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Abstract—Population-based search methods such as evolution-
ary algorithms follow gradients in the fitness landscape under
the assumption that high quality solutions will lead to even
better ones. Most real-world optimisation problems, however,
have constraints which lead to infeasible solutions that may
disrupt these gradients. As a result, high quality solutions may
lie in regions that are often unreachable from regions in the
fitness landscape where the preponderance of feasible solutions
lie. In such cases, the make-up of the initial population as well as
critical aspects of the search strategy become the crucial factors in
determining whether or not high quality regions are ever reached.
In this paper, we present examples of pathological landscapes
that arise by considering the constrained component deployment
optimisation problem for which standard evolutionary algorithms
are almost certain to fail to reach the regions where high quality
solutions lie. We indicate how some simple modifications can help
alleviate this problem.

I. INTRODUCTION

The typical oral presentation of an evolutionary algorithm

paper might include a fitness landscape slide such as the one

shown in Figure 1. This tends to lull the listener into thinking

that standard exploitation and exploration computation tech-

niques will successfully explore the landscape encountering

some number of local minima and maxima and, hopefully,

eventually a global minimum or maximum.

Fig. 1. A typical presentation slide for visualizing what the underlying fitness
landscape for a combinatorial optimisation problem might look like.

Of course, this will not be true in general, but this trust

becomes particulary misleading for problems where there are

regions in the search space of the fitness function where fitness

is undefined. The objective of this paper is to present examples

inspired by a constrained combinatorial optimisation problem

that highlight some of the pathologies that can arise in such

situations and to suggest some simple “fixes” which might

avoid these difficulties.

II. BACKGROUND

A. Evolutionary Algorithms

In combinatorial optimisation evolutionary algorithms are

iterative methods that evolve a population of solutions deter-

mined by genomes through the use of mutation, crossover, and

selection operators. The optimisation process starts with a set

of randomly generated genomes as an initial population. At

every iteration, mutation and crossover operators are applied

to some portion of the population.

The proportion of the population that is used for “repro-

duction” first undergoes crossover, which combines parts of

two parent genomes to create two new genomes. A 1-point

crossover splits both genomes at one point and combines the

respective genes. It is possible to split solutions at more than

one position, known as k-point crossover, and interleave the

results. The points where the crossovers occur are selected at

random. Next, the newly created solutions are mutated at a

certain rate. There are various types of mutation operators: 1-

point mutation mutates only one gene in the genome, uniform

mutation mutates each gene with a certain probability, and

transposition mutation operators swap two different genes

in the same genome. Note that while 1-point and uniform

mutation operators may alter existing genes, the transposition

mutation operator can only change the position of genes.

Hence, only 1-point and uniform mutation operators can

introduce new genes not already in the population.

The selection operator decides which solutions will survive

to the next iteration and adds new genomes as determined

above in order to maintain the specified population size.

Depending on the evolutionary approach, the selection can

be based on elitism (only the best solutions survive), quality

proportionate (the probability that a solution survives is based

on its fitness), or random. We refer to mutation, crossover, and

selection as search operators.

B. Fitness Landscapes

The suitability of an evolutionary method for solving an

optimisation problem instance depends on the structure of the
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fitness landscape of that instance. A fitness landscape in the

context of constrained combinatorial optimisation problems is

a setting comprising all of the following:

• a search space S of all possible genomes

• an ordered set V of fitness values

• a fitness function F : S → V
• a set of constraints Ω
• a feasible set S′ ⊂ S satisfying all ω ∈ Ω,

• an infeasible set I ⊂ S violating at least one ω ∈ Ω,

• a neighbourhood relation N(s) ⊂ S for each s ∈ S

An example of a neighbourhood relation determined by 1-

point mutation is the relation which assigns as neighbours to a

genome all genomes that differ in one gene. A neighbourhood

relation could also be specified by applying crossover with

another genome, usually a gnome restricted to lie in some

subset of S, followed by mutation.

C. The Software Deployment Problem

Aleti [1] considers a combinatorial optimisation problem

that seeks to assign n ≥ 3 software components c1, . . . , cn
to m ≥ 3 hardware devices h1, . . . hm subject to certain

constraints in such a way that a fitness function that measures

“reliability” is maximized once a deployment function d :
C −→ H , where C is the set of components and H is the set

of hardware units, is specified. Thus, subject to the constraints,

once c1 has been deployed to d(c1), c2 to d(c2), and so forth

fitness can be evaluated. But because of the constraints, not

all candidate deployment functions d : C −→ H are valid and

thus the domain of feasible solutions for the fitness landscape

has an unknown (and possibly unknowable) topology.

This context provided the inspiration for considering how

difficult it might be to come up with a simple instance where

“holes” in the domain might guarantee that absolute maxima

would never be found using (standard) evolutionary search

methods. In other words, we are looking for what would

essentially be a minimal counterexample. Our attempts are

described in the following sections.

III. A MINIMAL COUNTEREXAMPLE

For a positive integer v, let Zv denote the set {1, . . . , v}.

We modify the formulation of the component deployment opti-

misation problem slightly by writing the deployment function

as a : Zn −→ Zm so that c1 gets assigned to ha(1), c2 to

ha(2), and so forth. In this way our fitness functions can be

viewed as being defined on genomes that are vectors with

n components i.e., on n-tuples of the form (a(1), . . . , a(n)),
where 1 ≤ a(i) ≤ m for all i. This convention will facilitate

counting in the sequel. Note that as n-tuples genotypes can

be visualized as paths on the bounded region of the integer

lattice given by {(x, y) ∈ Z × Z|1 ≤ x ≤ n, 1 ≤ y ≤ m}
by representing (a(1), . . . , a(n)) as the path connecting the

sequence of points (1, a(1)), . . . , (n, a(n)).
Our constraints will be: c1 cannot be deployed to hm, or

equivalently a(1) < m; cn cannot be deployed to hm, or

equivalently a(n) > 1; and c1 can be deployed to h1 if and

only if cn is deployed to hm, or equivalently a(1) = 1 if

and only if a(n) = m. This last constraint is the critical

constraint used to isolate a subset of assignment functions

where maximal fitness solutions will lie. Our constraints are

listed in Table I.

Constraints

a(1) < m

a(n) > 1
a(1) = 1 if and only if a(n) = m

TABLE I
CONSTRAINTS ON n-TUPLE GENOMES (a(1), . . . , a(n)) WHERE

1 ≤ a(i) ≤ m FOR ALL i.

Our minimal counterexample takes n = m = 3, the

first nontrivial case, so that of the twenty-seven possible 3-

tuples that are potential candidates for a’s only six satisfy

the constraints, namely those of the form (2, ∗, 2) or (1, ∗, 3)
where ∗ represents a “wild card” character that can assume

any value chosen from the set Z3 = {1, 2, 3}. Suppose the

fitness function F satisfies F ((1, ∗, 3)) = 4, F ((2, ∗, 2)) = 1,

and is undefined for any of the remaining twenty-one 3-tuples

that do not satisfy the constraints. The six feasible solutions

when represented as paths are shown in Figure 2.

?

t

?

t

Fig. 2. The paths for our minimal counterexample.

Let our evolutionary method have population size s = 3,

and suppose that none of the three 3-tuples that have maximal

fitness make it into the initial population. That is, the initial

population contains only genomes of the form (2, ∗, 2). Then,

regardless of whether one is using 1-point or 2-point crossover

no genome produced by recombining two genomes in the

current population will ever have maximal fitness. Further, if

we use as a mutation operator single point mutation (i.e., we

change only one of the components) or we use a swap operator

that interchanges two components, this is still the case. In fact,

in a population of (2, ∗, 2) genomes, crossover followed by

either a one-point mutation or a swap will also fail to ever

yield a maximal fitness genome of the form (1, ∗, 3). In order

for evolutionary computation to succeed for our toy problem

when the initial population consists of only (2, ∗, 2) genomes

it must implement an operator that yields a swap combined

with a one-point mutation or a mutation operator that perturbs

two or more components i.e. a two-point mutation operator. It

is also curious to note that if a global maximum is obtained

by, say, a swap combined with a one-point mutation, then

the genome must be (1, 2, 3). Interestingly, the evolutionary

algorithm used for the software deployment problem in Sabar
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and Aleti [2] does implement a swap followed by a point

mutation, however it checks the validity of the genome after

the swap which would cause it to fail for our toy problem.

IV. SCALING THE COUNTEREXAMPLE

The reason our counterexample is so intriguing is because

it generalizes and scales to a constrained combinatorial op-

timization problem with more plausible parameters. Using

the same constraints, assume now that m,n ≥ 3. Then the

domain of candidate assignment functions consists of the

mn n-tuples with entries in Zm = {1, . . . ,m}. We shall

be fluid in referring to elements in this search space as n-

tuples, candidates, solutions, genomes or points. We partition

the set of candidates into three disjoint subsets: high quality

feasible candidates Q, low quality feasible candidates B, and

infeasible candidates I . Q consists of n-tuples of the form

(1, ∗, . . . , ∗,m) of which there are mn−2. B consists of n-

tuples of the form (X, ∗, . . . , ∗, Y ), where 1 < X,Y < m
of which there are (m − 2)mn−2(m − 2). I consists of the

remaining n-tuples. I also decomposes into disjoint sets. These

disjoint sets together with their cardinalities are shown in

Table II. We can check that this decomposition is correct by

observing that we have accounted for all n-tuples as follows:

mn−2[1 + (m− 2)2 + 4(m− 2) + 3] = mn.

Set Cardinality

(1, ∗, . . . , ∗, Y ) (m− 2)m(n−2)

(X, ∗, . . . , ∗,m) (m− 2)m(n−2)

(m, ∗, . . . , ∗, Y ) (m− 2)m(n−2)

(X, ∗, . . . , ∗, 1) (m− 2)m(n−2)

(m, ∗, . . . , ∗, 1) m(n−2)

(1, ∗, . . . , ∗, 1) m(n−2)

(m, ∗, . . . , ∗,m) m(n−2)

TABLE II
DECOMPOSITION OF SET OF I OF INFEASIBLE n-TUPLE GENOMES INTO

DISJOINT SUBSETS. X AND Y ASSUME VALUES BETWEEN 2 AND m− 1
WHILE ∗ IS A WILD CARD CHARACTER INDICATING ANY VALUE BETWEEN

1 AND m INCLUSIVE IS ALLOWED.

Our counting also tells us that when choosing an n-tuple at

random, the probability of getting a feasible solution is [(m−
2)2+1]/m2 and the probability of getting a candidate from B
or I , a candidate that does not satisfy the condition a(1) = 1
if and only if a(n) = m, is 1 − (1/m2). This makes it easy

to determine the probability of randomly selecting genomes

one at a time and winding up with an initial population of

genomes lying exclusively in B ∪ I (see below).

It is more difficult to obtain a closed form expression for

the probability that a an initial population where n-tuples are

selected one by one, with infeasible solutions discarded, until

a population (possibly with duplicates) of size s is obtained

such that it contains only feasible solutions from B i.e., only

feasible solutions that don’t have a(1) = 1 and a(n) = m.

Let pQ, pB and pI be the probabilities that a randomly chosen

genome lies in Q, B and I respectively. We know

pQ = 1/m2, pB = (1− 2/m)2, pI = (4m− 5)/m2.

For fixed j ≥ s, let pj be the probability of getting a pool

with s genomes from B after randomly choosing exactly j
genomes. Then we know the last genome must have been

from B and s − 1 genomes from B must have shown up

in the previous j − 1 selections. Since there are
(

j−1
s−1

)

ways

for genomes from B to get selected, knowing the remaining

j − s choices all came from I , we have

pk = [

(

j − 1

s− 1

)

ps−1
B pj−s

I ]pB ,

whence the desired probability is:

∞
∑

j=s

pk = psB

∞
∑

j=s

(

j − 1

s− 1

)

pj−s
I

= psB

∞
∑

j=s

s

j

(

j

s

)

pj−s
I

= psB

∞
∑

k=0

s

s+ k

(

s+ k

s

)

pkI

= (1− 2/m)2s
∞
∑

k=0

s

s+ k

(

s+ k

s

)

(
4m− 5

m2
)
k
.

If we are willing to accept infeasible solutions in the initial

population, but require our fitness functions to assign positive

values for feasible solutions and zero for infeasible solutions

so that they will immediately be removed from the initial

population, then we can assert that the probability of an initial

population not having a feasible solution from Q, (i.e., not

having a genome of the form (1, ∗, . . . , ∗,m) is (1−(1/m2))s.

Note that when m = 10 and s = 100 this probability already

exceeds one-third. We assume an initial population of this

type for the remainder of this paper. This assumption, coupled

with more realistic parameter values, for example s = 100
and m,n ≥ 10, allows us to formulate some additional

pathological fitness landscape examples. We first digress to

a discussion of search operators.

A. Search operators

For notation, we let Xi denote the 1-point crossover that

occurs at position i where 1 < i < n. Formally, for genomes

a1 and a2, this means

Xi((a1(1), . . . , a1(n)), (a2(1), . . . , a2(n))) =

((a1(1), . . . , a1(i− 1), a2(i), . . . , a2(n)),

(a2(1), . . . , a2(i− 1), a1(i), . . . , a1(n))).

For 1 ≤ i ≤ n and 1 ≤ j ≤ m, we let Pi,j denote the point

mutation operator that assigns a(i) to be j. For 1 ≤ i < j ≤ n
we define Ti,j to be the transposition operator that swaps a(i)
with a(j).

B. Simple Scaling

Assume m,n ≥ 3, the initial population contains solutions

only from B and I , and the fitness function F is defined

by setting F ((a(1), . . . , a(n))) equal to 0, 1, and m + 1 for
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solutions from I , B, and Q respectively. Then, assuming that

solutions from I are immediately removed from the population

and only low quality solutions from B remain available for

recombination and selection to form the next generation,

remarks similar to the minimal counterexample apply. No

single application of any Pi,j or Ti,j to a genome can produce

a high quality solution from a low quality solution. This is still

true even if they are applied to an intermediate genome arising

from composition of a sequence of crossover operators.

However, such a “lifting” from B to Q will occur whenever

P1,1 ◦ Pm,m is applied to a genome in B. If we posit a

typical scenario where uniform point mutation is used, which

is interpreted to mean that components are considered one by

one so that, independently, each has probability p that a point

mutation operator is applied, then for fixed i and j, the i-th
component has probability p/m of having Pi,j applied and the

probability P1,1 and Pn,m are both applied is (p/m)2. Note

that for p = 0.05 and m = 10 this probability is 0.000025.

Another possible way for such a lifting to occur is if a genome

has a(i) = m and a(j) = 1 where 1 < i, j < m — assume

this occurs with probability ρ — and the composition of T1,j

with Ti,m (they are disjoint transpositions, so the order doesn’t

matter) is applied. Since there are n(n − 1)/2 transposition

operators, if there is some (small) probability ǫ of applying two

swaps to a genome of the desired type, then the probability of

a successful lifting is 4ρǫ/(n2 − n).

C. Biasing Low Quality Solutions

We can make it harder for liftings from B to Q to occur by

arranging it so that the percentage of genomes with 1’s and

m’s in interior components within a population consisting of

genomes only from B decreases as the evolutionary algorithm

progresses. That is, over time we can try to lower the value

of ρ. Define the target t to be ⌊m+1
2 ⌋. Note that t = 2 when

m = 3, and that 1 < t < m, for m ≥ 3.

Assume the initial population consists of only candidates

from B and I . As before, let genomes in I and Q have fitness

0 and m+ 1, but now for (a(1), . . . , a(n)) ∈ B set

F ((a(1), . . . , a(n))) = 1 +

n
∏

i=1

1

|a(i)− t|+ 2
.

Observe that these fitness values all lie strictly between 1 and

2. This biases the evolutionary algorithm such that as evolution

proceeds an initial population consisting of genomes only from

B and I converges to one consisting entirely of the unique

local minimum solution (t, . . . , t) which has fitness 1+1/2n.

D. Biasing High Quality Solutions

Finally, we can immediately expel all but a select few high

quality genomes that do creep into the population as a result

of liftings from B to Q by lowering their fitness as follows.

Assume the initial population consists of only candidates

from B and I . Let genomes in I and B have fitness 0 and

2 respectively. If (1, a(2), . . . , a(n − 1),m) ∈ Q, let u be

minimal such that a(1) = . . . = a(u) = 1 and a(u + 1) 6= 1.

Note that u is well defined and 1 ≤ u < m. Define

F (1, a(2), . . . , a(n−1),m) = 1/(1+u) if (1, a(2), . . . , a(n−
1),m) 6= (1,m, . . . ,m) and m + 1 otherwise. This fitness

function immediately removes all genomes lifted from B to

Q except for the global maximum (1,m, . . . ,m) which has

fitness m+ 1 by ensuring they have fitness less than one.

V. DISCUSSION — PART 1

It is of course possible to simplify the fitness functions

in our examples. We decided to use more involved fitness

terms, terms that without closer inspection might more easily

pass for those one might expect to encounter in “real-world”

applications, to try and promote plausibility.

The critical constraint we rely on may seem far fetched, but

in highly constrained scheduling problems with large numbers

of variables that are overseen by systems using evolutionary

techniques, it can certainly be the case that a complex set of

constraints winds up inducing simple or unusual constraints

like ours without anyone consciously realizing it. Our best

effort at formulating a problem instance where our constraints

might make sense runs as follows. Assume mission critical or

fail safe software processes c1, . . . , cn are currently running

on hardware processors h2, . . . , hm−1 in a real time system.

Suppose that processors h1 and hm are now to be brought

online while processes c1 and cn are upgraded such that for

load balancing purposes c1 should migrate to h1 but cannot

migrate to hm and, similarly, cn should migrate to hm but

cannot migrate to h1.

If one does accept our thesis that fitness landscapes with

pathological topologies can lead to situations where standard

evolutionary algorithms are bound to fail, then as a byproduct

of our examples we have an argument in favor of adopting a

richer set of mutation operators, especially those that promote

repeated applications of point mutation or transposition.

VI. RELATED WORK

In this section we consider related work on the relation-

ship between fitness landscapes and optimisation problems.

Unfortunately, most of the work considers only unconstrained

optimisation. For comprehensive surveys of empirical ap-

proaches to characterising fitness landscapes see Malan [3]

and Pitzer [4].

A. Models

Several different models for fitness landscapes have been

proposed in the literature including additive fitness land-

scapes [5], random fitness landscapes [6], the block model [7],

and the NK model [8]. Additive fitness landscapes are single

peaked. In contrast, in a random fitness landscape there is

no correlation between the fitnesses of mutational neighbours,

hence such landscapes are considered rugged and tend to have

many peaks. In the block model, the genotype is composed

of blocks of genes which independently contribute to the

overall fitness i.e., the fitness of the genotype depends on

the contribution from each block. The NK model comprises

genotypes with N genes. It depends on the parameter K,

where K ≤ N − 1, signalling that the fitness contribution of
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each gene depends on its interactions with a block of K other

genes. Thus K also serves as an indicator of the ruggedness

of the fitness landscape.

B. Time to Convergence

Another related avenue of research is using Markov chain

theory to analyse the behaviour of evolutionary algorithms and

predict how long it will take for a Markov chain representing

the different states reached in the search space (e.g., the search

space history) to achieve stationarity. Hernandez et al. [9]

use coupling from the past to detect time to convergence,

while Propp et al. [10] propose a sampling algorithm based

on the idea of coupling. Since, in theory, reaching stationarity

requires infinite time, Propp and Wilson provide an algorithm

that can detect when stationarity has been reached in finite

time. Their work was later extended by Hernandez [9].

C. Problem Hardness

Much of the theoretical work relating fitness landscapes

to problem hardness has taken place within the context of

biological or evolutionary landscapes. Organismal biologists

seek to understand the physical, biochemical and physiological

basis of genotype to phenotype mappings, while evolutionary

biologists study evolutionary causes and consequences. In

these situations what matters most is whether the landscape is

rugged or smooth and the degree of epistasis (the interaction

between genes that are not alleles [11]) occurring in genomes.

In combinatorial optimisation, features of the fitness land-

scape that may have an impact on problem hardness have been

estimated empirically using fitness landscape characterisation

metrics [12]. These features pertain to the existence of local

optima, global optima, and plateaus. Assuming the optimiza-

tion objective is maximisation, given a search space S and

a neighbourhood relation N , a local optimum occurs at a

point sl∈S if for any solution sn∈N(sl), F (sl) ≥ F (sn).
A global optimum occurs at a point sg ∈ S if for all s∈S,

F (sg) ≥ F (s). A plateau is defined as a set P⊆S such

that for all sp∈P, F (sp) = k, where k is a constant. (A

technical condition for ensuring connectedness is also needed,

but it will not concern us here.) A plateau indicates that

the landscape is neutral, and the progress of a gradient-

based search algorithm, such as an evolutionary algorithm,

potentially stagnates. Counteracting such stagnation requires

special measures (see, for example, Barnett [13]).

Landscape modality also figures into problem hardness.

Modality is a feature of fitness landscapes that encompasses

the number of local optima, the distribution of the points

where they occur, and the nature of their respective basins

of attraction [14]. In a search space S equipped with neigh-

borhood relation, a local optimum sl, the basin of attraction

for sl is defined as the set of all s ∈ S such that there

is a hill climb starting at s that ends at sl. More precisely,

a path in S is a finite sequence 1, . . . , sk in S such that

si+1 ∈ N(si) for 1 ≤ i < k and a hill climb from s to

sl is a path such that s1 = s, sk = sl and F (si+1) ≥ F (si)
for 1 ≤ i < k. The number of basins of attraction and their

relative sizes in a multi-modal landscape have been found

to determine how difficult it is for a gradient-based search

algorithm to find a global optimum among all the local optima

it encounters (see Horn [15]). While on one hand finding

global optima in unimodal problems can be difficult if plateaus

dominate the landscape, on the other hand in some highly

multi-modal landscapes it can be easy to find global optima

for both hill-climbing algorithms and evolutionary algorithms

if, for example, the modes themselves “lean” towards a global

optimum.

Ruggedness is another feature that has been found to

affect the performance of gradient-following algorithms. An

optimisation problem is considered easier to solve using

either local search or an evolutionary algorithm if highly

correlated parts of the landscape form easy-to-follow gradi-

ents to the optima [16]. As mentioned previously, in rugged

landscapes neighbouring solutions have uncorrelated fitnesses

which makes it harder for a search method to infer a search

direction from previous solution quality. When the landscape

is smoother and the correlation between the fitnesses of

neighbouring solutions is high, there are persistent gradients

(i.e, long paths) for the solver to follow. Because there is

little correlation between neighbouring solutions, gradients in

a rugged fitness landscape are not persistent which, in turn,

suggests numerous local optima.

VII. DISCUSSION — PART 2

The literature in the previous section on theoretical and

empirical investigations of fitness landscapes and their re-

lationship to optimisation problems is focused on problems

without constraints. It provides a backdrop for providing

further insight into our examples. Our search space S is a finite

set of n-tuples and the neighborhood relation of interest is 1-

point mutation, so N(s) = {Pi,j(sn)|1 ≤ i ≤ n, 1 ≤ j ≤ m}.

This equips S with the edit distance metric, where two points

are a distance k apart if they differ in exactly k positions or,

in our notation, if one can be transformed into the other using

a k-fold composition of 1-point mutations.

For our minimal counterexample the high quality solutions

Q of the form (1, ∗, 3) and the low quality solutions B of the

form (2, ∗, 2) are plateaus. Their genomes can be viewed as

parallel lines in the 3×3×3 lattice cube. These lines are edit

distance two apart. The four parallel lines that are edit distance

one from (2, ∗, 2) (viz. (2, ∗, 1), (2, ∗, 3), (1, ∗, 2), (3, ∗, 2)) all

lie in the infeasible region I . Figure 3 shows a schematic of

this. More importantly, in all of our examples k-fold crossover

is closed on both Q and B. That is every k-fold crossover

operator takes Q × Q to itself and B × B to itself. Hence

searching in any direction from B does not reach genomes in

Q unless search operators such as 2-fold mutation operators

(e.g., 2-point mutation) or doubly transitive permutation op-

erators (e.g., 2-fold transposition or a transposition composed

with a 1-point mutation) are introduced.

Our three scaled examples increase the size of B relative to

Q and also do a better job of filling out the search space with

feasible solutions, meaning as m and n increase the ratio of the
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t
Fig. 3. A schematic showing the endpoints in the xz-plane of the nine
parallel lines of the form (x0, ∗, z0) for the n = m = 3 case. The filled
circles are the two lines of feasible solutions (upper left is Q, center is B).
The squares are the seven lines of infeasible solutions. The filled squares show
the four lines that are edit distance one from B.

size of Q∪B to the size of I increases. Genomes in Q and B
continue to remain at least edit distance two apart. In example

IV-B, Q and B remain plateaus. In example IV-C, Q remains

a plateau while B becomes a basin of attraction for the local

minimum (t, t, . . . , t) where t = ⌊m+1
2 ⌋. In example IV-D, B

remains a plateau while Q has a global maximum occurring

when the genome is (1,m, . . . ,m). The situation in IV-D is

a bit more complicated than that. There is a putative local

maximum of 1/2 at all genomes of the form (1, Z, ∗, . . . , ∗,m)
except (1,m, . . . ,m), where 2 ≤ Z ≤ m, and a basin of

attraction for one of them has been “punctured” in such a way

that (1,m, . . . ,m) yields the isolated global maximum. Since

B is a plateau every genome in B yields a local maximum,

so another way to phrase what is happening is to say, all the

local maxima, putative or otherwise, of Q save one are smaller

than all the local maxima of B.

Finally, if our quest was for a minimal counterexample,

the reader may wonder why we didn’t use just the constraint

a(1) = 1 if and only if a(3) = 3 which, using our lines

notation, would enlarge the pool of base solutions from

B = {(2, ∗, 2)} to B = {(2, ∗, 2), (2, ∗, 1), (3, ∗, 1), (3, ∗, 2)}.

There are two reasons. First, this would admit the possibility

of the transposition operator T1,3 lifting a genomes of the form

(3, ∗, 1) from B to Q. Second, this would increase the number

of “subspaces” invariant under crossover so that populations

with genomes restricted to B, any one of the lines in B, or

any pair of lines in B′ that agree in one coordinate (e.g.,

{(2, ∗, 2), (3, ∗, 2)}) would all be invariant under crossover.

VIII. CONCLUSION

We have considered how pathological fitness landscapes

affect the success of evolutionary algorithms in finding global

optima in constrained optimisation problems. We formulated

examples to show how constraints can shape fitness landscapes

in such a way that regions of high quality solutions become

unreachable from regions of lower quality solutions when

using the standard search operators. Our examples stem from

the software deployment problem. We presented a minimal

counterexample and generalized it to provide several examples

with real-world parameters as well as a more plausible narra-

tive for the problem instances. The unexpected byproduct is

that our examples provide a compelling argument for including

iterated transposition and iterated point mutation among the set

of search operators when using evolutionary algorithms to find

solutions to highly constrained optimization problems.
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