a merger method of the trace
to combine the traces in our parallel rule. Finally, there is an
example about using our proof system to verify the correctness
of a program written by MDESL.

I. INTRODUCTION

W
ITH the increasing complexity of computer hardware,

more and more modern hardware designs choose to

use the hardware description language (HDL) to describe the

designs at various levels of abstraction. As a high level pro-

gramming language, HDL not only has the classical program-

ming statements such as skip, assignments, conditionals, loops,

but also has some extensions for real-time, concurrency, guard

and new data structures appropriate for modelling hardware.

The Verilog Hardware Description Language (Verilog HDL)

became as IEEE standard in 1995 as IEEE std 1364-1995 [1],

[2] due to its simple, intuitive and effective at multiple of

abstraction. There are several important features in Verilog,

including real-time [3], [4], event-driven computation, shared-

variable concurrency and simulator-based interpretation.

MDESL [5] (Multithreaded Discrete Simulation Language)

is a Verilog-like language [6], [7], [8]. Parts of the statements

and constructs in MDESL are similar to those in C program-

ming language. However, as a hardware level programming

language, it also has the statements and constructs which

can describe the features of hardware, such as event-driven

computation, real-time and shared-variable concurrency. In

MDESL, the guard statement (@(g)) represents that a new

state will be compared to its previous state, if the result

satisfies g, then the program will continue to execute its rest

statements, otherwise it will be in a state until the guard

is trigged. This embodies the feature of the event-driven of

MDESL. Time delay statement is introduced in MDESL, the

synchronization of different parallel components can be based

on time controls, and the parallel mechanism is an interleaving

model.

In this paper, we put forward a proof system for MDESL

in order to verify the correctness of the programs written

by MDESL. Our proof system is based on classical Hoare

Logic [9]. According to the sematic model of MDSEL, we

have added a data structure trace in the front of the triple and

extended the assertion languages to form a new triple which

is convenient for the compositional verification of MDESL.

Trace [10] is used to record the new time and values when an

atomic action raises a data update. Thus it can help us to deal

with the shared-variable feature. As usual, the precondition

can express the set of initial or input states at the start

of the execution, and the postcondition describes the set of

final or output states at termination. To verify the property

of time, we add a special variable time (similar to [11])

which represents the beginning time of the program in the

precondition and the terminating time in the postcondition.

We can specify the execution time of a program and merge

the trace between different parallel components by the global

clock time. In the classical Hoare Logic, we can only deal

with the terminating program, but in our proof system, we

can specify the terminating time by the use of time. If

time ∈ [0,∞) we can deduce that the program will terminate

or if time = ∞ this means that the process will run forever.

We can use the rules for nonterminating in our proof system

to deal with this situation.

The remainder of this paper is organized as follows. In

Section II, we introduce the program language and the sematic

model of MDESL, and give the specifications of the assertions

and some definitions used in our proof system. In Section

III, we provide the proof system for MDESL, including

the rules for sequential programs, parallel composition and

nontermination computations. In addition, we introduce some

auxiliary axioms and rules which are useful for the verification

of the programs. In Section IV, we apply our proof system to

verify one example. Section V concludes the paper.

II. BASIC FRAMEWORK

In this section we introduce the basic framework. We first

introduce the syntax of MDSEL in subsection A. Then the

semantic model to describe the shared-variable concurrency

and real-time computations is given in subsection B. The

formalism to specify a system which is described by MDESL

is presented in subsection C.
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P := PC primitive commands

| P ;Q sequential composition

| if b then P else Q conditional construct

| while b do P iteration construction

| P ||Q parallel composition

| M hybrid control

M := @(x := e) | @(g) | #n hybrid control

g := η | g or g | g and g | g and ¬g logic connection

η := v | ↑ v | ↓ v event guard
TABLE I

SYNTAX OF MDESL

A. Programming Language

In this subsection we introduce the syntax of Multithreaded

Discrete Event Simulation Language (MDESL), first put for-

ward by Zhu, a Verilog-like language, which not only has real-

time feature but also supports the features of shared-variable

concurrency and event-driven computation. The syntax is

given in TABLE I.

We can explain the syntax (similar to [7], [8]) as follows :

• PC consists of four primitive commands: Chaos, Stop,

Skip, x := e. Chaos represents the worst process, whose

behaviour is totally unpredictable. Stop is the process that

does nothing, in other word, idle process. x := e is the

assignment statement, which executes instantaneously.

Skip behaves the same as x := x.

• P ;Q is sequential composition. It executes process P
first. The process Q starts to executes after P terminates

successfully.

• if b then P else Q is the conditional construct.

• while b do P is the iteration construct.

• P ||Q is parallel composition. In Verilog, parallel compo-

sition can occur only at the outmost level, here we allow

it to occur anywhere.

• To accommodate the expansion laws of the parallel

construct, we introduce the concept of guarded choice

and extend Verilog’s event category into the language.

(1) @(x := e) is an atomic assignment, whereas x := e is

not.

(2) #n is time delay which suspends the execution for n
time units, n is an integer.

(3) An event guard @(v) is triggered by the change of v,

and @(↓ v) is triggered by a decrease in v, however

@(↑ v) is triggered by an increase in v.

(4) @(g1 or g2) is triggered if @(g1) or @(g2) is triggered.

(5) @(g1 and g2) is triggered if @(g1) and @(g2) is

triggered simultaneously.

(6) @(g1 and ¬g2) is triggered if @(g2) remains untrig-

gered and @(g1) are triggered.

We describe the execution of a statement is instantaneous if

the execution of a statement lasts zero time. In MDESL, the

following forms are instantaneous:

(1) x := e, Skip,@(x := e) are instantaneous.

(2) If P and Q are instantaneous, P ;Q is also instantaneous.

(3) The transition from if b then P else Q to P (or Q) is

instantaneous.

(4) The transition from while b do P to P ;while b do P
(or to Skip) is instantaneous.

B. The Semantical Model

In this subsection, we will introduce the semantical model

of MDESL. MDESL processes communicate with each other

by shared variables. In order to record communications

among them during execution, we use a trace of snapshots.

When a process executes an atomic action, a snapshot will

be added to the end of the trace. We use tr to denote that trace.

Definition 2.1 (Snapshot) We use a triple (t, σ, µ) to denote a

snapshot, which is used to specify the behaviour of an atomic

action, where:

(1) t represents the time when the atomic action happens.

(2) σ represents the values of program variables when an

atomic action is completed.

(3) µ denotes which process provides the status update. When

µ=1, it represents the process itself performs the atomic

action, µ=0 states the environment engages an atomic

action.

We use the following projections to choose the components of

a snapshot:

π1(t, σ, µ) =df t , π2(t, σ, µ) =df σ , π3(t, σ, µ) =df µ

Definition 2.2 (Operators of Trace) We present the following

main operators OP among the trace. Let tr1 and tr2 be two

traces, s and t be two snapshots.

OP ::= ̂ | last | � | − | len

(1) tr1̂tr2 represents that tr1 and tr2 are connected.

(2) last(tr1) denotes the last snapshot of tr1.

(3) tr1 � tr2 indicates that tr1 is a prefix of tr2, and we

have ∀tr, ∅ � tr.

(4) tr2 − tr1 indicates that the remain of removing all

snapshots in tr1 from tr2 when tr1 � tr2, Combined

with the definition of tr1̂tr2 , we can conclude that

tr2 = tr1̂(tr2 − tr1).
(5) len(tr1) stands for the length of tr1, i.e., if tr1 contains

two snapshots, then len(tr1)=2.

The Fig. 1. shows the trace behaviour of a process and

its environment. Here, we use "•" to represent the process’s

atomic action and "◦" to stand for the environment’s atomic

action. The numbers on the vertical line stand for the

snapshots sequences in the process’s trace, the numbers on

the horizontal line indicate the time when the atomic action

happens.

Example 2.1. Let P =df (x := 1; #1; x := 2) and the

initial trace of P is tr1. We assume that the initial time is

time0.

When P completes its first atomic action x := 1, a snapshot

(time0, σ(x := 1), 1) will be added to the end of tr1. And we

use tr2 to denote the new trace tr1̂(time0, σ(x := 1), 1).
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Fig. 1. The trace behaviour of a process

After one time unit, the atomic action x := 2 takes place,

which generates a snapshot (time0+1, σ(x := 2), 1) attached

to the end of the trace tr2. And we use tr3 to stand for

the new trace tr2̂(time0 + 1, σ(x := 2), 1). According to

Definition 2.2, we have

tr1 � tr2, tr2 � tr3;
tr2 − tr1 = (time0, σ(x := 1), 1);
tr3 − tr2 = (time0 + 1, σ(x := 2), 1);
tr3 − tr1 =

(time0, σ(x := 1), 1)̂(time0 + 1, σ(x := 2), 1);
last(tr2) = (time0, σ(x := 1), 1);
last(tr3) = (time0 + 1, σ(x := 2), 1);
len(tr3−tr2) = 1; len(tr3−tr1) = 2; len(tr2−tr1) = 1.

Now, we can describe the real-time behaviour of a process

P by the following aspects:

• the initial state, i.e., the values of the variables and the

starting time at the start of the execution.

• the time and the values when the variables of P are

changed.

• if P terminates, the final state, i.e., the values of the

variables and the termination time at the end of the

execution.

We can use tr to record the second behaviour, as described

above, it’s a sequence of snapshots to record communica-

tions among them during execution. In order to record the

global clock, we use a special variable time, ranging over

TIME
⋃

{∞} , here TIME is a time domain which is

discrete and TIME = {x|x ∈ N}. We use σ, σ0, σ1 ... to

represent states, assigns a value from R to a common variable

and assigns a value from TIME
⋃

{∞} to time variable.

A set of pairs of the form (σ, tr) represents the semantics

of a program P starting in a state σ0 denoted by M (P )(σ0).
Here σ is a state and tr is the trace of P , as we defined above,

σ0(x) is the value of common variable x at the start of the

P and σ0(time) represents the starting time, tr0 denotes the

initial trace when the program P begins to execution. If P
terminates and a pair(σ, tr) is in M (P )(σ0), then the value

of σ(time) represents the termination time. If P does not

terminate then σ(time) = ∞ and σ(x) is an arbitrary value,

here x is a common variable.

C. Specifications

Our specifications are based on classical Hoare triples

{p} S {q}, it has the following meaning : if S is executed

in a state satisfying precondition p and S terminates then

the final state satisfies postcondition q. In MDESL, @(g)
statement needs to compare current state with the earlier state,

the classical Hoare triples are not suitable for it. According to

the semantic model of MDESL mentioned in subsection B, we

can use the trace to help us to solve the problem. Thus the

formula has the new form tr : {p} S {q} where tr represents

the initial trace before S executes its first statement, p and q
are assertions and S is a program.

Assertion p expresses precondition described as below:

• the starting time of S,

• the initial values of the common variables of S.

Assertion q expresses the postcondition described as follows:

• the terminating time of S (∞ if S does not terminate),

• the finial values of the common variables of S if S
terminates.

Compared with classical Hoare triples, we add a special

variable time in assertions, so our proof system can deal with

total correctness as well as partial correctness. Then we will

give some useful notations which will be used in our following

proof system.

Definition 2.3 If a guard g of a program S is trigged and the

current trace of S is tr, we can denote it as trig(g) at tr.

trig(g) at tr =df ∃tr1•
tr1 � tr ∧
len(tr − tr1) = 1 ∧
fire(g)(π2(last(tr1)), π2(last(tr)))

where fire(g)(σ0, σ1) represents the transition from state σ0

to σ1 can awake the guard @g.

Definition 2.4 If a guard g of a program S is not trigged until

the trace of S is tr1, and the beginning trace of S is tr0.

During this period, denoted by await(g) during [tr0, tr1).

await(g) during [tr0, tr1) =df ∀tr2, tr3 •
tr0 � tr2 � tr3 � tr1 ∧
len(tr3 − tr2) = 1 ∧
¬fire(g)(π2(last(tr2)), π2(last(tr3)))

Definition 2.5 If a guard g of a program S is trigged during tr0
and tr1, this period is represented by trig(g) during [tr0, tr1].

trig(g) during [tr0, tr1] =df ∃tr2 •
tr0 � tr2 � tr1 ∧
await(g) during [tr0, tr2) ∧
trig(g) at tr2

Definition 2.6 (Validity) For a program S, the beginning

trace is tr0, the program S and assertions p and q, if the

correctness formula tr0 : {p} S {q} is true, we can write

|= tr0 : {p} S {q}, iff for the initial state σ0, and any σ, tr
with (σ, tr) ∈ M (P )(σ0), we have that (σ0, tr0) |= p implies

(σ, tr) |= q .
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III. THE PROOF SYSTEM

In this section, we will introduce a compositional proof sys-

tem for MDESL. First we give the proof rules of the sequential

program and some axioms that are generally applicable to each

statement in subsection A. Then in subsection B, the rules for

parallel composition are presented. Last, we will introduce

some auxiliary axioms and rules in subsection C.

A. Axioms and Sequential Program Rules

A skip statement means the program does nothing and

terminates immediately, it will have no effect on itself and

the environment.

Axioms 1. Skip

tr : {p} Skip {p}

The Chaos statement means that the behaviour of the

program is totally unpredictable and the global clock will

not stop, we use a notion time = ∞ to represent that the

program is divergence.

Axioms 2. Chaos

tr : {p} Chaos {q ∧ time = ∞}

The nontermination axiom represents that a program

following a Chaos computation has no effect.

Axioms 3. Nontermination

tr : {p ∧ time = ∞} S {p ∧ time = ∞}

The rule for an assignment x := e is same as the classical

rule because the assignment statement takes 0 time unit to

complete.

Axioms 4. Assignment

tr : {q[x := e]} x := e {q}

About the rule for delay statement #e, which means that

the global clock time delays e time units and no change

takes place in common variables. We give the postcondition

q, then the precondition q[time = time+ e] is required.

Axioms 5. Delay

tr : {q[time = time+ e]} #e {q}

About the rule for the @(g) statement, there are two

possibilities in sequential program. One possibility is that the

guard is triggered by the execution of its prior atomic action

(or it may be triggered by its environment and we will discuss

it in subsection B). In this case, the notation trig(g) at tr
is true, due to no variables are updated, the postcondition

and the precondition are same. The other possibility is that

the execution of the program can not trig the guard @(g),
and the guard will be in a waiting state to be fired endlessly,

which means the state of the program becomes Chaos. We

use a notion q∞ to represent a nonterminating computation

of infinite waiting.

Rule 1. Guard -1

(p ∧ time < ∞) ∧ trig(g) at tr → p

(p ∧ time < ∞) ∧ ¬trig(g) at tr → q∞

tr : {p} @(g) {p ∨ q∞}

Rule 2. Conditional

tr : {p ∧ b} S1 {q}, tr : {p ∧ ¬b} S2 {q}

tr : {p} if b then S1 else S2 {q}

About the rule for the while construct, it has two parts.

The first part is related to the classic rule of Hoare Logic.

The second part is to handle the nonterminating statements.

Rule 3. While

tr : {I ∧ b ∧ time < ∞} S {I}

(∀tr1, ∃tr2, tr � tr1 � tr2) → q∞

S := Skip → q∞

I → I1,

(∀t1, ∃t2 > t1 : I1[t2/time]) → q∞

tr : {I} while b do S od {(I ∧ ¬b) ∨ (q∞ ∧ time = ∞)}

We will give an informal description of the soundness of the

While rule, For a while program while b do S od, we assume

that it starts in a state satisfying p. There are four cases.

The first is the same as the classic Hoare Logic. Program

S is a terminating computation, and the loop is terminated.

Except the last one, for all these computations of S, b is always

true. So the condition tr : {I ∧ b ∧ time < ∞} S {I} holds

in the case, this means that the last computation ¬b must be

true, which leads to (I ∧ ¬b) .

In the second case, we assume that it starts in a state

satisfying I and nonterminating, i.e., for the initial state σ0 ,

σ0(time) = ∞. Then model is the same as the nonterminating

model (the property has been expressed in the Nontermination

Axiom). time = ∞ and I → I1 ∧ time = ∞ hold in this

model, so (∀t1, ∃t2 > t1 : I1[t2/time]) is true. And it leads

to q∞.

In the third case, we assume S is a nonterminating com-

putation. Then the computation becomes a nonterminating

computation, and as in the first case, I ∧ time = ∞ holds

for this model. Thus, since I → I1, condition (∀t1, ∃t2 > t1 :
I1[t2/time]) holds in the case, and it will lead to q∞.

The last case represents a nonterminating computation

which program S is a terminating computation and the loop

is infinite. It means that the boolean condition b will be true

forever. In this case, program S has three situations.

• If program S is a Skip statement, then it will lead to q∞.

• If it doesn’t contain any time delay, the trace of

the while program will be infinite. Hence, we obtain

(∀tr1, ∃tr2, tr � tr1 � tr2) → q∞, and then it leads

to q∞.

• If S contains any time delay #e, each computation of S
takes at least e time units, so we have I → I1, hence,

(∀t1, ∃t2 > t1 : I1[t2/time]) → q∞, and we obtain q∞.
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B. Parallel Composition

Before we give the rule of parallel composition, we

will first introduce the merge of traces. Now consider the

following example.

Example 3.1. Let P =df x := y + 2;#1; y := x + 1 and

Q =df y := y + 2. Assume that P || Q is activate with

x = y = 0 and time = 0. If P is scheduled to execute first,

then the sequence of snapshots of P is :

seqp =< (0, {x = 2, y = 0}, 1),
(0, {x = 2, y = 2}, 0),
(1, {x = 2, y = 3}, 1) >

where the first and the third snapshots are produced by the

atomic action x =: y + 2 and y := x + 1 of P . And the

second one is engaged by the environment of P . In this

example, the environment of P is Q and the computation of

Q yields the following sequence :

seqq =< (0, {x = 2, y = 0}, 0),
(0, {x = 2, y = 2}, 1),
(1, {x = 2, y = 3}, 0) >

Due to seqp and seqq are built from the same initial state,

they are comparable. In addition, all of their snapshots are

made by both P and Q. So their merge rises a trace of

P || Q:

seqp||q =< (0, {x = 2, y = 0}, 1),
(0, {x = 2, y = 2}, 1),
(1, {x = 2, y = 3}, 1) >

If Q is executed first, then the traces of P and Q are :

seqp =< (0, {x = 0, y = 2}, 0),
(0, {x = 2, y = 2}, 1),
(1, {x = 2, y = 3}, 1) >

seqq =< (0, {x = 0, y = 2}, 1),
(0, {x = 2, y = 2}, 0),
(1, {x = 2, y = 3}, 0) >

Their trace of P ||Q is their merge. The trace is:

seqp||q =< (0, {x = 0, y = 2}, 1),
(0, {x = 2, y = 2}, 1),
(1, {x = 2, y = 3}, 1) >

Definition 3.1 (Merge of Traces)) As we have seen in

Example 3.1, two sequences seq1 and seq2 are said to be

comparable if

(1) The time sequences from the two traces are the same

π1(seq1) = π1(seq2)
(2) They are built from the same sequence of states

π2(seq1) = π2(seq2)
(3) None of their snapshots is made by both components

2 /∈ π1(seq1) + π1(seq2)

We use the following predicate to present their merge:

M(seq, seq1, seq2) =df




(π1(seq1) = π1(seq2) = π1(seq))∧
(π2(seq1) = π2(seq2) = π2(seq))∧
(π3(seq) = π3(seq1) + π3(seq2))∧

(2 /∈ π3(seq1) + π3(seq2))




In the sequential programs, the @(g) can only be trigged

by the execution of its prior atomic action, but in the parallel

programs, it also can be trigged by its environment, and the

Rule 1(Guard-1) will be replaced by the following rule.

Rule 4. Guard -2

(p ∧ time < ∞) ∧ trig(g) at tr → p

(p ∧ time < ∞) ∧ (∃tr1 • tr ≤ tr1∧

await(g) during [tr, tr1) ∧ (trig(g) at tr1))

→ q[π1(last(tr1))/time, π2(last(tr1))/σ]

(p ∧ time < ∞) ∧ await(g) during [tr, tr1)∧
π2(last(tr1)) = ∞ → q∞

tr : {p} @(g) {p ∨ q ∨ q∞}

The second property of the rule notes that, in the guard

statement, if the @(g) is trigged by itself, the atomic action

@(g) will be scheduled immediately. This means that only

if the guard cannot be trigged by itself, then it will be

waiting to be trigged by it’s environment. If the guard is

fired, then the guard will complete it’s computation, and

the last snapshot of the trace records the terminating time

and the finial values of the program, so the postcondition is

q[π1(last(tr1))/time, π2(last(tr1))/σ].

The proof rule for parallel composition has the following

form where we use a merge operator M to combine the two

traces, and use the trace which has been merged we can

combine two assertions.

Rule 5. Parallel

tr : {p1} S1 {q1}, tr : {p2} S2 {q2},

∀tr1, tr2 • (M(tr3, tr1, tr2) ∧ (tr1 → q1) ∧ (tr2 → q2))

→ q[maxTime(q1, q2)/time, π2(last(tr3))/σ]

tr : {p1 ∧ p2} S1 || S2 {q}

where tr1 is the trace of S1 and tr2 is the trace of S2 when

S1||S2.

The tr → q represents that the assumption q satisfies the

state π2(last(tr2)), and the trace will not record the delay

statement, so if a statement is followed by a time delay, it

will not change the trace. For instance, consider a program

P : x =: x + 1,#1, x =: x + 2 with the initial state x = 0
and the initial time is 0, and the sequence of the snapshots

of P :< (0, x = 1, 1), (1, x = 3, 1) >. When we add a time

delay to the end of P , the trace of P will not change anything.

So we define

tr → q =df π2(last(tr)) ∧ time < ∞ → q
Due to the termination times of S1 and S2 will be different.

To obtain a general rule, we use the notation maxTime(q1, q2)
to denote the termination time of S1||S2, the definition is given

as below:

maxTime(q1, q2) =df max(t1, t2) (ti is the value of time
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in qi)

C. Auxiliary Axioms and Rules

In this subsection, we will introduce some auxiliary axioms

and rules which will be used in our proof system. Some of

them have been presented in [9].

Axiom 6. Invariance

tr : {p} S {p}

where time does not occur in p, and var(S) ∩ var(p) = φ

Rule 6. Disjunction

tr : {p} S {q}, tr : {r} S {q}

tr : {p ∨ r} S {q}

Rule 7. Conjunction

tr : {p1} S {q1}, tr : {p2} S {q2}

tr : {p1 ∧ p2} S {q1 ∧ q2}

The substitution rule means that if a variable does not

occur in the program statement, we can use any arbitrary

expression to replace it.

Rule 8. Substitution

tr : {p} S {q}

tr : {p[z := t]} S {q[z := t]}

where (z ∪ var(t)) ∩ changes(S) = φ and time does not

occur in t.

Rule 9. Consequence

tr : {p} S {q}, p1 → p, q → q1

tr : {p1} S {q1}

About the rule for sequential consequence, the construct is

same as the classic rule of Hoare Logic. In our proof system,

we use trace to help us record the state before a statement

begins it’s first statement, and as we described in the parallel

rule, trace does not record the delay statement, so we assume

that S1 ends with a delay statement #e (0 ≤ e ≤ ∞).

Rule 10. Sequential Consequence

tr : {p} S1 {r}, tr1 : {r} S2 {q}

tr : {p} S1;S2 {q}

where tr � tr1, tr1 → r and π1(last(tr)) + e = tr. (tr is the

value of time in r).

IV. CASE STUDY

In this section we give a parallel program written by

MDESL, and show how to apply our method to prove the

correctness of the program. Consider the program P and Q :

P ::= while x > 0 do

@(↑ y);
x := x− 1;

od;

z = 1;

Q ::= #1;
while z 6= 1 do

y := y + 1;
#1;

od;

Program P represents that the variable x will decrease if

x > 0 and variable y increases. If x ≤ 0, it terminates.

Program Q denotes that y increases by 1 per one time unit

when z 6= 1 is true, so when P terminates, it satisfies z = 1.

We have the following assumptions and notations:

• the initial trace tr is < (0, {x = 2, y = 0, z 6= 1}, 1) >.

• x, y, z are all integers.

• the precondition p1 is x = 2∧y = 0∧ z 6= 1∧ time = 0.

• S1 = (@(↑ y); x := x− 1) and S2 = (y := y+ 1; #1).

For P ||Q, we want to prove the following correctness

formulas:

tr : {p1} P {x ≤ 0 ∧ time < ∞} (4.1)

tr : {p1} Q {z = 1 ∧ time < ∞} (4.2)

tr : {p1} P ||Q {x ≤ 0 ∧ z = 1 ∧ time < ∞} (4.3)

We denote x ≤ 0 ∧ time < ∞ as q1, z = 1 ∧ time < ∞
as q2 and x ≤ 0 ∧ z = 1 ∧ time < ∞ as q .

Proof :

First, as same as the Example 3.1, we get the traces of P and

Q when P ||Q.

trp =< (0, {x = 2, y = 0, z 6= 1}, 1),
(1, {x = 0, y = 1, z 6= 1}, 0), (trp1)
(1, {x = 1, y = 1, z 6= 1}, 1), (trp2)
(2, {x = 1, y = 2, z 6= 1}, 0), (trp3)
(2, {x = 0, y = 2, z 6= 1}, 1), (trp4)
(2, {x = 0, y = 2, z = 1}, 1) >

trq =< (0, {x = 2, y = 0, z 6= 1}, 1),
(1, {x = 0, y = 1, z 6= 1}, 1), (trq1)
(1, {x = 1, y = 1, z 6= 1}, 0), (trq2)
(2, {x = 1, y = 2, z 6= 1}, 1), (trq3)
(2, {x = 0, y = 2, z 6= 1}, 0), (trq4)
(2, {x = 0, y = 2, z = 1}, 0) >

According to the definition of Merge, we obtain the trace of

P ||Q.

trp||q =< (0, {x = 2, y = 0, z 6= 1}, 1),
(1, {x = 0, y = 1, z 6= 1}, 1),
(1, {x = 1, y = 1, z 6= 1}, 1),
(2, {x = 1, y = 2, z 6= 1}, 1),
(2, {x = 0, y = 2, z 6= 1}, 1),
(2, {x = 0, y = 2, z = 1}, 1) >

Then we prove the correctness of (4.1) and (4.2) by using

their trace trp and trq .
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To prove (4.1), we set a global invariant variable I1 as :

I1 = z 6= 1 ∧ time < ∞.

And we need to prove the correctness of following formula :

tr : {I1 ∧ x > 0} @(↑ y) {I ∧ x > 0} (4.4)
and

trp2 : {I1 ∧ x > 0} @(↑ y) {I ∧ x > 0} (4.5)
Note that the implications

I1 ∧ (∃trp1 • tr ≤ trp1∧

await(g) during [tr, trp1) ∧ (trig(g) at trp1))

→ I1 ∧ x > 0

and

I1 ∧ (∃trp3 • trp2 ≤ trp3∧

await(g) during [tr2, trp3) ∧ (trig(g) at trp3))

→ I1 ∧ x > 0

hold. Thus by the rule 4 (Guard -2), we prove (4.4) and (4.5).

Further by the assignment axiom 4, we prove

{I ∧ x > 0} x := x− 1 {I ∧ x ≥ 0} (4.6)

By (4.4), (4.5), (4.6) and the while rule 3, we obtain

tr : {I} while x > 0 do S1 od {I ∧ x ≤ 0} (4.7)

By the consequence rule 9, we can prove that (4.1) is correct.

We can use the same method to prove (4.2) is correct too.

At last we prove (4.3). Since

π2(last(trp)) ∧ time < ∞ → q1

and

π2(last(trq)) ∧ time < ∞ → q2.

trp → q1 and trq → q2 are hold in this model, and using the

definition of maxtime and π2(tr), we get

maxTime(q1, q2) =df time ≤ ∞

and

π2(last(trp||q)) = {x = 0, y = 2, z = 1}.

We obtain

∀trp, trq • (M(trp||q, trp, trq)∧(trp → q1)∧(trq → q2))

→ q[maxTime(q1, q2)/time, π2(last(tr3))/σ] (4.8)

Combine formula (4.1), (4.2) and (4.8) and by the Parallel

rule, we can derive the correctness formula :

tr : {p1} P ||Q {x ≤ 0 ∧ z = 1 ∧ time < ∞}

V. CONCLUSION

In this paper, we have presented a proof system for MDESL

(Multithreaded Discrete Simulation Language) which aims to

prove the correctness of MDESL. Compared to classical Hoare

Logic, our proof system uses the global clock variable time to

express the real-time feature. It represents the starting time in

the precondition and the terminating time in the postcondition.

The value of time also can help us handle the nontermi-

nating computations. And in order to verify the feature of

event-driven we have extended the old triple {p} s {q} to
tr : {p} s {q} by adding a data structure tr. To make

the verification more straightforward, we have provided some

axioms and rules for sequential. Then we give the composition

rules which make our proof system become a complete system.

Our key contribution is the guard rule. It can be applied in the

verification of the property of event-driven in MDESL.

For the future, we want to explore our proof system for

hardware description language (HDL). On one hand, the

probability feature [12] has been proposed in a new Verilog-

like language PTSC [13]. We can deduce some specific rules

to describe the feature and verify the properties related to

probability. On the other hand, we want to link our proof

system with the semantics (operational, denotational, alge-

braic) [14], [15] respectively for MDESL. Furthermore, we

want to implement the proof system in a tool so that it can

verify the correctness of programs automatically.
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