
CHARIOT: An IoT Middleware for the Integration

of Heterogeneous Entities in a Smart Urban Factory

Cem Akpolat1, Doruk Sahinel1, Fikret Sivrikaya1, Grzegorz Lehmann2, and Sahin Albayrak2

1German-Turkish Advanced Research Center for ICT, Berlin, Germany
2DAI Labor, Technische Universität Berlin, Germany

Abstract— The main innovation behind Internet of Things
(IoT) is the fact that numerous devices will be able to com-
municate with their surroundings and the world in general. This
communication ability of devices is expected to transform the
existing network infrastructure in a radical way. The massive
growth of the number of connected devices with IoT and the
diversity of IoT use-cases and services bring significant technical
challenges to existing communication network infrastructures,
as they need to integrate heterogeneous and networked devices,
objects and services with different requirements. In order to
overcome these issues and to realize the potential of IoT, we
propose a middleware called CHARIOT, which devises a runtime
environment integrating heterogeneous resource-constrained de-
vices and sensors communicating with various protocols, and a
scalable and dynamic communication layer that abstracts the
connected devices and enables their intercommunication. An
urban smart factory scenario is used to highlight the future IoT
requirements and the need for CHARIOT.

Index Terms—IoT, Device Abstraction, Directory Service, De-
vice Heterogeneity

I. INTRODUCTION

F
OLLOWING the global interconnection of people and

services through the Internet, the concept of Internet

of Things (IoT) has been on the rise with the ambition to

digitalize and interconnect everyday objects in many domains

of life and work. The great potential of this ambition lies in the

holistic networking of the involved entities, i.e., the ability of

any device to interact with any other device. Services that are

able to make use of device communication and the data they

provide are likely to expand and offer novel opportunities in

various domains such as industry, healthcare, vehicular traffic

and entertainment. Nevertheless, the increasing number and

variety of devices or sensors in the growing IoT world makes

it ever more complex to realize and manage such holistic

interconnection systems. Available IoT solutions are mostly

developed either for small sized platforms or for specific

scenarios with a predefined set of sensors or devices, and they

are far from providing the dynamic scaling and adaptability

required to realize the added value of IoT holistic networking.

Orchestrating seamless communication among heteroge-

neous devices is a typical challenge in the IoT domain,

therefore it draws attention as an emerging research problem.

In order to illustrate those challenges, we realize a smart urban

factory testbed from Industry 4.0 (i40) domain with as many

physical components as possible, without relying on heavy

industry components. Smart urban factory is a future oriented

factory, in which various primitive and complex devices like

cyber-physical systems (CPS), software entities, robots and

humans work cooperatively to produce an individual product

designed by its customers. The objective of smart urban

factory is to virtualize the whole factory components by

abstracting all devices and systems, and ensuring an interop-

erable communication environment for its users. As a result

of this abstraction, customers will be able to monitor their

product, while remaining agnostic to underlying devices and

protocols.

CHARIOT project provides a scalable IoT middleware that

highlights the holistic networking of IoT entities represent-

ing heterogeneous devices or services, and demonstrates its

features through a smart urban factory environment where it

shows, e.g., how smart things can be connected to each other

in the production line process in cooperation with humans

and robots, how the warehouse stores products, and how

the products are delivered. All these challenging processes

include various devices ranging from primitive to complex

ones, and also human actors. In this paper, we propose a new

approach for the communication layer in CHARIOT project to

address the interoperability in heterogeneous environment to

ensure a homogeneous and reliable communication among all

virtualized entities representing various devices and software

with distinct characteristics.

The rest of the paper is organized as follows: Section 2

discusses the general required criteria of IoT runtime environ-

ments (REs) that connect sensors and devices with different

communication protocols to each other and the Internet, and

compare them based on these criteria. Section 3 gives insight

into the architecture of CHARIOT middleware, followed by

the novel interoperable communication approach towards i40.

In Section 4 we introduce the CHARIOT smart urban factory

use case, after which we share our initial results about device

abstraction in the runtime environment and future work in

Section 5. Finally, we conclude the paper in Section 6.

II. BACKGROUND AND RELATED WORK

If an IoT platform targets a holistic interconnection system

for services, devices and sensors, then it should be able

to provide solutions for challenges such as heterogeneity,

availability, interoperability and scalability, all of which are

well-known in the IoT domain [1]. Availability of services and

Position papers of the Federated Conference on

Computer Science and Information Systems, pp. 135–142

DOI: 10.15439/2017F527

ISSN 2300-5963 ACSIS, Vol. 12

c©2017, PTI 135



devices either as software or hardware, and the trusted (non-

modified) data availability at each layer of IoT must be guar-

anteed in such a platform. The increase in device heterogeneity

necessitates not only interoperable communication among the

heterogeneous devices, but also an abstraction of devices,

so that the platform is agnostic to underlying devices and

protocols. Life-cycle management of each service and device,

including continuous monitoring, control and configuration,

has to be carried out to maintain interoperability in such

platforms. Finally, IoT platforms should also be designed in a

scalable way, so that it is possible to add new devices and

services without imposing a challenge on existing services

while adapting itself to resource-constrained and resource-rich

situations. For a detailed analysis of IoT platforms, the readers

are encouraged to check [2].

IoT platforms are composed of many layers such as ob-

jects (device layer), object abstraction, service management,

application layer and business layers [1], each of which

plays a special role and performs specific tasks. The first

interaction with devices occurs in the device layer, where

the data are collected from attached sensors or devices and

then are transmitted to the upper layers through IoT Runtime

Environment (RE). IoT RE is an important component of

CHARIOT, which should act as a bridge between IoT devices

and the middleware. In this section, we identify available

IoT REs that we believe are most suitable to CHARIOT

middleware and evaluate their capabilities that should cover

the following aspects: Modularity, scalability, i.e., the capa-

bility of running on a wide range of resource-constrained

and non-resource constrained platforms, holistic view of the

connected devices, full device abstraction and compatibility

with common IoT communication protocols, unified API to

access devices from IoT apps, openness, automatic app loads

and updates, platform-independence, and access management

to apps and devices.

Eclipse Kura [3] offers a general middleware and appli-

cation container for IoT RE services. It provides a manage-

able and intelligent RE, on which running applications can

aggregate data and share them securely with a cloud platform.

IoT REs have a requirement of being able to run on any IoT

device, and Kura fulfills this requirement to some extent by

being able to run on various platforms such as mobile devices,

desktop, wearables and Raspberry PI [2]. Kura is a Java-based

platform built on top of the Open Service Gateway Initiative

(OSGi) framework; therefore, it is compatible with Windows

and Linux and other operating systems for which Java is

available. To summarize, Kura can run on resource-constrained

devices, but there is a limitation due to OSGi.

Kura offers many services for IoT devices. I/O services

enable access to the underlying hardware, then the data

collected from the hardware can be saved, forwarded and

published at the IoT RE with data services. Kura enables direct

communication with cloud platforms, and remote management

feature of Kura makes it possible to manage IoT apps via

MQTT protocol. Networking Service provides an API that

possesses enhanced routing and networking capabilities to

abstract many communication technologies such as Ethernet,

Wi-Fi, and cellular networks. Last but not least, Watchdog

Service monitors critical components and undertakes failure

detection. The main focus of the Kura project is to bind sensors

and actuators, collect data and transfer it to the cloud. It cannot

satisfy CHARIOT requirements mentioned in Section III, as

it is not scalable enough, the development of a device driver

is not well-documented and the provided interface for devices

is not user-friendly.

Alljoyn [4] is one of the emerging frameworks in IoT

domain and it offers an open source framework that provides

interoperability among heterogeneous devices, execution of

distributed applications and dynamic composition of proximal

networks. Furthermore, Alljoyn’s framework targets a standard

communication in mobile P2P systems. Discovering proximal

devices and applications, adapting the framework based on the

device characteristics, providing many connectivity technolo-

gies such as Bluetooth and Wi-Fi, and ensuring interoperability

between distinct operating systems are some of the prominent

features of Alljoyn. That being said, Alljoyn has some limi-

tations to be used in a holistic IoT platform design, such as

not being scalable enough to manage large scale smart IoT

objects, not being able to manage big data storage and real-

time analytics, and no support for the connection of devices

residing under different subnets, meaning that all devices

should reside under the same local network. Furthermore, a

central thing manager does not exist and all nodes should

connect to each other, leading to a likely increase in delay

and non-reliable communication.

IoTivity [5] is an open source project aiming to enable

seamless and secure device-to-device (D2D) connectivity in

IoT ecosystem that is mainly supported by Samsung and

Intel. The core motivation behind the IoTivity project is to

bring together the open source community to speed up the

creation of new framework and services required to bind the

IoT devices. Its architecture provides various communication

mechanisms, ensures security and identity, defines object mod-

els and APIs, guarantees interoperability between devices and

applications, and connects all possible devices ranging from

simple wearables up to smart cars.

The framework model of IoTivity comprises of four es-

sential blocks: discovery, data transmission, data management

and device management. Multiple discovery mechanisms for

devices and resources in proximity and remotely are sup-

ported. Information exchange and control messages rely on

a messaging and streaming model. Aggregation, storage and

analysis of data from devices are carried out to manage the

data, and device configuration, provisioning and diagnostic of

devices are handled via device management module. IoTivitiy

offers two different environments, one for resource-constrained

and another for resource-rich devices. It runs on various

operating systems such as Android, Linux, Arduino, Tizen,

and Windows.

IoTivity platform is designed as connectivity-agnostic with

the aid of the abstraction of connectivity layer, i.e., it sup-

ports wired and wireless connection technologies such as

136 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017



Figure 1: High-Level System Architecture of CHARIOT Middleware

Wi-Fi, Ethernet, Bluetooth-Low-Energy (BLE), Near-Field-

Communication (NFC). Connectivity-agnostic layer of IoTiv-

itiy makes it favorable in comparison to other platforms;

however, it still does not conform to the desired CHARIOT

middleware needs, as it only focuses on D2D communication

and does not consider how an added value can be created from

these interconnected devices via novel applications.

IOLITE is a Smart Home - Smart Building platform,

providing the foundation for an open smart home ecosystem

[6]. It offers the possibility to integrate devices of many

kinds and to use them in a variety of applications in a wide

variety of ways. IOLITE itself is a closed source environment

but offers several APIs for extending the platform (i.e., an

interface for developing apps to control the system as well

as extension points for supplying new drivers for devices

and sensors, if not already provided). The main features

that characterize the IOLITE Platform are open SDKs for

extension, offline capability, support for different user types,

smartness, adaptivity, extensibility with new apps and drivers,

and a customizable and modular structure.

Even though IOLITE is orginally designed for smart home

environment, its flexible architecture enables the integration

of new custom devices, thus its usage area can be expanded

to other IoT domains. Furthermore, IOLITE abstracts all

heterogeneous devices and represents them with a common

device model in its ecosystem. Through this abstracted device

model, CHARIOT middleware does not have to deal with the

issues stemming from device heterogeneity. IOLITE RE differs

from the other analyzed REs by providing a user-friendly

platform, user management for devices that can enable access

rights management, and an app-store that enables deploying

many applications that can make use of the properties of

the connected devices. Moreover, IOLITE provides a unified

programming interface that makes the implementation of a

driver and an application quite simple. Last but not least, the

automatic update feature of IOLITE is seamlessly operated

without touching any configuration file, once the new version

is available.

III. CHARIOT ARCHITECTURE

CHARIOT offers an IoT middleware that encompasses

many layers ranging from device layer to service layer. Device

layer behaves as an IoT gateway for various devices that

communicate with different protocols, and abstracts device

features for other layers. The communication layer provides

reliable communication for the services that represent de-

vices, and enables device querying through their semantic

CEM AKPOLAT ET AL: AN IOT MIDDLEWARE FOR THE INTEGRATION OF HETEROGENEOUS ENTITIES 137



service descriptions. These descriptions are recognized by the

semantic service layer of CHARIOT. The management and

orchestration of semantic services is carried out by the service

planning and orchestration component. This component offers

context- and location-aware and error-resistant planning for

operations by continuously monitoring QoS parameters of

services and by reacting to the dynamic changes that occur, for

instance, in case of a service-chain crash. This highly dynamic

environment requires autonomous and adaptive behaviors for

services, which is provided in CHARIOT by the knowledge

management layer. Knowledge management layer adds learn-

ing capability to services and makes it possible to transfer

the obtained knowledge among the services. The protection of

those services and their access to the devices are carried out by

the security layer that manages the access control mechanism.

To improve the ease of use for an IoT platform, an ex-

tendible platform is required in addition to the above men-

tioned constructive layers. CHARIOT middleware provides

an SDK that facilitates the integration of any device ranging

from primitive to sophisticated device, software entities to

human actors, and a number of software development tools

that deal with the monitoring, maintenance and control of

those services. All these layers and tools are designed on top

of an agent platform that forms a distributed service structure.

The architecture of CHARIOT, which covers all layers and

tools, is presented in Figure 1.

As mentioned above, one of the essential goals of CHAR-

IOT is to highlight the holistic networking of IoT entities

representing devices or services on the platform with device-

heterogeneity support and ensure their continuous availability.

In this study, we focus on the RE and communication layer

of CHARIOT middleware, where device heterogeneity and

scalability are ensured.

A. Runtime Environment

CHARIOT uses IOLITE as an RE to interact with IoT

devices, as mentioned in Section 2. In this section, we explain

how device integration into CHARIOT middleware is achieved

by using IOLITE. The integration of devices over IOLITE

in CHARIOT middleware requires two steps from the device

layer perspective. First, the device drivers implemented for

IOLITE are integrated and then the integration of IOLITE RE

to CHARIOT middleware via Message Bus Protocol is carried

out as described below:

1) Device Driver Development and Integration: The real-

ization of smart factory use case scenario requires the develop-

ment of a number of special drivers for sensors and actuators.

During the driver development phase, first the feature of

the devices and the supported communication protocols are

identified. As the communication protocol varies from device

to device, i) RE should be capable of extending itself to

support different communication protocols such as Wi-Fi,

BLE, Zigbee. ii) The data transmission between device and

RE has to be solved by supporting different data transmission

protocols like CoAP, MQTT, REST, SNMP, ModBus, TCP,

UDP. iii) Through the established communication and data

transmission in XML, JSON or another format between RE

and device, device functionalities can be mapped to RE device

model concept, thus abstracting it for the upper layers.

Figure 2: Integration of RE to Chariot Communication Layer

2) Integration to CHARIOT Middleware: The future-

oriented IoT middleware needs a system in which IoT devices

represented by software entities should interact with each other

to create new value-added services and apps. The creation of

this interaction environment necessitates first the integration

between REs and CHARIOT middleware to map the physical

devices to their virtual entities. All these communication pro-

cesses and seamless integration would be performed through

Message Bus. To build a bridge between RE and CHARIOT

middleware over the Message Bus, a proxy RE application,

depicted in Figure 2, is required in order to initiate the

communication to CHARIOT communication layer and later

to transmit devices’ data and their models. This initiation

message should include RE identifier, its device identifier and

device property identifiers. In case the value of device property

is accessed, these three identifiers have to be provided to

access the device with another message type, which will be

defined in the system architecture.

The massive data generation from devices, their analysis

and the extraction of valuable information to optimize the

processes in the smart factory may overstretch the limits of

CHARIOT cloud and it might be possible that the minimum

latency required in certain smart factory scenarios cannot be

guaranteed. To address this issue, the proxy RE app will trans-

fer some service functionalities using fog computing approach

[7] to the device layer, i.e., to the RE that serves as an IoT

gateway, to decrease the latency and enable data processing at

the edge without transmitting the data to the cloud. With the

help of this approach, IoT RE itself would be responsible to

138 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017



decide for the amount of data to be stored from the devices, the

frequency of data updates, registration and removal of devices,

etc. In case communication between two IoT-REs is needed,

it can be established via P2P communication.

B. Ensuring Interoperability in Communication Layer

Communication layer in CHARIOT matches incoming ser-

vice requests with relevant IoT entities, and it promises scal-

able communication between different REs to enable P2P links

between IoT devices. Three different software modules are

provided to CHARIOT developers in the communication layer,

so that they can interconnect all high-layer services to low-

layer devices and entities regardless of what communication

protocols they use and the environment in which an application

is developed.

1) Message Format: The first software library involves ap-

plication independent formats for messages between the

RE that the devices or their software units are registered

and the directory service (DS). This messaging format is

used for device registration, removal and status updates.

2) Scalable Directory Service: DS is responsible for pro-

viding information about devices that are connected to

the CHARIOT middleware and for storing the relevant

path that enables the communication with these devices

and accessing their current status. Device information is

stored as OWL-S descriptions [8].

3) P2P Communication: Another essential feature of the

communication layer is establishing communication

channel between entities connected to CHARIOT. For

this reason, a software library is formed to cover P2P

messaging and security related functionalities.

The communication components given above are pictorially

represented in Figure 2. In the following subsections, we

describe these components in more detail.

1) Message Protocol Definition: Messaging formats in the

communication layer are specifically defined for the interac-

tions between the RE and the DS. In CHARIOT architecture,

the RE collects all the device information and then forwards

this information to DS by using this messaging protocol. This

messaging protocol should also be able to inform the DS

about errors and unknown messages. The modules that are

used between the RE and the DS for messaging is shown

in Figure 3. A communication protocol library is constructed

in CHARIOT to be used by a protocol adapter that provides

interfaces for different messaging protocols such as MQTT and

CoAP. The RE can choose an interface defined in this adapter

to communicate with the DS. A new interface must be added

to this library, should an RE choose to communicate via a new

protocol. The content of the messages that reach the commu-

nication layer should be modeled by the RE beforehand, so

that the message broker and analyzer in the communication

layer can extract the data in these messages and forward them

to the related domain within the DS.

2) Distributed and Scalable Directory Service: DS stores

device information in a location and content identifier

for information-centric networking (ICN), so that other

Figure 3: Communication Layer Architecture

devices in the device layer and the services that want

to make use of the device can locate this device within

the CHARIOT framework. The device description in

the DS is taken from IOLITE Property Profile Model

and converted to a URL-like address (e.g., Icn://de.gt-

arc.iot/sensor?lat=35,lon=11,radius=1km,scale=census).

This device information is also used during end-to-end

messaging between devices and their software agents. As

all devices in CHARIOT are represented as software agents

in the service layer and are defined with semantic OWL-S

descriptions, semantic search can be used for finding devices

and enabling end-to-end messaging. For this reason, DS has

to enable messaging both in the device layer and in the

service layer. As explained in the previous subsection, device

layer messaging happens between the RE and the DS, and

the content of the message includes device information stored

in the DS. In addition, an agent in the service layer can query

the DS to establish P2P communication with another device.

Service layer to DS communication involves semantic search

queries from the service layer to find the relevant device

information. In our DS, Semantic Service Matcher (SeMa)

[9] is responsible for finding structural, logical and semantic

relation among services and returning search results for these

queries.

A distributed DS design is considered in CHARIOT in order

to meet the scalability and latency requirements and to provide

an increased performance for the platform. The design consists

of DS nodes that are distributed among different domains,

such as a common property (e.g., energy consumption) or a

common location (e.g., warehouse). All these DS nodes are

connected in a hierarchical manner to a root DS that keeps

track of the devices within the CHARIOT framework and is

responsible for DS monitoring, synchronization and update

tasks.

Root DS should be deployed as a cloud-based scalable entity

CEM AKPOLAT ET AL: AN IOT MIDDLEWARE FOR THE INTEGRATION OF HETEROGENEOUS ENTITIES 139



Figure 4: Industry 4.0 Urban Smart Factory Use Case

and should be able to distribute the load on a DS when re-

quired. In addition, data caching and sharing functions will be

designed for the DS to increase the efficiency and to overcome

response time constraint [10]. With all these functionalities,

DS forms the backbone of the decentralized, hierarchical and

scalable communication infrastructure of CHARIOT, which

extends across multiple administrative domains.

An ICN-based architecture is foreseen for the DS design in

CHARIOT. In such an architecture, DS nodes serve as ICN

routers, where data packets are routed based on their contents

in order to match service requests to suitable IoT devices

or vice versa [11]. DS nodes can also cache information

to speed up querying and data transmission in general. The

main advantage of an ICN-based DS structure is its built-

in content-based search and caching functions, which is very

helpful for service discovery from the service layer. Device

registration can either occur at the closest directory node or at

the root directory node and then the root directory chooses the

most suitable storage node for the device based on the device

description.

3) P2P Communication: P2P communication can take

place as the underlying data exchange for agent-to-agent com-

munication in the service layer, or as direct communication

between devices that require data from other devices at the

device layer. In the first case, two agents communicate via

ActiveMQ protocol at the service layer after searching for

the matching service description in the DS. In the second

case, the communication layer is only responsible for data

exchange between two REs, as the data passes through the

Message Bus. Once the message reaches the RE, commu-

nication from the RE to the device is handled internally by

the RE. The essential role of this component is to ensure a

secured communication channel (Message Bus) between RE

and CHARIOT middleware with SSL/TLS or another secure

method, while DS is in charge of providing registered device

addresses to REs. In addition, the interaction between IoT

devices running on different REs (RE-to-RE communication)

via P2P communication in a common message format should

be defined to provide seamless interaction between devices.

IV. SMART URBAN FACTORY USE CASE FOR CHARIOT

Industry 4.0 introduces a new manufacturing perspective

that uses new technologies and devices that can autonomously

communicate and exchange data among each other. In a smart

urban factory model, where the decisions are taken in a de-

centralized fashion thanks to autonomous systems, virtualized

copies of physical devices and processes are monitored by

more complicated computers, fulfilling almost all requirements

of i40. As i40 has a direct relation to Cyber-Physical Systems

(CPS), IoT and cloud computing, its improvement is also

indispensable, even though it is in the early stages of its

development. Moreover, increasing device heterogeneity and

their varying requirements (e.g., CPU, bandwidth, memory),

140 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017



the enhancement in analytic functionalities that enable better

estimation on the device layer, and generation of efficient

business applications with human-machine integration would

foster the developments in i40. In the following, we introduce a

use case scenario that brings mass customization, 3D printing,

predictive maintenance, human-robot interaction, warehousing

and augmented reality features together to demonstrate a smart

urban factory environment and show how our approach aids

in solving its challenges.

In a smart urban factory, we highlight the mass cus-

tomization [12] feature of i40 and how other i40 features

are harmonized with each other. The main idea of the mass

customization is to construct a smart factory, as illustrated

in Figure 4, which allows customers to create individualized

products in any material and form. Customers may have

the opportunity to produce a variety of products, ranging

from bracelets to certain spare parts required for a machine.

Customers use an online drawing platform that enables 3D

modeling of the product design, which is then uploaded to

CHARIOT middleware. CHARIOT schedules the printing time

of the product models by taking many parameters such as

priority, 3D printer and cartridge material availability, and

energy consumption into account. These parameters’ data are

retrieved from all devices in the smart factory through REs

and then unified in CHARIOT communication layer. The

scheduled product models with a unique identifier are printed

in 3D printers and on a passive RFID chip containing ID

and additional production information. 3D printer receives the

printing order from printing service, which can directly access

the 3D printers and their functionalities over RE. Once this

process is completed, RFID reader helps direct the product to

the corresponding conveyor belt. Before boxing the product,

an inspection process through the camera should be performed

to detect whether the product meets the requirements of the

customer design. This process requires object recognition and

image processing operations, for which the inspection camera

establishes a communication over its RE and communication

layer with a service in CHARIOT middleware that enables

data processing either in the local or in the cloud. After a

successful inspection, the product is taken either by a robot or

human worker from the conveyor belt either to be delivered

to the delivery truck or to be stored in the warehouse. In the

warehouse, the products are stored and preserved with respect

to their characteristics by using different sensor technologies

such as temperature and humidity control. A continuous

data aggregation through warehouse’s REs and CHARIOT

communication layer is performed as well, and then all data

are processed in the CHARIOT middleware to react to any

change or an abnormal behavior of the warehouse’s sensors

or actuators, such as sensor replacement or repair.

V. INITIAL RESULTS & FUTURE WORK

CHARIOT communication layer has two main tasks,

namely, device abstraction and enabling communication be-

tween all devices connected to CHARIOT middleware. The

first phase of the project focuses on the device abstraction

and in this section we present our initial work conducted in

this phase thus far.

Device abstraction phase involves two steps: i) modeling

a device and its features using Profile Property Identifier

(PPI) and matching the device functions to the PPI, ii)

transmitting the abstracted device data via proxy application

to the communication layer. For the initial task, we modeled

and implemented many devices such as charging station,

solar panel, gate, parking sensor, motion sensor, smart meter

using IOLITE SDK and PPI. We are now able to abstract

devices using IOLITE Device API that returns a JSON device

data model along with its current values. The implemented

devices are depicted in Figure 5. In the second step, we

design an IOLITE application that can transmit the device

data model to the requester and receive requests from the

communication layer or from other devices to execute the

functions of connected devices using P2P communication.

Figure 5: IOLITE Device Control Panel and Representation of

Devices

This work mainly focuses on the CHARIOT communication

layer; however, there are also other important cornerstones

that play a crucial role in realizing the IoT middleware. For

instance, the representation of devices as a service on JIAC

agent-platform [13], the enrichment of services with semantic

descriptions, the planning and orchestration of services and a

learning engine that provides learning capability and knowl-

edge sharing to services are among the ongoing and planned

activities of the CHARIOT project. Furthermore, the project

will provide software developers a CHARIOT SDK and a set

of service development tools, which facilitate the creation,

maintenance and monitoring of services.

VI. CONCLUSION

The emerging IoT devices and their increasing variety

necessitate an interoperable communication layer in IoT do-

mains. In CHARIOT project, we reflect the device heterogene-

ity through a smart urban factory use case. To strengthen our

approach, we analyzed available IoT REs that are responsible

for device connections, and justified the selection of IOLITE

as RE. Then, the identified requirements of Industry 4.0

CEM AKPOLAT ET AL: AN IOT MIDDLEWARE FOR THE INTEGRATION OF HETEROGENEOUS ENTITIES 141



regarding smart urban factory use case are studied. To meet

the identified requirements, we proposed CHARIOT device-

agnostic communication layer, in which heterogeneous devices

are abstracted in cooperation with the device layer. We shared

our initial results, where we abstract devices through IOLITE

RE, and we finally discussed our planned activities.

ACKNOWLEDGMENT

The work of authors at GT-ARC is supported in part by the

German Federal Ministry of Education and Research (BMBF)

under the grant number 01IS16045.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys and Tutori-

als, vol. 17, no. 4, pp. 2347–2376, 10 2015, doi:10.1109/COMST.2015.
2444095.

[2] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middle-
ware for internet of things: A survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, Feb 2016, doi:10.1109/JIOT.2015.2498900.

[3] “Eclipse Kura,” http://eclipse.github.io/kura/doc/intro.html (accessed:
2017-05-29).

[4] M. Villari, A. Celesti, M. Fazio, and A. Puliafito, “Alljoyn lambda: An
architecture for the management of smart environments in iot,” in 2014

International Conference on Smart Computing Workshops, Nov 2014,
pp. 9–14, doi:10.1109/SMARTCOMP-W.2014.7046676.

[5] J. C. Lee, J. H. Jeon, and S. H. Kim, “Design and implementation of
healthcare resource model on iotivity platform,” in 2016 International

Conference on Information and Communication Technology Conver-

gence (ICTC), Oct 2016, pp. 887–891, doi:10.1109/ICTC.2016.7763322.
[6] “IOLITE,” www.iolite.de (accessed: 2017-05-29).
[7] M. S. D. Brito, S. Hoque, R. Steinke, and A. Willner, “Towards pro-

grammable fog nodes in smart factories,” in 2016 IEEE 1st International

Workshops on Foundations and Applications of Self* Systems (FAS*W),
Sept 2016, pp. 236–241, doi:10.1109/FAS-W.2016.57.

[8] “OWL-S: Semantic Markup for Web Services,” https://www.w3.org/
Submission/OWL-S/ (accessed: 2017-06-19).

[9] J. Fahndrich, T. Küster, and N. Masuch, “Semantic service management
and orchestration for adaptive and evolving processes,” International

Journal on Advances in Internet Technology, vol. 9, no. 3&4, pp. 75–
88, 2016.

[10] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “Dns performance and
the effectiveness of caching,” IEEE/ACM Transactions on Networking,
vol. 10, no. 5, pp. 589–603, Oct 2002, doi:10.1109/TNET.2002.803905.

[11] I. Abdullahi, S. Arif, and S. Hassan, “Survey on caching approaches
in information centric networking,” Journal of Network and Computer

Applications, vol. 56, pp. 48 – 59, 2015, doi:10.1016/j.jnca.2015.06.
011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1084804515001381

[12] F. S. Fogliatto, G. J. da Silveira, and D. Borenstein, “The
mass customization decade: An updated review of the literature,”
International Journal of Production Economics, vol. 138, no. 1, pp.
14 – 25, 2012, doi:10.1016/j.ijpe.2012.03.002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925527312000989

[13] “Java-based Intelligent Agent Componentware,” http://www.jiac.de/
agent-frameworks/jiac-v/ (accessed: 2017-05-29).

142 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017


