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Abstract—This paper is on a new approach to mathematics
of the notion of algorithm. We extend the higher-order, type-
theory of acyclic recursion, i.e., of typed, state-dependent algo-
rithms, which was originally introduced by Moschovakis in [1].
We introduce the concept of recursive λ-binding of argument
slots across a sequence of mutually recursive assignments. The
primary applications of the extended theory are to computational
semantics of formal and natural languages, and to computational
neuroscience. We investigate some properties of algorithmic
equivalence of functions and relations that bind argument slots
of other functions and relations across the recursion operator
acting via mutually recursive assignments.

I. INTRODUCTION

T
HE IDEAS of the new approach to the mathematical

notion of algoritm, by a theory of formal languages of

functional recursion, were introduced by Moschovakis [2]. The

initial steps for extending the approach in [2] to a typed theory

Lλ
ar of acyclic algorithms, were introduced by Moschovakis

in [1]. The theory Lλ
ar and its formal language, also denoted by

Lλ
ar, use terms formed under an acyclicity condition restricting

the theory to acyclic algorithms that always terminate their

calculations after finite number of steps. In addition, Lλ
ar uses

currying coding of functions and relations that have multiple

arguments, via sequences of unary functions and correspond-

ing terms denoting them. The idea of such coding was initially

given by Gottlob Frege. Later, Shönfinkel re-introduced it

by mathematical precision. Then, Curry [3] developed the

coding into a fully formalised technique, nowadays popularly

named as currying. The type theory Lλ
r of algorithms with full

recursion, i.e., of algorithms that are not necessarily acyclic,

is under development along with Lλ
ar.

The type theory Lλ
r , including its sub-theory Lλ

ar, extends

Gallin λ-calculus and its logic TY2 (see Gallin [4]), in various

aspects. Similarly to traditional λ-calculi, Lλ
r and Lλ

ar employ

function application and λ-abstraction for construction of com-

plex terms that denote composite functions with components

that can involve other functions. E.g., if f is a constant

denoting a unary function, then λ(x)f(x3) is a term denoting

another unary function. The theories Lλ
r and Lλ

ar extend

traditional λ-calculi, by adding a specialised recursion operator

designated by the constant where. E.g., the formal terms (1b)

and (1c) are constructed by using the constant where. The

Lλ
r terms (1a)–(1c) denote the same function. The term (1c)

represent the algorithm for computing the denotation of these

terms stepwise. At first, the function that is the denotation of

the term λ(x)(x3) is computed, e.g., as a table of argument

values and corresponding function values, and saved in the

memory slot p. After that, the denotation of λ(x)[f(p(x))] is

computed by using the data saved in the memory slot p.

λ(x)f(x3) (1a)

λ(x)[f(p) where { p := x3 }] (1b)

λ(x)[f(p(x))] where { p := λ(x)(x3) } (1c)

In this way, Lλ
r and Lλ

ar extend the expressive power of λ-

calculus. Actually, Lλ
r is a mathematical theory of the notion

of algorithm, which is equivalent to modelling the notion

of algorithm, e.g., by Turing machines. The sub-theory Lλ
ar

models acyclic algorithms, i.e., computations that always end

after a finite number of steps. Importantly, this is achieved

by the recursion operator where, at the object level of Lλ
r for

modelling algorithmic computations. The formal theories Lλ
r

and Lλ
ar have reduction calculi, in various versions. By using

the standard reduction calculus of Lλ
r and Lλ

ar, the term (1a)

can be reduced to (1c) (and even to a more basic term).

The type theory Lλ
r represents crucial semantic distinctions

in formal and natural languages. We have demonstrated that

Lλ
ar has major applications to computational semantics and

computational syntax-semantics interfaces of human language.

The work in this paper is on development of the mathematics

of the notion of algorithms by targeting broad applications to

Artificial Intelligence and robotics. In Section II, we give an

overview of related work on type-theory of situated algorithms

and situated information. Primary applications of Lλ
ar have

been achieved for computational semantics and computational

syntax-semantics interfaces of human language. Development

of computational syntax-semantics interfaces, by using Lλ
ar,

offers significant steps forward to computational representation

of context-dependency and ambiguities in human language.

In particular, recursion terms with free recursion variables,

i.e., memory variables, represent parametric information and

parametric algorithms.

This paper is on theoretical development of Lλ
r and Lλ

ar.

Section IV presents the syntax of an extended version Lλ
raa of

Lλ
ar, which has terms with components for restrictions. In the

major Section V, we focus on some properties of generalised

binding operators in the type theory of acyclic recursion
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Lλ
ar. We point out that the results presented in Section V,

about the binding operators, hold for the language Lλ
raa,

too. We target applications to computational neuroscience for

modelling computational power of neural networks, e.g., as

described in Section VI.

II. RELATED WORK

By providing the technical notion of binding accros recur-

sive assignments, this paper is directly related to and extends

the work in Loukanova [5]. For some more explanations, see

the beginning of Section IV.

Terms with restrictions, as in Section V, were originally

introduced for the first time in Loukanova [6]. That work is on

the formalisation of major notions of algorithmic granularity

and algorithmic underspecification defined inherently, at the

object level of the languages of the typed theory of recursion

Lλ
r and Lλ

ar. Closely related to the work here, the paper [6]

introduces two kinds of constraints on possible specifications

of underspecified recursion variables by: (1) general acyclicity

constraints, and (2) constraints that arise from specific applica-

tions. The theory of acyclic recursion is employed to represent

semantic ambiguities in human language, which can not be

resolved when only partial knowledge is available, even in

specific contexts, with specific speakers and their references.

The work in [6] takes the direction of formalisation of the

notion of algorithmic underspecification carrying constraints,

and fine-granularity specifications via syntax-semantics inter-

faces. For more details on representation of underspecification

in semantics of human language, by using the type theory of

acyclic recursion Lλ
ar, see Loukanova [7], [8], [9], [5].

The idea of generalised, restricted parameters were origi-

nally, for the first time, introduced by Barwise and Perry [10].

An early, more precise mathematical introduction of restricted

parameters was given by Loukanova and Cooper [11], and

then by Loukanova [12], [13], [14], [15]. Restricted param-

eters, as semantic objects, in relational semantic domains

of mathematical structures, were presented more officially,

i.e., mathematically, in Loukanova [16]. The first introduc-

tion of formal language of restricted parameters is given

by Loukanova [17], which introduces a higher-order, type-

theoretical formal language of information content that is par-

tial, parametric, underspecified, dependent on situations, and

recursive. The formal system is extended by Loukanova [18].

While the formal syntax of that language is relational and

semantically designates relational semantic structures, it is

the first, original formalisation of the semantic concept of

generalised, restricted parameters and parametric networks.

The terms of that formal language represent situation-theoretic

objects. The language has specialised terms for constrained

computations by mutual recursion. It introduces terms repre-

senting nets of parameters that are simultaneously constrained

to satisfy restrictions. The restricted terms presented here in

Section V are close in their formal structure to corresponding

terms in the formal languages in [17], [18]. In this paper, we

limit the formal language and theory to functional structures

of typed functions, via Curry coding, see Curry [3].

III. OVERVIEW OF THE TYPE-THEORY OF ACYCLIC

RECURSION

Here we give a brief overview of Lλ
ar to facilitate the expo-

sition in the rest of the paper. For details, see Moschovakis [1].

and Loukanova [5], [19].

A. Syntax of Lλ
ar

a) The set TypesLλ
ar

of Lλ
ar: is the smallest set defined

recursively by the following rules in Backus-Naur form (BNF):

τ :≡ e | t | s | (τ1 → τ2) (2)

The type e is for primitive objects that are entities of the

semantic domains, as well as for the terms of Lλ
ar denoting

such entities. The type s is for states consisting of context

information, e.g., possible worlds (situations), time and space

locations, speakers, listeners; t is the type of the truth values.

The type (τ1 → τ2) is for functions from objects of type τ1 to

objects of type τ2. The type (3) is for functions on n-arguments

of corresponding types τ1, . . . , τn that take values of type σ,

by currying coding.

(τ1 → · · · → (τn → σ)) σ, τi ∈ Types, n ≥ 0 (3)

The formal language Lλ
ar has typed vocabulary. For each

type τ ∈ Types:

Constants K: denumerable set of typed constants

Kτ = {c0
τ , . . . , cτk, . . . } (4a)

K =
⋃

τ
Kτ (4b)

Pure variables PV: denumerable set of typed pure variables

PVτ = {v0, v1, . . .} (5a)

PV =
⋃

τ
PVτ (5b)

Recursion (memory) variables RV: denumerable set of

typed recursion (memory) variables

RVτ = {r0, r1, . . .} (6a)

RV =
⋃

τ
RVτ (6b)

Variables:

Varsτ = PVτ ∪RVτ (7a)

Vars = PV∪RV (7b)

In addition to the terms the typical λ-calculi, the language

Lλ
ar has new ones formed by using the facility of the re-

cursion, i.e., memory, variables and a new operator for term

construction, which we call recursion operator, designated by

the operator constant where, in infix notation.

The recursive rules for generating the set of Lλ
ar-terms are

given in (8a)–(8e), by using the extended, typed Backus-Naur

(TBNF) form, with the assumed types given as superscripts.

We also use the typical notation for type assignments: A : τ ,

to express that A is a term of type τ .
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Definition 1. The set TermsLλ
ar

of the terms of Lλ
ar consists

of the expressions generated by the following rules, in Typed

Backus-Naur Form (TBNF):

A :≡ cτ : τ (8a)

| xτ : τ (8b)

| B(σ→τ)(Cσ) : τ (8c)

| λ(vσ)(Bτ ) : (σ → τ) (8d)

| Aσ
0 where { pσ1

1 := Aσ1
1 , . . . , pσn

n := Aσn
n } : σ (8e)

where A1 : σ1, . . . , An : σn are in Terms,; p1 : σ1, . . . ,

pn : σn (n ≥ 0), are pairwise different recursion variables

of the types of the assigned terms, such that the sequence

of assignments { pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } satisfies the

following Acyclicity Constraint (AC):

Acyclicity Constraint (AC): the sequence of assignments

{p1 := A1, . . . , pn := An} is acyclic iff there is a function

rank : {p1, . . . , pn} −→ N such that, for all pi, pj ∈
{p1, . . . , pn},

if pj occurs freely in Ai then rank(pj) < rank(pi) (9)

Typesτ is the set of the terms of type τ , For each τ ∈ TYPE.

We call the terms of the form (10) recursion terms, or

alternatively where-terms:

[A0 where {p1 := A1, . . . , pn := An}] (10)

We say that a term A is explicit if the constant where does

not occur in it.

Notation 1. We shall use the abbreviation (11a) for stated-

dependent types sigma, and (11b) for state-dependent truth

values:

σ̃ ≡ s → σ (11a)

t̃ ≡ s → t (11b)

We may use the following abbreviations and similar vari-

ants:

Notation 2.

−→p :=
−→
A ≡ p1 := A1, . . . , pn := An (n ≥ 0) (12a)

Notation 3.

H(−→x ) ≡ H(x1) . . . (xn) (13)

λ(−→vj ) ≡ λ(vj,1, . . . , vj,lj ) ≡ λ(vj,1) . . . λ(vj,lj ) (14)

We use the typical notation N of the set of the natural

numbers.

Definition 2 (Immediate terms). The set of the immediate

terms, which we denote by ImT, is defined as follows:

Definition 3 (Immediate Terms ). The set ImT of immediate

terms is defined as follows:

ImTτ :≡ X | (15a)

Y (v1) . . . (vm) (15b)

ImT(σ1→...(σn→τ)) :≡ λ(u1) . . . λ(un)Y (v1) . . . (vm) (15c)

where n ≥ 0, m ≥ 0; ui ∈ PVσi
, for i = 1, . . . , n; vj ∈

PVτj , for j = 1, . . . ,m; X ∈ PVτ , Y ∈ RV(τ1→...→(τm→τ)).

Definition 4 (Proper terms). A term A is proper if it is not

immediate, e.g, the set PrT of the proper terms of Lλ
ar consists

of all terms that are not in ImT:

PrT = (Terms− ImT) (16)

B. Reduction Calculus

a) Reduction Rules:

Congruence: If A ≡c B, then A ⇒ B (con)

Transitivity: If A ⇒ B and B ⇒ C, then A ⇒ C (t)

Compositionality:

If A ⇒ A′ and B ⇒ B′, then A(B) ⇒ A′(B′) (c-ap)

If A ⇒ B, then λ(u)(A) ⇒ λ(u)(B) (c-λ)

If Ai ⇒ Bi, for i = 0, . . . , n, then

A0 where { p1 := A1, . . . , pn := An }

⇒ B0 where { p1 := B1, . . . , pn := Bn }

(c-r)

Head rule:
(
A0 where {−→p :=

−→
A }

)
where {−→q :=

−→
B }

⇒ A0 where {−→p :=
−→
A, −→q :=

−→
B }

(h)

given that no pi occurs freely in any Bj , for i = 1, . . . , n,

j = 1, . . . , m.

Bekič-Scott rule:

A0 where { p :=
(
B0 where {−→q :=

−→
B }

)
,

−→p :=
−→
A }

⇒ A0 where { p := B0,
−→q :=

−→
B, −→p :=

−→
A }

(B-S)

given that no qi occurs freely in any Aj , for i = 1, . . . , n,

j = 1, . . . , m

Recursion-application rule:

(A0 where {−→p :=
−→
A }

)
(B)

⇒ A0(B) where {−→p :=
−→
A }

(rap)

given that no pi occurs freely in B for i = 1, . . . , n

Application rule:

A(B) ⇒ A(p) where { p := B } (ap)

given that B is a proper term and p is a fresh recursion variable

λ-rule:

λ(u)(A0 where { p1 := A1, . . . , pn := An })

⇒ λ(u)A′

0 where { p′1 := λ(u)A′

1, . . . ,

p′n := λ(u)A′

n }

(λ)

where for all i = 1, . . . , n, p′i is a fresh recursion variable

and A′

i is the result of the replacement of the free occurrences

of p1, . . . , pn in Ai with p′1(u), . . . , p
′

n(u), respectively, i.e.:

A′

i ≡ Ai{ p1 :≡ p′1(u), . . . , pn :≡ p′n(u) }

for all i ∈ { 1, . . . , n }
(20)
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Definition 5 (Reduction Relation). The reduction relation in

Lλ
ar is the smallest relation, denoted by ⇒, between terms that

is closed under the reduction rules.

Definition 6 (Term Irreducibility). We say that a term A ∈
Terms is irreducible if and only if

for all B ∈ Terms, if A ⇒ B, then A ≡c B (21)

Here we shall present some of the major results that are

essential for algorithmic semantics and which have direct

relevance to this paper.

Theorem 1 (Canonical Form Theorem: existence and unique-

ness of the canonical forms). (See Moschovakis [1], § 3.1.) For

each term A, there is a unique, up to congruence, irreducible

term C, denoted by cf(A) and called the canonical form of

A, such that:

1) cf(A) ≡ A0 where { p1 := A1, . . . , pn := An },

for some explicit, irreducible terms A1, . . . , An (n ≥ 0)

2) A ⇒ cf(A)
3) if A ⇒ B and B is irreducible, then B ≡c cf(A), i.e.,

cf(A) is the unique, up to congruence, irreducible term

to which A can be reduced.

Theorem 2 (Referential Synonymy Theorem). (For the orig-

inal theorem, see Moschovakis [1]) Two terms A and B are

algorithmically synonymous, i.e., algorithmically equivalent,

A ≈ B, if and only if there are explicit, irreducible terms of

corresponding types: A0 : σ0, . . . , An : σn, and B0 : σ0, . . . ,

Bn : σn (n ≥ 0), such that:

Aσ0 ⇒cf A
σ0
0 where { p1 := Aσ1

1 , . . . , pn := Aσn
n } (22a)

Bσ0 ⇒cf B
σ0
0 where { p1 := Bσ1

1 , . . . , pn := Bσn
n } (22b)

and for all i = 0, . . . , n,

den(Ai)(g) = den(Bi)(g), for all g ∈ G (23)

Thus, A and B are algorithmically synonymous, A ≈ B, if

and only if

1) either A and B are proper terms that have the same

denotations computed by the same algorithm

2) or A and B are immediate and have the same denotations

When A ≈ B, we also say that A and B are referentially

synonymous, in case we refer to the algorithms they designate.

Theorem 3 (Compositionality Theorem for algorithmic syn-

onymy). For all A ∈ Termsσ , B,C ∈ Termsτ , x ∈ PVτ ,

such that the substitutions A{x :≡ B }, and A{x :≡ C } are

free, i.e., do not cause variable collisions:

B ≈ C =⇒ A{x :≡ B } ≈ A{x :≡ C } (24)

Proof. See Moschovakis [1], § 3.22.

Corollary 1. For all explicit, irreducible terms A : σ and

B : σ,

A ≈ B iff den(A)(g) = den(B)(g),

for all g ∈ G
(25)

A ≈ B

A ≈ B (27)

A ≈ A
B ≈ A

A ≈ B

A ≈ B B ≈ C

A ≈ C
(28)

A1 ≈ B1 A2 ≈ B2

A1(A2) ≈ B1(B2)

A ≈ B

λ(u)A ≈ λ(u)B (29)

A0 ≈ B0 A1 ≈ B1 . . . An ≈ Bn

A0 where {−→p :=
−→
A } ≈ B0 where {−→q :=

−→
B } (30)

|= C = D

C ≈ D
(∗) (

λ(u)C
)

(v) ≈ C{u :≡ v}
(C e.i.)

(31)

where:
“e.i.” abbreviates “explicit, irreducible”;
(*): C,D are both e.i. terms;
|= C = D ⇐⇒ for all g ∈ G, den(C)(g) = den(B)(g).
u, v ∈ PV and the substitution C{u :≡ v} is free.

TABLE I
THE CALCULUS OF ALGORITHMIC SYNONYMY

Corollary 2. For every explicit, irreducible term A : (σ → τ)
and x ∈ PVσ , x : σ, such that x does not occur in A:

λ(x) (A(x)) ≈ A (26)

IV. SEQUENTIAL BINDERS

Loukanova [5] renders sentences of human language, which

contain several quantifiers with multiple scope interpretations,

into underspecified Lλ
ar terms. These terms contain quantifier

expressions Qi, e.g., for i = 1, 2, 3, that can have multiple

scope distributions over a joint core relation h, depending

on context. The common characteristics of such terms is that

regardless of the specified scope distribution of the quantifier

subterms Qi, each Qi binds a fixed argument slot of h, i.e.,

i-th argument of h.

Recursion terms in canonical forms provide a very sophis-

ticated and elegant representation of scope distributions. They

display the common factors across multiple scope distributions

corresponding to a given sentence A with several quantifiers.

By factoring out the differences, the canonical forms of the

Lλ
ar terms representing different scopes give a common under-

specified term that represents the set of all scope distributions

for A. Such a term has free recursion variables that can be

instantiated to specific scope distributions. The technique is

based on formal linking of each of the quantifiers Qi with

the corresponding i-th argument slot of h that it binds, across

λ-abstractions, recursion assignments, and reduction steps.

The details of the formalisation of linking the quantifiers to

the respective argument slots that they bind across recursive

assignments are left open In [5].

The rest of this paper elaborates the formalisation of bindig

concepts for a broad class of terms that bind argument slots.

The class of these terms include terms denoting quantifiers

and other binding relations and functions.

For sake of rigour and clarity, in Theorem 4, we provide

detailed assumptions, the formal types (33a)–(33h), and extra
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subterms in (32a)-(32e) and (34b)–(34i). These details are

important for the proof. They can be ignored for understanding

the essence of the theorem. Similarly, we provide such details

in other theorems and results presented in this paper.

Theorem 4 (Reduction of Strong Binders 4). Let Tm+1 be

the term (32a)-(32e):

Tm+1 ≡ Qim

[
λximQi(m−1)

[
λxi(m−1)

Qi(m−2)
[ (32a)

λxi(m−2)
Qi(m−3)

[λxi(m−3)
Qi(m−4)

[ (32b)

. . .

λ xi(j+1)
Qij [λxijQi(j−1)

[λxi(j−1)
Qi(j−2)

[ (32c)

. . .

λ xi3Qi2 [ (32d)

λxi2Qi1 [λxi1H(x1) . . . (xn)]]]]]]]]
]]

(32e)

where we assume that:

• m,n ∈ N, m,n ≥ 1
• x1, . . . , xn ∈ PV are pure variables of types σi, i.e.,

(xi : σi), for σi ∈ Types, i = 1, . . . , n
• xi1 , . . . , xim ∈ PV are pure variables of types σij , i.e.,

(xij : σij ), for σij ∈ Types, ij ∈ N, j = 1, . . . ,m
• Qi1 , . . . , Qim , H are terms of the corresponding types

in (33a)–(33h):

H : (σ1 → · · · → (σn−1 → (σn → σ))) (33a)

Qi1 : ((σi1 → σ) → τi1) (33b)

Qi2 : ((σi2 → τi1) → τi2) (33c)

. . .

Qij−1 : ((σij−1 → τij−2) → τij−1) (33d)

Qij : ((σij → τij−1) → τij ) (33e)

Qij+1 : ((σij+1 → τij ) → τij+1) (33f)

. . .

Qim−1 : ((σim−1 → τim−2) → τim−1) (33g)

Qim : ((σim → τim−1) → τim) (33h)

(The types are such that Tm+1 in (32a)-(32e) is a well-formed

term.)

In addition, assume the following:

(1) H is a proper, i.e., not immediate, term

(2) m ≤ n

(3) x1, . . . , xn ∈ PV are pairwise different, pure variables

(4) xi1 , . . . , xim ∈ PV are pairwise different, pure variables

(5) {xi1 , . . . , xim } ⊆ {x1, . . . , xn }, i.e.,

{ i1, . . . , im } ⊆ { 1, . . . , n }
Then, the term Tm+1 in (32a)-(32e) can be reduced to the

term Rm+1 in (34b)–(34i):

Tm+1 ⇒ Rm+1 ≡ (34a)

Qim [R0
im
] where { (34b)

R0
im

:= λ(xim)Qi(m−1)
[R1

i(m−1)
(xim)], (34c)

R1
i(m−1)

:= λ(xim)λ(xi(m−1)
)Qi(m−2)

[

R2
i(m−2)

(xim)(xi(m−1)
)],

(34d)

R2
i(m−2)

:= λ(xim)λ(xi(m−1)
)λ(xi(m−2)

)Qi(m−3)
[

R3
i(m−3)

(xim)(xi(m−1)
)(xi(m−2)

)],
(34e)

. . .

R
m−(j+1)
i(j+1)

:= λ(xim) . . . λ(xi(j+1)
)Qij [

R
m−j
ij

(xim) . . . (xi(j+1)
)],

(34f)

R
m−j
ij

:= λ(xim) . . . λ(xi(j+1)
)λ(xij )Qi(j−1)

[

R
m−(j−1)
i(j−1)

(xim) . . . (xij )],
(34g)

| for j = m, . . . , 2,

. . .

R
(m−2)
i2

:= λ(xim) . . . λ(xi2)Qi1 [

R
(m−1)
i1

(xim) . . . (xi2)],
(34h)

R
(m−1)
i1

:= λ(xim) . . . λ(xi2)λ(xi1)H(−→x ) } (34i)

for some fresh recursion variables Rl
k ∈ RV of the types

(35a)–(35f):

R
(m−1)
i1

: (σim → · · · → (σi2 → (σi1 → σ)) . . . ) (35a)

R
(m−2)
i2

: (σim → · · · → (σi2 → τi1) . . . ) (35b)

. . .

R
m−j
ij

: (σim → . . .

→ (σij+1 → (σij → τij−1)) . . . )
(35c)

R
m−(j+1)
i(j+1)

: (σim → · · · → (σij+1
→ τij ) . . . ) (35d)

. . .

R1
i(m−1)

: (σim → (σim−1
→ τim−2

)) (35e)

R0
im

: (σim → τim−1) (35f)

Proof. The proof is by induction on the number of the terms

Qi1 , . . . , Qim . It uses the reduction rules of Lλ
ar (and Lλ

r ) and

verifies the types.

The superscripts of the variables R
m−j
ij

are counters of the

number of the applications of the λ-rule (λ). For sake of space,

we do not include the proof here.

Note 1. The types of the terms Qi1 , . . . , Qim , H do not need

to be such that Qi1 , . . . , Qim can denote quantifiers over

arguments of a range denoted by H , which are in the focus of

the work in Loukanova [5]. In this paper, we investigate the

broader class of terms Qi1 , . . . , Qim , H , such that Qi1 , . . . ,

Qim can bind argument slots of the term H .

Note 2. The requirements (4)–(5) in Theorem 4 guarantee

that there is binding of existing argument slots of H . I.e.,

the bindings in the term Tm+1 in (32a)-(32e) are strong, not

vacuous. Therefore, the chained bindings by Rm+1 in (34b)–

(34i) are strong too. The term H may still denote a function

that does not depend essentially on some of its arguments,

including such that are bound by some Qij . The requirements

(4)–(5) in Theorem 4 can be removed in a general term Tm+1

of the same form (32a)-(32e), while the reduction to the term

Rm+1 in (34b)–(34i) holds.
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Theorem 5. The term Rm+1 in (34b)–(34i) is algorithmically

synonymous (equivalent) with the term R′

m+1 in (36b)–(36i).

Rm+1 ≈ R′

m+1 ≡ (36a)

Qim [λ(xim)R0
im
(xim)] where { (36b)

R0
im

:= λ(xim)Qi(m−1)
[

λ(xi(m−1)
)R1

i(m−1)
(xim)(xi(m−1)

)],
(36c)

R1
i(m−1)

:= λ(xim)λ(xi(m−1)
)Qi(m−2)

[

λ(xi(m−2)
)R2

i(m−2)
(xim)(xi(m−1)

)

(xi(m−2)
)],

(36d)

R2
i(m−2)

:= λ(xim)λ(xi(m−1)
)λ(xi(m−2)

)Qi(m−3)
[

λ(xi(m−3)
)R3

i(m−3)
(xim)(xi(m−1)

)

(xi(m−2)
)(xi(m−3)

)],

(36e)

. . .

R
m−(j+1)
i(j+1)

:= λ(xim) . . . λ(xi(j+1)
)Qij [

λ(xij )R
m−j
ij

(xim) . . . (xi(j+1)
)(xij )],

(36f)

R
m−j
ij

:= λ(xim) . . . λ(xi(j+1)
)λ(xij )Qi(j−1)

[

λ(xi(j−1)
)R

m−(j−1)
i(j−1)

(xim) . . .

(xij )(xi(j−1)
)],

(36g)

| for j = m, . . . , 2,

. . .

R
(m−2)
i2

:= λ(xim) . . . λ(xi2)Qi1 [λ(xi1)

R
(m−1)
i1

(xim) . . . (xi2)(xi1)],
(36h)

R
(m−1)
i1

:= λ(xim) . . . λ(xi1)H(−→x ) } (36i)

Proof. For every ij ∈ { i1, . . . , im }, from (35c), we have that

R
m−j
ij

∈ RV:

R
m−j
ij

(xim) . . . (xi(j+1)
) : (σij → τij−1

) (37a)

∴ R
m−j
ij

(xim) . . . (xi(j+1)
)(xij ) : τij−1

(37b)

∴ λ(xij )R
m−j
ij

(xim) . . . (xi(j+1)
)(xij ) : (σij → τij−1) (37c)

Since Rij ∈ RV, the terms R
m−j
ij

(xim) . . . (xi(j+1)
)(xij )

and λ(xij )R
m−j
ij

(xim) . . . (xi(j+1)
)(xij ) are immediate, and

thus explicite, irreducible. Furthermore, for all g ∈ G:

den(Rm−j
ij

(xim) . . . (xi(j+1)
))(g)

= den(λ(xij )R
m−j
ij

(xim) . . . (xi(j+1)
)(xij ))(g)

(38)

By Corollary 2, it follows that:

R
m−j
ij

(xim) . . . (xi(j+1)
) ≈

λ(xij )R
m−j
ij

(xim) . . . (xi(j+1)
)(xij )

for every ij ∈ { i1, . . . , im }

(39)

From (39), by using the rules for algorithmic synonymy in

Table I, it follows that

Rm+1 ≈ R′

m+1 (40)

Thus, the terms Rm+1 and R′

m+1 are algorithmically equiva-

lent.

Definition 7 (Recursive Distance). Let T be the a term of the

form:

T ≡ A0 where { pn := An, . . . , (41a)

pi+1 := Ai+1, pi := Ai, . . . , (41b)

p1 := A1, } (41c)

The recursive distance Rdist(pn, H,A1) = Rdist(pn, H, p1) =
Rdist(An, H,A1) = Rdist(An, H, p1) of An (or its pn), from

a subterm H of a term A1 (or its recursion memory p1), in a

recursion term T of the form (41a)–(41c) (modulo congruence

with respect to the order of the assignments), is defined by

induction:

Rdist(pi, H,Ai) = Rdist(Ai, H,Ai)

= Rdist(pi, H, pi) = 0,

if H occurs in Ai

(42a)

Rdist(pi+1, H,A1) = Rdist(Ai+1, H,A1)

= Rdist(pi+1, H, p1) = Rdist(Ai+1, H, p1)

= min{Rdist(pi, H, p1) | pi occurs in Ai+1 }+ 1,

(42b)

Note: Rdist(pn, H,A1) is a partial function.

Theorem 6 (Binding Across Recursion 6). Let Rm+1 be a

term of the form (43b)–(43h). as in Theorem 5.

Rm+1 ≡ (43a)

Qim [λ(xim)R0
im
(xim)] where { (43b)

R0
im

:= λ(xim)Qi(m−1)
[

λ(xi(m−1)
)R1

i(m−1)
(xim)(xi(m−1)

)],
(43c)

R1
i(m−1)

:= λ(xim)λ(xi(m−1)
)Qi(m−2)

[

λ(xi(m−2)
)R2

i(m−2)
(xim)(xi(m−1)

)

(xi(m−2)
)],

(43d)

. . .

R
m−(j+1)
i(j+1)

:= λ(xim) . . . λ(xi(j+1)
)Qij [

λ(xij )R
m−j
ij

(xim) . . . (xi(j+1)
)(xij )],

(43e)

R
m−j
ij

:= λ(xim) . . . λ(xi(j+1)
)λ(xij )Qi(j−1)

[

λ(xi(j−1)
)R

m−(j−1)
i(j−1)

(xim) . . .

(xij )(xi(j−1)
)],

(43f)

| for j = m, . . . , 2,

. . .

R
(m−2)
i2

:= λ(xim) . . . λ(xi2)Qi1 [λ(xi1)

R
(m−1)
i1

(xim) . . . (xi2)(xi1)],
(43g)

R
(m−1)
i1

:= λ(xim) . . . λ(xi1)H(x1) . . . (xn), (43h)

−→p :=
−→
A } (43i)
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Then, for every ij ∈ { i1, . . . , im }, (1) the term Qij binds

the ij-th argument slot of H , and (2) R
m−j
ij

is λ-abstraction

λ(xim) . . . λ(xi(j+1)
)λ(xij ) over the im-th, . . . , ij-th argument

slots of H in this specific order.

Proof. The proof is by induction on j = 1, . . . ,m, i.e., on the

recursive distance of R
m−j
ij

from H in Rm−1
i1

.

Theorem 7 (Binding Across Recursion 7). Let Rm+1 be a

term of the form (44b)–(44h), as in Theorem 4:

Rm+1 ≡ (44a)

Qim [R0
im
] where { (44b)

R0
im

:= λ(xim)Qi(m−1)
[R1

i(m−1)
(xim)], (44c)

R1
i(m−1)

:= λ(xim)λ(xi(m−1)
)Qi(m−2)

[

R2
i(m−2)

(xim)(xi(m−1)
)],

(44d)

. . .

R
m−(j+1)
i(j+1)

:= λ(xim) . . . λ(xi(j+1)
)Qij [

R
m−j
ij

(xim) . . . (xi(j+1)
)],

(44e)

R
m−j
ij

:= λ(xim) . . . λ(xi(j+1)
)λ(xij )Qi(j−1)

[

R
m−(j−1)
i(j−1)

(xim) . . . (xij )],
(44f)

| for j = m, . . . , 2,

. . .

R
(m−2)
i2

:= λ(xim) . . . λ(xi2)Qi1 [

R
(m−1)
i1

(xim) . . . (xi2)],
(44g)

R
(m−1)
i1

:= λ(xim) . . . λ(xi2)λ(xi1)H(−→x ) (44h)

−→p :=
−→
A } (44i)

Then, for every ij ∈ { i1, . . . , im }, (1) Qij binds the

ij-th argument slot of H , and (2) R
m−j
ij

is λ-abstraction

λ(xim) . . . λ(xi(j+1)
)λ(xij ) over the im-th, . . . , ij-th argument

slots of H in this specific order.

Proof. The proof is by induction on j = 1, . . . ,m, i.e., on the

recursive distance of R
m−j
ij

from H in Rm−1
i1

.

Now, we show that Theorem 4 holds by weakening the

requirement (3).

Theorem 8 (Reduction of Strong Binders 8). Let Tm+1 be

the term (45a)-(45e):

Tm+1 ≡ Qim

[
λximQi(m−1)

[
λxi(m−1)

Qi(m−2)
[ (45a)

λxi(m−2)
Qi(m−3)

[λxi(m−3)
Qi(m−4)

[ (45b)

. . .

λ xi(j+1)
Qij [λxijQi(j−1)

[λxi(j−1)
Qi(j−2)

[ (45c)

. . .

λ xi3Qi2 [ (45d)

λxi2Qi1 [λxi1H(v1) . . . (vk)]]]]]]]]
]]

(45e)

where we assume that:

• m,n ∈ N, m,n ≥ 1
• xi1 , . . . , xim ∈ PV are pure variables of types (xij : σij ),

for σij ∈ Types, ij ∈ N, j = 1, . . . ,m
• Qi1 , . . . , Qim , H are terms of the corresponding types

in (33a)–(33h):

In addition, assume the following:

(1) H is a proper, i.e., not immediate, term

(2) m ≤ n

(3) v1, . . . , vk ∈ PV are pure variables, not necessarily

pairwise different.

(4) xi1 , . . . , xim ∈ PV are pairwise different, pure variables

(5) {xi1 , . . . , xim } ⊆ { v1, . . . , vk }, i.e.,

{ i1, . . . , im } ⊆ { 1, . . . , n }
Then, the term Tm+1 in (45a)-(45e) can be reduced to the

term Rm+1 in (46a)–(46i)

Tm+1 ⇒ Rm+1 ≡ (46a)

Qim [R0
im
] where { (46b)

R0
im

:= λ(xim)Qi(m−1)
[R1

i(m−1)
(xim)], (46c)

R1
i(m−1)

:= λ(xim)λ(xi(m−1)
)Qi(m−2)

[

R2
i(m−2)

(xim)(xi(m−1)
)],

(46d)

R2
i(m−2)

:= λ(xim)λ(xi(m−1)
)λ(xi(m−2)

)Qi(m−3)
[

R3
i(m−3)

(xim)(xi(m−1)
)(xi(m−2)

)],
(46e)

. . .

R
m−(j+1)
i(j+1)

:= λ(xim) . . . λ(xi(j+1)
)Qij [

R
m−j
ij

(xim) . . . (xi(j+1)
)],

(46f)

R
m−j
ij

:= λ(xim) . . . λ(xi(j+1)
)λ(xij )Qi(j−1)

[

R
m−(j−1)
i(j−1)

(xim) . . . (xij )],
(46g)

| for j = m, . . . , 1,

. . .

R
(m−2)
i2

:= λ(xim) . . . λ(xi2)Qi1 [

R
(m−1)
i1

(xim) . . . (xi2)],
(46h)

R
(m−1)
i1

:= λ(xim) . . . λ(xi2)λ(xi1)H(−→v ) } (46i)

for some fresh recursion variables Rl
k ∈ RV of the types

(35a)–(35f).

Proof. The proof is similar to that of Theorem 4.

Similarly, Theorem 5 holds by weakening the requirement

(3), but we do not present it here for sake of space.

Theorem 9 (Reduction of Strong Binders 9). Let Tm+1 be

the term 1 (47a)-(47e):

Tm+1 ≡ Qim

[
λximQi(m−1)

[
. λ xi(m−1)

Qi(m−2)
[ (47a)

1The difference from Theorem 8 is that now H is immediate, i.e.., not
proper
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λxi(m−2)
Qi(m−3)

[λxi(m−3)
Qi(m−4)

[ (47b)

. . .

λ xi(j+1)
Qij [λxijQi(j−1)

[λxi(j−1)
Qi(j−2)

[ (47c)

. . .

λ xi3Qi2 [ (47d)

λxi2Qi1 [λxi1H(v1) . . . (vk)]]]]]]]]
]]

(47e)

where we assume that:

• m,n ∈ N, m,n ≥ 1
• xi1 , . . . , xim ∈ PV are pure variables of types (xij : σij ),

for σij ∈ Types, ij ∈ N, j = 1, . . . ,m
• Qi1 , . . . , Qim , H are terms of the corresponding types

in (33a)–(33h):

In addition, assume the following:

(1) H is an immediate, term

(2) m ≤ n

(3) v1, . . . , vk ∈ PV are pure variables, not necessarily

pairwise different.

(4) xi1 , . . . , xim ∈ PV are pairwise different, pure variables

(5) {xi1 , . . . , xim } ⊆ { v1, . . . , vk }, i.e.,

{ i1, . . . , im } ⊆ { 1, . . . , n }
Then, the term Tm+1 in (47a)-(47e) can be reduced to the

term Rm+1 in (48a)–(48h):

Tm+1 ⇒ Rm+1 ≡ (48a)

Qim [R0
im
] where { (48b)

R0
im

:= λ(xim)Qi(m−1)
[R1

i(m−1)
(xim)], (48c)

R1
i(m−1)

:= λ(xim)λ(xi(m−1)
)Qi(m−2)

[

R2
i(m−2)

(xim)(xi(m−1)
)],

(48d)

R2
i(m−2)

:= λ(xim)λ(xi(m−1)
)λ(xi(m−2)

)Qi(m−3)
[

R3
i(m−3)

(xim)(xi(m−1)
)(xi(m−2)

)],
(48e)

. . .

R
m−(j+1)
i(j+1)

:= λ(xim) . . . λ(xi(j+1)
)Qij [

R
m−j
ij

(xim) . . . (xi(j+1)
)],

(48f)

R
m−j
ij

:= λ(xim) . . . λ(xi(j+1)
)λ(xij )Qi(j−1)

[

R
m−(j−1)
i(j−1)

(xim) . . . (xij )],
(48g)

| for j = m, . . . , 1,

. . .

R
(m−2)
i2

:= λ(xim) . . . λ(xi2)Qi1 [

λ(xi1)H(v1) . . . (vk)]
(48h)

} (48i)

for some fresh recursion variables Rl
k ∈ RV of the types

(35a)–(35f).

Proof. The proof is similar to that of Theorem 8.

A result as in Theorem 5 corresponding to Theorem 9

can be obtained for any immediate term H , but we do not

present it here for sake of space. Theorem 4, 8, 9 still hold

after removing the requirements (4)–(5), by allowing vacuous

binding.

V. ALGORITHMIC COMPUTATIONS WITH RESTRICTIONS

In this section, we give a very brief introduction of an

extension of the formal language Lλ
ar to a formal language Lλ

raa

of Type Theory of Restricted Acyclic Algorithms (TTofRAA).

If the acyclicity constraint AC (1) is dropped out, Lλ
r is

extended to a language Lλ
ra of typed, restricted algorithms with

full recursion. The language and theory Lλ
ra is a mathematical

model of the notion of algorithm, while Lλ
raa models the

notion of acyclic algorithm. In this paper, we focus on giving

the syntax of Lλ
raa, with some intuitive explanations, for an

introduction to potential applications of the results in the

previous section to model neural connections as result of

binding functionality of receptors.

The denotational and algorithmic semantics of Lλ
raa (Lλ

ra),

the reduction calculus, and various theoretical results are

subject of other, forthcoming work. The language Lλ
raa (Lλ

ra) is

the result of extending Lλ
ar by adding a constant such that and

corresponding terms having a component for restrictions, i.e.,

constraints. Such terms with restrictions designate a restrictor

over computations as an operator. The restrictor operator,

in combination with the recursion operator designated by

where-terms, model algorithmic systems that are equipped

with memory cells. Results of computations are storred in the

memory cells. Memory cells are typed, i.e., they can hold

only data of the respective type. In addition, some of the

computations and the memory cells are restricted by proposi-

tional conditions. The propositional restrictions can represent

properties of objects that have to be fulfilled. Our purpose is

to use Lλ
raa and Lλ

ra for modelling functionality of biological

entities that have valences or receptors for binding across

sequences of structural entities with binding connections, such

as neurons and neural networks.

The formal language Lλ
raa has the same set of types as Lλ

ar

defined in (2), i.e., TypesLλ
raa

= TypesLλ
ar

. The vocabulary

of Lλ
raa is the same as that of Lλ

ar, i.e., Lλ
raa has typed

constants and two kinds of typed variables: pure variables,

for λ-abstraction operator; and, memory (recursion) variables,

for storing information. The set TermsLλ
raa

of the terms of Lλ
raa

are defined by adding one more structural rule for the operator

constant such that to (8a)–(8e).

Definition 8. The set TermsLλ
raa

of the terms of Lλ
raa consists

of the expressions generated by the following rules in TBNF:

A :≡ cτ : τ (49a)

| xτ : τ (49b)

| B(σ→τ)(Cσ) : τ (49c)

| λ(vσ) (Bτ ) : (σ → τ) (49d)

|
(
Aσ0

0 where { pσ1
1 := Aσ1

1 , . . . ,

pσn
n := Aσn

n }
)
: σ0

(49e)

|
(
Aσ0
0 such that {Cτ1

1 , . . . ,Cτm
m }

)
: σ0 (49f)
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given that: c is a constant; x is a variable of ether kind;

A1 : σ1, . . . , An : σn, C1 : τ1, . . . ,Cm : τm ∈ TermsLλ
raa

;

pi : σi, i = 1, . . . , n (n ≥ 0) in (49e) are pairwise different

recursion variables of respective types, such that the sequence

of assignments { pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } satisfies the

Acyclicity Constraint (AC); and each τi is either the type t of

truth values, or the type t̃ of state dependent truth values (see

(11b)).

By extending the reduction calculus of Lλ
ar with a rule for

reducing terms with restrictions of the form (49f), the results in

Section III and Section IV hold for the extended language Lλ
raa

of restricted algorithms. These properties are not in the subject

of this paper because they require extensive mathematical

work. They will be in a forthcoming paper devoted to them.

The rules (49a)–(49f) applied recursively provide very ex-

pressive formal terms that represent algorithmic computations

that end after finite number of computational steps, because

of the Acyclicity Constraint (AC).

In particular, combination of the rules (49e) and (49f), gives

terms of recursion and restrictors of the forms (50a)–(50b) and

(51a)–(51b):
([
Aσ0

0 where { pσ1
1 := Aσ1

1 , . . . ,

pσn
n := Aσn

n }
] (50a)

such that {Cτ1
1 , . . . ,Cτm

m }
)

(50b)

([
Aσ0

0 such that {Cτ1
1 , . . . ,Cτm

m }
]

(51a)

where { pσ1
1 := Aσ1

1 , . . . ,

pσn
n := Aσn

n }
) (51b)

VI. MODELLING ALGORITHMIC NEURAL NETWORKS

A. Procedural and Declerative Neural Networks

We present the use of the recursion terms with constraints

for modelling neural networks.

Neural systems (in peripheral and central nervous sys-

tems) of living organisms, even as simple as Drosophila

melanogaster, have innate faculty of both procedural and

declarative memory, see, e.g., Kandel et al. [20] and Squire

and Kandel [21].

a) Neural Networks of Procedural Memory: Here, we

propose to model procedural memory by terms having recur-

sive assignments of the form (49e), while employing the entire

range of term forms (49a)–(49f).

The systems of assignments in terms of the form (49e)

represent mutually recursive computations of the denotations

of the terms Aσi

i , which are saved in the corresponding

memory cells pi. Procedural memory is modelled via the

assignments pσi

i := Aσi

i . The system of mutually recursive

assignments (52b) models the following fundamental phenom-

ena of functional, procedural neural networks:

1) The collection (52a) is a recursively linked network of

memory cells pi : σi of corresponding types

2) The system (52b) has algorithmic, i.e., procedural, nature

of a network of memory cells pi:

Under completion of the computation of the data Aσi

i ,

i.e., of the denotation of Aσi

i , it is saved in the designated

memory cell, i.e., in the neuron pi.

3) The rank function, in according to the Acyclicity Con-

straint (AC), by (9), guarantees that the network (52b)

has memorised the corresponding data pieces, after com-

pleting the algorithmic computations

p1 : σ1, . . . , pn : σn (52a)

{ pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } (52b)

b) Declarative Information: Declarative information is

modelled by terms of the form A : τ , where τ is either the

type t of truth values, or the type t̃ of state dependent truth

values (see (11b)).

c) Neural Networks of Declarative Memory: Here, we

model declarative memory by the specialised networks, or sub-

networks, of systems of assignments of the form (53a):

tσ1
1 := Pσ1

1 , . . . , tσn

k
:= Pσn

k (53a)

for Pi : τi, where (53b)

τi is either the type t of truth values, or (53c)

the type t̃ of state dependent truth values (53d)

Declarative memory is innately integrated into networks of

procedural memory. That is, neural networks of declarative

memory (53a) are typically integrated as recursive subsystems

of more general procedural assignments (52b):

{ t1 : τ1, . . . , tn : τk } ⊆ { p1 : σ1, . . . , pn : σn } (54)

B. Algorithmic Binding of Functional Neuro-Receptors

A term Tm+1 of the form (55a)–(55f) represents a neural

network. The head term (55a)–(55e) is a neural sub-network of

sequentially bound neural cells (55c), which are sequentially

linked by binding functionality. Each subterm λxijQi(j−1)

models a neural cell. Its neural body Qij−1 : ((σij−1 →
τij−2) → τij−1) has a receptor represented by its argument

slot of the corresponding type (σij−1
→ τij−2

).
The λ-abstraction λxij in λxijQi(j−1)

represents the

axon of the neural cell λxijQi(j−1)
. Similarly, the λ-

abstraction λxi(j−1)
, in λxi(j−1)

Qi(j−2)
, represents the axon

of λxi(j−1)
Qi(j−2)

. In the subsequently bound (linked) neural

cells, represented by the subterm of the form (55c), Qi(j−1)

binds the axon xi(j−1)
of λxi(j−1)

Qi(j−2)
, for each j =

3, . . . , (m− 3).

Tm+1 ≡ Qim

[
λximQi(m−1)

[
λxi(m−1)

Qi(m−2)
[ (55a)

λxi(m−2)
Qi(m−3)

[λxi(m−3)
Qi(m−4)

[ (55b)

. . .

λ xi(j+1)
Qij [λxijQi(j−1)

[λxi(j−1)
Qi(j−2)

[ (55c)

. . .

λ xi3Qi2 [ (55d)

λxi2Qi1 [λxi1H(x1) . . . (xn)]]]]]]]]
]]

(55e)

where {−→p :=
−→
A } (55f)
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The term Tm+1 of the form (55a)–(55f) represents a neural

network in its ‘encapsulated’ form, where the algorithmic steps

of binding axons by the corresponding receptors are ‘hidden’

below encapsulating membranes.

In the canonical form cf(Tm+1), the head term of Tm+1

representing the head neural sub-network, i.e., (55a)–(55e), is

reduced to a subterm Rm+1 that have the structural form of

Rm+1 in (34b)–(34i). The term Rm+1 represents the innate,

inner algorithmic structure of the same neural sub-network

of Tm+1, inside its encapsulating membrane. On the other

hand, the neural network Rm+1 is algorithmically synonymous

(equivalent) with the term R′

m+1 in (36b)–(36i), while they are

structurally different.

VII. FORTHCOMING AND FUTURE WORK

The recursion assignments in Section IV include λ-terms

binding argument slots of the “innermost” subterm, sequen-

tially by recursion within the scope of the recursion operator

where. We have started the exposition by reducing the term

(32a)-(32e). That resulted the specific variables for the λ-

abstracts. However, these terms are congruent to terms by

renaming variables bound by the λ-operator. There are more

interesting results related to linking of the bindings related

to these λ-terms and renaming variables abstracted away

with λ-operator. Such properties of the binding operators Qij

introduced in this paper are in our forthcoming work.

Other forthcoming work is to relate the results in this

paper with the reduction calculus in Loukanova [19] and

rendering expressions of natural language, e.g., similar to the

underspecified quantification presented in Loukanova [5], as

well as with other extensions of Lλ
ar.

Questions whether the approach presented in Ślęzak et

al. [22] is comparable with the type theory of Moschovakis

algorithms extended in this paper, and if yes, how, remains

open work. Studying the shared ideas and differences in these

approaches may provide mutual enrichments and develop-

ments.

REFERENCES

[1] Y. N. Moschovakis, “A logical calculus of meaning and synonymy,”
Linguistics and Philosophy, vol. 29, no. 1, pp. 27–89, Feb 2006.
[Online]. Available: http://dx.doi.org/10.1007/s10988-005-6920-7

[2] ——, “Sense and denotation as algorithm and value,” in Lecture Notes

in Logic, ser. Lecture Notes in Logic, J. Oikkonen and J. Vaananen, Eds.
Springer, 1994, no. 2, pp. 210–249.

[3] H. B. Curry and R. Feys, Combinatory logic. Amsterdam: North-
Holland Publishing Company, 1958, vol. 1.

[4] D. Gallin, Intensional and Higher-Order Modal Logic. North-Holland,
1975.

[5] R. Loukanova, “Relationships between Specified and Underspecified
Quantification by the Theory of Acyclic Recursion,” ADCAIJ: Advances

in Distributed Computing and Artificial Intelligence Journal, vol. 5,
no. 4, pp. 19–42, 2016. [Online]. Available: http://dx.doi.org/10.14201/
ADCAIJ201654

[6] ——, “Algorithmic Granularity with Constraints,” in Brain and Health

Informatics, ser. Lecture Notes in Computer Science, K. Imamura,
S. Usui, T. Shirao, T. Kasamatsu, L. Schwabe, and N. Zhong,
Eds. Springer International Publishing, 2013, vol. 8211, pp. 399–408.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-02753-1_40

[7] ——, “Specification of Underspecified Quantifiers via Question-
Answering by the Theory of Acyclic Recursion,” in Flexible Query

Answering Systems 2015, ser. Advances in Intelligent Systems and
Computing, T. Andreasen, H. Christiansen, J. Kacprzyk, H. Larsen,
G. Pasi, O. Pivert, G. D. Tré, M. A. Vila, A. Yazici, and S. Zadrożny,
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