
A Database Performance Polynomial Multiple

Regression Model
Artur Nowosielski1

1 Findwise Sp. z o.o.

ul. Widok 16/3, 00-023 Warsaw, Poland

Email: artnowo@gmail.com

Piotr A. Kowalski2,3, Piotr Kulczycki2,3

2 Faculty of Physics and Applied Computer Science

AGH University of Science and Technology

al. Mickiewicza 30, 30-059 Cracow, Poland
3Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland

Email: {pakowal,kulczycki}@ibspan.waw.pl

Abstract—Modelling of a database performance depending on
numerous factors is the first step towards its optimization. The
linear regression model with optional parameters was created.
Regression equation coefficients are optimized with the Flower
Pollination metaheuristic algorithm. The algorithm is executed
with numerous possible execution parameter combinations and
results are discussed. Potential obstacles are discussed and
alternative modelling approaches are mentioned.

I. INTRODUCTION

THIS article presents advances in the research introduced

at FedCSIS 2015 DS-RAIT [1] and then presented at

FedCSIS 2016 8th WSC [2]. The research relies on bench-

marking the column-oriented database management system

CODB. Model coefficients (weights) are optimized by the

Flower Pollination Algorithm (FPA) [3]. Section II presents a

sequence of steps that result in two regression equations with-

out concrete weight values. Section III discusses how a model

performance varies as a result of selecting different combi-

nations of algorithm execution parameters in both variants. It

also contains both model regression equations after supplying

coefficients that achieved the highest accuracy. An outcome of

the research is a mathematical model that expresses a database

performance. It is created on the basis of empirical data

collected by benchmarking the CODB database. In contrary

to the the previous study [2], technology-oriented factors were

not covered. Study has shown that such components have

low impact on overall performance. Thus, further research

is focused on data features and features of request sequence

issued against a database management system.

II. MODEL CONSTRUCTION

The modelling process was conducted as a sequence of

activities described in next paragraphs. Firstly, a database

benchmark was executed numerous times with different, but

regular, settings in order to isolate data about specific factors’

influence on overall performance. Then, a data concerning

specific factors was visualised as a scatter plot and curves in a

three-dimensional space. Function shapes for specific factors

are recognized by a manual visual graph assessment. The

model has been split into two variants at this stage. The second

variant enriches the first one by including an information

about proportion between database operations. The first variant

skips this feature, whereas a second one uses it, in a form

of a compositional variable components supplied directly to

the regression equation. Both variants are compared to each

other in terms of model accuracy. Second benchmarking round

used random values obtained from the uniform distribution as

input variables. Splitting the empirical data collection onto

two stages was intended to ensure high quality of input data.

A model formula with coefficients (weights) was coined as

the result of both stages. Coefficients are optimized for the

minimum error, i.e. the higher accuracy.

Model is created with the multiple regression technique

with a priori known explanatory variable distributions. This

method is based on a well-known and widely used linear

regression model [4], with multiple input variables and a single

output variable. Input parameters are called independent or

explanatory variables, whereas an outcome is a dependent

or explained variable. Created model is linear, although the

explanatory variables are handled with polynomial functions.

The linearity relates to the linearity of model coefficients in the

model equation. The regression analysis has been chosen for

the analysis because of its simplicity and straightforwardness.

The general regression formula for n-dimensional indepen-

dent variables vector X and dependent variable Y is:

Y = wnXn + wn−1Xn−1 + ...+ w1X1 + w0 + ǫ, (1)

where ǫ denotes an error term, w is a n + 1-dimensional

coefficient vector, especially with the random term w0. The

error term is discussed in section III.

Model construction started from two fundamental factors

acting as independent variables: a number of values (v) and

a number of columns (c). Benchmark execution time t was

set as an explained variable. Database benchmarking, that

is a source of training data used for a model coefficient

optimization, was limited by a number of constraints, such

as maximum values for a number of columns and a number

of values. A number of columns and a number of values both

must be higher than 0 for obvious reasons. Both parameters

are integers. A polynomial that expresses time depending from

number of values will be referred to as t(v), whereas time

from number of columns will be t(c). In this research, t was

measured as a time of execution of 20 000 database operations.

Initial column family state was 20 000, 30 000 or 40 000

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 743–747

DOI: 10.15439/2017F416

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 743



tuples already existing at a start of measurement. A number of

initially existing records depend on the ratio between different

types of database operations, described in the next part of this

paper. Regardless of parameters, each test has been executed 4

times. Values used for testing are randomly generated strings

with lengths randomized from range [100, 10000] with unified

distribution. The formula 1 with supplied parameters is:

t = t(v) + t(c) + w0 + ǫ

= wnv
dv + wn−1v

dv−1 + ...+ wn−dvv

+ wn−dv−1c
dc + wn−dv−2c

dc−1 + ...+ w1c

+ w0 + ǫ, (2)

where n+ 1 is a number of coefficients, wi constitute model

coefficients, especially with the w0 random term. dv and dc
are polynomial degrees for t(v) and t(c) polynomial functions,

respectively.

The first variable, a number of values, denotes how many

values are read or written while working with database.

Although it may appear that usually this number is indefinite,

this is not true for each case. There are many cases that have

not only definite, but really low number of possible values.

Such cases include, among others, gender, city or country,

which are usually taken from dictionaries. The model assumes

that in case of analysed field there is a finite value set. For

the sake of model construction, a range of [1, 500] was used

as the v parameter domain.

The second factor, c, denotes a number of columns involved

in given request. For the write or delete requests it is a number

of columns that are modified, whereas for the read request it

is a number of columns that consists of a read tuple. Similarly

as in case of number of values, a range of [1, 500] was used as

a domain with similar assumptions. This range is supposed to

handle most of typical Create-Retrieve-Update-Delete (CRUD)

use cases.

In order to asses a general shape (a polynomial function

degree) of functions for each parameter, an intermediate value

within presumed domains were chosen and benchmarked

extensively. Research started with the following values:

c, v ∈ {1, 100, 200, 300, 400, 500}.

A ratio between read and write operations was 2

1
, that is 67%

of operations were read, and 33% were write. The very early

result examination displayed that a shape varies more for lower

values, than for higher values of c, so for the sake of a shape

assessment, a value density has been increased in the lower

part of the range:

c ∈ {1, 5, 10, 30, 50, 100, 200, 300, 400, 500}.

The first graph lets to extract first conclusions about the

shape. The general trend is that a performance improves as

the number of different values increase. But it is not the only

observable trend. Results are more stable when the number

of values increase. Standard deviation for v = 1 is 10.10
(including values that are hidden on the graph), for v = 200
it falls down to 0.22 and for v = 500 it is only 0.11. When

it comes to a number of columns, operations time decreases

as a number of columns grows, but does not approach 0

asymptotically. Somewhere between 200 and 300 columns

(depending on v) it starts to grow again. Probably this marks

a moment when there is too many columns to be handled by

operating system I/O smoothly and jumps between numerous

files starts to be a visible cost. For lower v values, a higher

dispersion for low c values is observable, than for higher ones.

However, the impact is lower than in case of low v values.

Fig. 1. A scatter plot of t(v, c) with R

Wi
= 2

1
with 3rd order polynomial

regression curves and points for chosen v values (v = 1 removed for clarity)

Fig. 2. A scatter plot of t(v, c) with R

Wi
= 2

1
with 3rd order polynomial

regression curves and points for chosen c values (c = 1 removed for clarity;
please note the reversed graph orientation)

Figure 1 presents data points for t(c) for constant v values

with curves that present a supposed function shape for each

value. Just as the main model, these functions were constructed

using simple regression with FPA-optimized weights but they

are used exclusively for presentation purposes. The trend is

visible, with growing v values curves are smoother and almost

linear near the end of the scope. This is an indication of a

744 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



higher result stability for higher values. The same was repeated

for different v with constant c values and presented on Figure

2. Conclusions are similar to those for Figure 1.

Fig. 3. A t(v, c) with R

Wi
= 2

1
plane with weights (c ∈ {1, 5} removed

from graph for clarity; please note the reversed graph orientation)

On the basis of presented plots, a polynomial degree for both

t(c) and t(v) was heuristically estimated as 3. This results in

7-dimensional optimization task for the algorithm, because the

refined regression formula has 7 coefficients:

t = w6v
3 + w5v

2 + w4v + w3c
3 + w2c

2 + w1c+ w0 + ǫ. (3)

Besides number of columns and number of values, a very

important performance determinant is a ratio between a dif-

ferent kinds of database operations. Three different kinds of

operations were identified: OR - read (fetching a tuple of

values identified by a common key), OWi - insertion and

OWd - deletion. These values compose a typical compositional

data [10], which is a set of variables linked together so

that they sum up to a constant value. The most intuitive

representation for a ratio between different exclusive values of

the same feature is a percentage, so a constant sum constraint

is O = OR + OWi + OWd = 100. Using a compositional

data in regression model has a serious drawback. In order

to ensure that regression model will be free from a noise,

explanatory variables should be linearly independent from

each other. This is not true for composite elements. When

compositional data is to be used in regression model, it should

be transformed to a set of abstract components that are not

correlated, for example with the principal component analysis

(PCA) or its’ internal dependence should be weakened by

removing one or more components. However, for the sake

of this research, composite components were put directly into

model, because there are only three components and removing

even one of them would cause a model to infer on incomplete

data. In order to monitor and control potential model accuracy

degradation, results from model variants with and without

compositional variable was compared.

In the first data discovery phase, 10 permutations of

R/Wi/Wd values were considered, with each component

∈ {0%, 33.(3)%, 66.(6)%, 100%} so that the sum was always

100%. Assuming 240 tests executed for each of 10 propor-

tions, it gives 2400 data points in total. For the majority

operation ratios a plane has more or less common shape,

similar to the one presented on the Figure 3. Rapid execution

time growth in the lower parts of both crucial parameters is

clearly visible as a red peak in the back right graph corner.

There are areas of significantly higher results in the central and

higher part of value number range. They have one feature in

common: delete operation has dominated in these benchmark

executions (100% or 67%). This is is unintuitive given the

CODB storage architecture [2]. However, for a low column

count (as in discussed cases), this may require to rewrite a

high number of identifiers in order to move free space to the

end of the area occupied by the value record. This is the most

probable reason for exceptionally high execution times for test

cases with high deletion ratio.

As it was mentioned previously, operation sorts ratios are

expressed in percents, so their domain are integers from range

[0, 100]. The O components were put directly into model

equation:

t = t(O) + t(v) + t(c) + w0 + ǫ

= w9OR + w8OWi + w7OWd + w6v
3 + w5v

2 + w4v

+ w3c
3 + w2c

2 + w1c+ w0 + ǫ. (4)

III. MODEL OPTIMIZATION AND RESULTS

In this section, the main optimization goal is to minimize

an error. The residual sum of squares (RSS; also known as

sum of squared error, SSE) [11] metric has been chosen to

measure error value. It is calculated as a sum of error term

values from each sample:

RSS =
n
∑

i=0

(ǫi) =
n
∑

i=0

(ti − mi)
2, (5)

where ti is actual value of i-th benchmarked case, mi is

a corresponding model value and n constitutes a number of

benchmark results. The residual standard error (RSE) is pre-

sented as an auxiliary error metric. Its advantage over the RSS

metric is that it is expressed in similar orders of magnitude as

the original data which makes it directly comparable to actual

results. The RSE can be calculated on the basis of the RSS:

RSE =

√

RSS

n− p− 1
(6)

where n is a number of samples (2400 and 4800 for the first

and second modelling round) and p is number of parameters in

each sample (7 and 10, for model without and with operations

component, respectively). The n−p−1 value is called degrees

of freedom and is commonly used metric in statistics.

The FPA [3] was used to optimize model coefficients.

The optimization goal was to minimize the RSS. Execution

parameters include a number of iterations, a number of flowers

(solutions) and a switch probability. Number of iterations

denote how many times a simulated pollination will be per-

formed. Number of solutions defines how many solutions will

ARTUR NOWOSIELSKI ET AL.: A DATABASE PERFORMANCE POLYNOMIAL MULTIPLE REGRESSION MODEL 745



TABLE I
MODEL COEFFICIENT SEARCH RANGES

Coefficient Initial range Refined range

w0 [−100, 100] [−100, 100]
w1 [−100, 100] [−10, 10]
w2 [−100, 100] [−2, 2]
w3 [−100, 100] [−1, 1]
w4 [−100, 100] [−10, 10]
w5 [−100, 100] [−2, 2]
w6 [−100, 100] [−1, 1]
w7 [−100, 100] [−100, 100]
w8 [−100, 100] [−100, 100]
w9 [−100, 100] [−100, 100]

be handled in each iteration. Just like in case of the number

of iterations, the bigger the value is the better performance is.

A switch probability defines a probability of the random long

pollination. This parameter defines a compromise between a

local-optimum protection and a close result space exploration.

For each model coefficient, search range was initially de-

fined as [−100, 100]. Initial results displayed that particular

coefficients tend to converge to specific order of magnitude.

A rule of thumb is that the order of magnitude is reversed

proportional to given coefficient’s degree, for example a ran-

dom term is expressed in unities or at most tens, whereas v3

weight always felt into 10−6. Table I presents refined ranges.

After search range refinements, the model coefficient opti-

mization phase has been performed. Table II presents results

from the first phase for a Cartesian product of three algo-

rithm execution parameters value sets: number of iterations

in {1000, 2000, 3000}, number of solutions in {100, 200} and

switch probability in {0.2, 0.5}. These values where chosen

arbitrarily on the basis of previous tries. Besides these basic

execution parameters, FPA has other parameters that were

not modified, default values are used. Their impact on model

performance has been analysed in [12]. The RSS and RSE

columns present the best (the least), error value achieved in

algorithm executions with given parameter values. The RSS

diff and RSE diff columns present how the error value has

changed after compositional variable insertion to the regres-

sion equation. Difference is calculated as:

d = 100% ·
v2

v1
− 100, (7)

where v1 and v2 before and after values. A positive number

indicates error growth, and a negative indicates a decrease, so

that the lower value the better.

Table III presents the model performance after coefficients

recalculation with randomly collected data set. For each pa-

rameters combination, a percentage improvement or regression

in relation to performance from the corresponding row from

Table II is presented in brackets in the same cells as RSS

and RSE values. In both tables and both variants, a reversed

dependency of the error from a number of iterations is

visible yet weak. This conforms intuitive predictions that the

more iterations the better, as the FPA algorithm is by design

protected from result degradation. As p is growing, model

accuracy falls down dramatically. For the simpler variant 1 the

best results were obtained with almost all the parameter

combinations, regardless of iterations or solutions number. The

more complex variant 2 required at least 2000 iterations to get

the best result. In most cases, variant 1 is less accurate than

variant 2. This happens despite theoretical risk of disturbances

caused by mutual correlation of three variables. It is likely

that a disturbance introduced by the correlated compositional

variable components into the regression model makes less

damage to the accuracy than a partial lack of information.

A difference between phases 1 and 2 is much higher than

anticipated and requires further investigation, because there

are many possible reasons. More evenly distributed data than

in the 1st phase was expected to increase model accuracy,

but such a low RSE may indicate overfitting to the train data

caused by a lack of a cross validation.

Coefficients obtained with the best solution from table III

were put into equations (3) and (4) resulting with:

t = −4.586E − 8 · v3 + 2.873E − 5 · v2 − 1.873E − 3 · v

+ 4.674E − 9 · c3 + 4.536E − 6 · c2 − 6.034E − 4 · c

+ 0.544 + ǫ (8)

as the model variant 1 and:

t = t(O) + t(v) + t(c) + w0

= −0.301 ·OR − 0.304 ·OWi − 0.286 ·OWd

− 5.004E − 8 · v3 + 2.883E − 5 · v2 − 1.460E − 3 · v

+ 3.513E − 9 · c3 + 5.398E − 6 · c2 − 7.249E − 4 · c

+ 29.800 + ǫ (9)

for the variant 2. Both weights vectors were taken from

3000/200/0.2 executions with RSS = 2478 and RSS =
2179 for variant 1 and 2, respectively.

IV. SUMMARY

This paper presents a mathematical model of a column-

oriented database performance. Mandatory explanatory vari-

ables of the model are a number of columns and a number

of different values present in a database and requests issued

against it. As an optional component, explanatory variables

set includes information about percentage share of different

kinds of database CRUD operations. Data was collected in two

phases. The first stage collected data necessary to assess func-

tion shape for particular factors whereas the second increased

statistical value of the model input data. Number of columns

and values explanatory variables model were assessed as third-

order polynomial, which resulted in regression equation with

7 coefficients. A variant with operation ratios increased a

number of coefficients to 10. Both problems were optimized

with the FPA for minimal RSS. The switch probability pa-

rameter p turned out to have a significant impact on the

model accuracy, making a model generated with p > 0.5
much less accurate, especially with lower iteration counts. The

best results were obtained with p = 0.2. An impact of the

remaining parameters, iteration and solution counts, turned out

to be lower, but still observable.

In the future, the model may benefit from trying out other

metaheuristic algorithms, such as the Krill Herd Algorithm

746 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



TABLE II
THE FPA-OPTIMIZED MODEL PERFORMANCE - 1ST PHASE

Iterations Solutions
Switch

probability

Variant 1: without Ox Variant 2: with Ox

RSS RSE RSS RSS diff RSE RSE diff

1000
100

0.2 61 088 5.05 57 168 -6.42% 4.89 -3.21%

0.5 71 530 5.47 119 884 67.60% 7.08 29.55%

200
0.2 61 090 5.05 57 185 -6.39% 4.89 -3.19%

0.5 82 665 5.88 91 973 11.26% 6.21 7.25%

2000
100

0.2 61 088 5.05 57 143 -6.46% 4.89 -3.23%

0.5 61 088 5.05 57 143 -6.46% 4.89 -3.23%

200
0.2 61 088 5.05 57 143 -6.46% 4.89 -3.23%

0.5 61 088 5.05 57 144 -6.46% 4.89 -3.23%

3000
100

0.2 61 088 5.05 57 143 -6.46% 4.89 -3.23%

0.5 61 088 5.05 57 143 -6.46% 4.89 -3.23%

200
0.2 61 088 5.05 57 143 -6.46% 4.89 -3.23%

0.5 61 088 5.05 57 143 -6.46% 4.89 -3.23%

TABLE III
THE FPA-OPTIMIZED MODEL PERFORMANCE - 2ND PHASE

Iterations Solutions
Switch

probability

Variant 1: without Ox Variant 2: with Ox

RSS RSE RSS RSS diff RSE RSE diff

1000
100

0.2 2478 (-95.94%) 0.72 (-85.75%) 2321 (-95.94%) -6.34% 0.70 (-85.69%) -2.78%

0.5 7318 (-89.77%) 1.24 (-77.32%) 353 448 (194.82%) 4729% 8.59 (21.33%) 592.74%

200
0.2 2479 (-95.94%) 0.72 (-85.75%) 2630 (-95.40%) 6.09% 0.74 (-84.87%) 2.78%

0.5 12 119 (-85.34%) 1.59 (-72.95%) 816 355 (787.60%) 6636% 13.06 (110.31%) 721.38%

2000
100

0.2 2478 (-95.94%) 0.72 (-85.75%) 2179 (-96.19%) -12.10% 0.67 (-86.30%) -6.94%

0.5 2478 (-95.94%) 0.72 (-85.75%) 2181 (-96.18%) -12.02% 0.67 (-86.30%) -6.94%

200
0.2 2478 (-95.94%) 0.72 (-85.75%) 2179 (-96.19%) -12.10% 0.67 (-86.30%) -6.94%

0.5 2478 (-95.94%) 0.72 (-85.75%) 2192 (-96.16%) -11.54% 0.68 (-86.09%) -5.56%

3000
100

0.2 2478 (-95.94%) 0.72 (-85.75%) 2179 (-96.19%) -12.10% 0.67 (-86.30%) -6.94%

0.5 2478 (-95.94%) 0.72 (-85.75%) 2179 (-96.19%) -12.10% 0.67 (-86.30%) -6.94%

200
0.2 2478 (-95.94%) 0.72 (-85.75%) 2179 (-96.19%) -12.10% 0.67 (-86.30%) -6.94%

0.5 2478 (-95.94%) 0.72 (-85.75%) 2181 (-96.18%) -11.99% 0.67 (-86.30%) -6.94%

[13] [14]. Numeric optimization is also one of the most

typical appliances of evolutionary and genetic algorithms [5].

A compositional value transformation such as Additive/Cen-

tered/Isometric Log ratio Transformation (ALR, CLR, ILR)

[15] should be used against the operations compositional vari-

able. This should improve model accuracy and let to perform

analysis without comparing both model variants. Trying out

different modelling techniques, like non-parametric methods

[8] [9] and other prediction models, such as Radial Basis

Function neural networks [6] [7], may improve accuracy. The

model is intended to be a foundation for a database perfor-

mance optimization, which means it should be as accurate

and sophisticated as possible. However, it needs to maintain

simplicity to be executed with satisfying performance. This

balance between accuracy and execution time is crucial for

the considered application.

REFERENCES

[1] A. Nowosielski, P. A. Kowalski, and P. Kulczycki, “The column-oriented
database partitioning optimization based on the natural computing
algorithms,” in 2015 Federated Conference on Computer Science

and Information Systems, FedCSIS 2015, Łódź, Poland, September

13-16, 2015, 2015. doi: 10.15439/2015F262 pp. 1035–1041. [Online].
Available: http://dx.doi.org/10.15439/2015F262

[2] A. Nowosielski, P. A. Kowalski, and P. Kulczycki, “The column-
oriented data store performance considerations,” in Computer Science

and Information Systems (FedCSIS), 2016 Federated Conference on.
IEEE, 2016, pp. 877–881.

[3] X.-S. Yang, “Flower Pollination Algorithm for Global Optimization,”
in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2012, vol. 7445 LNCS, pp. 240–249. ISBN 9783642328930. [Online].
Available: http://link.springer.com/10.1007/978-3-642-32894-7 27

[4] C. R. Rao and H. Toutenburg, “Linear models,” in Linear models.
Springer, 1995, pp. 23–24.

[5] C. Blum and X. Li, “Swarm Intelligence in Optimization,” Swarm Intelli-

gence Introduction and Applications, pp. 43–85, 2008. doi: 10.1007/978-
3-540-74089-6

[6] T. Santhanam and A. C. Subhajini, “Radial Basis Function Neural
Network.”

[7] S. E. VT and Y. C. Shin, “Radial basis function neural network for
approximation and estimation of nonlinear stochastic dynamic systems,”
IEEE Transactions on Neural Networks, vol. 5, no. 4, pp. 594–603, 1994.

[8] L. Xu, A. Krzyżak, and A. Yuille, “On radial basis function nets
and kernel regression: statistical consistency, convergence rates, and
receptive field size,” Neural Networks, vol. 7, no. 4, pp. 609–628, 1994.

[9] P. Kulczycki, “Kernel Estimators in Systems Analysis,” WNT, Warsaw,
2005.

[10] V. Egozcue and J. J. Tolosana, “Lecture Notes on Compositional
Data Analysis,” vol. 962, no. 2003, p. 96, 2007. [Online]. Available:
http://dugi-doc.udg.edu/handle/10256/297

[11] S. Khan, “Predictive distribution of regression vector and residual sum
of squares for normal multiple regression model,” Communications in

Statistics-Theory and Methods, vol. 33, no. 10, pp. 2423–2441, 2005.
[12] S. Łukasik and P. A. Kowalski, “Study of Flower Pollination Algorithm

for Continuous Optimization,” in Intelligent Systems'2014. Springer,
2015, pp. 451–459. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-11313-5 40

[13] A. H. Gandomi and A. H. Alavi, “Krill herd: A new bio-inspired
optimization algorithm,” Communications in Nonlinear Science and

Numerical Simulation, vol. 17, no. 12, pp. 4831–4845, 2012. doi:
10.1016/j.cnsns.2012.05.010. [Online]. Available: http://dx.doi.org/10.
1016/j.cnsns.2012.05.010

[14] P. A. Kowalski and S. Łukasik, “Experimental Study of Selected
Parameters of the Krill Herd Algorithm,” in Intelligent Systems'2014.
Springer, 2015, pp. 473–485. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-11313-5 42

[15] K. Hron, P. Filzmoser, and K. Thompson, “Linear regression with
compositional explanatory variables,” Journal of applied statistics,
vol. 39, no. 5, pp. 1115–28, 2012. doi: 10.1080/0266476YYxxxxxxxx.
[Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2712304&tool=pmcentrez&rendertype=abstract

ARTUR NOWOSIELSKI ET AL.: A DATABASE PERFORMANCE POLYNOMIAL MULTIPLE REGRESSION MODEL 747


