
Key Exchange Algorithm Based on Homomorphic

Encryption

Sergei Krendelev

Novosibirsk State University

JetBrains Research Cryptographic Lab

s.f.krendelev@gmail.com

Ilya Kuzmin

Novosibirsk State University

JetBrains Research Cryptographic Lab

dargonaxxe@gmail.com

Abstract—Key exchange algorithm based on homomorphic
encryption idea is reviewed in this article. This algorithm might
be used for safe messaging using one-time pads. Since algorithm
requires a low amount of computing resources, this method might
be used in IoT to provide authentication.

Keywords— homomorphic encryption; key exchange; one

time pad

I. INTRODUCTION

T
HE EXPECTED evolution of quantum computers is caus-

ing the intensive development of cryptographic primitives

called postquantum cryptography. February 6, 2016 was the

day that the National Institute of Standards and Technology

(NIST) offered to start the development of new postquantum

cryptography standards which might be used in governmental

needs. According to documents submitted by NIST, algorithms

based on a discrete logarithmic problem are vulnerable to

quantum attacks. Moreover, elliptical cryptography methods

are considered to be vulnerable. Therefore, we need to replace

the Diffie-Hellman key exchange algorithm in TLS protocol.

Nowadays, offered postquantum key exchange algorithms are

based on lattice theory [4] (LWE, RLWE [2]), which is used

in key exchange algorithms named New hope [1] and Frodo

[3]. These algorithms are being supported by Google as TLS

postquantum update.

We represent the key exchange algorithm based on basic

homomorphic encryption properties and linear algebraic meth-

ods. The main purpose of this algorithm is to ensure secure

messaging. It’s assumed that the one-time pad method will be

used. To use the algorithm in TLS one should change it in

accordance with specification.

II. NOTATION

In this section we will describe the notation that will be

used.

Let Z be a ring of integer numbers. For n ∈ N let’s

call a = (a1, . . . , an) n-dimensional integer vector if ∀i ∈
{1, . . . , n}ai ∈ Z. For n ∈ N let Z

n denote the set of all

possible n-dimensional integer vectors. Moreover, it’s assumed

that n-dimensional vectors have the following properties:

1) For each pair x, y ∈ Z
n the following is true x + y =

(x1 + y1, . . . , xn + yn).
2) For each x ∈ Z

n, α ∈ Z the following is true αx =
(αx1, . . . , αxn).

Moreover, for x, y ∈ Z
n let’s call x·y =

n
∑

i=1

xiyi a dot product.

Let χ be a probability distribution over Z. Accordingly, x← χ

denotes sampling x ∈ Z according to χ. Moreover, for a, b ∈
Z, a < b let x ← Ua,b denote sampling x uniformly from

{a, a + 1, . . . , b}. Moreover, let x ← Un
a,b denote sampling x

in the following way: x = (x1 ← Ua,b, . . . , xn ← Ua,b).

Definition II.1. Homomorphic encryption Let x ∈ Z
n be a

fixed n-dimensional integer vector for some n ∈ N. Moreover,

let’s consider that x has at least 2 coprime components.

For number d ∈ Z and vector x we will call a vector a ∈ Z
n

an interpretation if x · a = d.

Therefore we have a mapping Φx : Z → Z
n. Easy to notice

that this mapping has the following properties:

1) Φx(a1 + a2) = Φx(a1) + Φx(a2)
2) Φx(αa) = αΦx(a)

This mapping is called homomorphic encryption.

III. KEY EXCHANGE BASED ON HOMOMORPHIC

ENCRYPTION

In this section we represent the key exchange algorithm. We

suppose that 2 users – Alice (server) and Bob (client) decides

to get a common key. Moreover, we suppose that both users

trust each other (Authentication is completed) and both users

know the value of k ∈ N.

0) Alice and Bob, together, choose z, z′ ∈ Z such that

z < z′ and number n ∈ N.

1) Alice chooses the number n ∈ N and the secret vector

x ← Un
z,z′ , the set of vectors a1 ← Un

z,z′ , . . . , ak ←
Un
z,z′ . Then Alice calculates d1 = a1 ·x, . . . , dk = ak ·x.

In addition, Alice chooses the number p ∈ N and finds

the set of vectors s1, . . . , sp ∈ Z
n : ∀i ∈ {1, . . . , p}si ·

x = 0. Alice sends a1, . . . , ak, s1, . . . , sp to Bob.

2) Bob chooses the number m ∈ N and the secret vector

y ← Um
z,z′ , the set of vectors b1 ← Um

z,z′ , . . . , bk ←
Um
z,z′ . Then Bob calculates h1 = b1 · y, . . . , hk = bk · y.

In addition, Bob chooses the number q ∈ N and finds the

set of vectors r1, . . . , rq ∈ Z
m : ∀i ∈ {1, . . . , q}ri · y =

0. Bob sends b1, . . . , bk, r1, . . . , rq to Alice.

3) Alice calculates v = d1b1 + · · ·+ dkbk + µ1r1 + · · ·+
µqrq , where µ1 ← Uz,z′ , . . . , µq ← Uz,z′ . Alice sends

vector v to Bob.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 793–795

DOI: 10.15439/2017F53

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 793

4) Bob calculates w = h1a1+· · ·+hkak+λ1s1+· · ·+λpsp,

where λ1 ← Uz,z′ , . . . , λp ← Uz,z′ . Bob sends vector

w to Alice.

5) Alice calculates l = w · x.

6) Bob calculates t = v · y.

Let’s prove that l = t.

l = w · x = (h1a1 + · · ·+ hkak + λ1s1 + · · ·+ λpsp) · x =
(h1a1 · x + · · ·+ hkak · x) + (λ1s1 · x + · · ·+ λpsp · x) =

h1a1 · x + · · ·+ hkak · x = h1d1 + · · ·+ hkdk

t = v · y = (d1b1 + · · ·+ dkbk + µ1r1 + · · ·+ µqrq) · y =
(d1b1 · y + · · ·+ dkbk · y) + (µ1r1 · y + · · ·+ µqrq · y) =

d1b1 · y + · · ·+ dkbk · y = d1h1 + · · ·+ dkhk

l = t. Therefore key exchange is accomplished.

IV. MITM PASSIVE ATTACK

In this section we estimate how successful a Man In The

Middle (MITM) passive attack can be. Passive means that an

adversary can’t edit the data transmitted by Alice and Bob.

An adversary has vectors a1, . . . , ak, b1, . . . , bk,

s1, . . . , sp, r1, . . . , rq . Also, the following system of equations

is known by adversary:

w = (b1 · y)a1 + · · ·+ (bk · y)ak + λ1s1 + · · ·+ λpsp
v = (a1 · x)b1 + · · ·+ (ak · x)bk + µ1r1 + · · ·+ µqrq

s1 · x = 0, . . . , sp · x = 0
r1 · y = 0, . . . , rq · y = 0

Choosing proper values for p, q, k,m, n, users can make the

system underdetermined. Hence the needed solution can’t

be found by adversary. To improve the algorithm users can

substantially increase dimension using sparse vectors.

V. TOY EXAMPLE

In this section we reduce the number of dimensions to

show the way algorithm works.

Let k = 4, n = 3,m = 2, p = 2, q = 2, z = 0, z′ = 7.

0) Alice and Bob chooses z = 0, z′ = 7, k = 4.

1) Alice chooses n = 3, x =
(

2 3 4
)

,

a1 =
(

4 3 7
)

,

a2 =
(

3 0 1
)

,

a3 =
(

3 5 3
)

,

a4 =
(

1 3 7
)

.

d1 = 45, d2 = 10, d3 = 33, d4 = 39.

s1 =
(

−3 2 0
)

s2 =
(

0 −4 3
)

.

2) Bob chooses m = 2, y =
(

1 5
)

,

b1 =
(

6 5
)

,

b2 =
(

6 6
)

,

b3 =
(

5 7
)

,

b4 =
(

5 4
)

.

h1 = 31, h2 = 36, h3 = 40, h4 = 25.

r1 =
(

−5 1
)

,

r2 =
(

10 −2
)

.

TABLE I
PERFORMANCE

Alice Bob

Key size 2290 bits

Time spent on initialization 130 ms 108.5 ms

Time spent on calculation 5.2 ms 5.6 ms

Time spent on data transmission 2.9 ms 2.9 ms

Time spent on key exchange
with preparation

8.1 ms 8.5 ms

Time spent on key exchange
without preparation

138.2 ms 117.1 ms

Amount of transmitted data 19208 bytes 19016 bytes

3) Alice chooses µ1 = 6, µ2 = 5, then calculates v =
45b1+10b2+33b3+39b4+6r1+5r2 =

(

710 668
)

.

4) Bob chooses λ1 = 7, λ2 = 3, then calculates

w = 31a1 + 36a2 + 40a3 + 25a4 + 7s1 + 3s2 =
(

356 370 557
)

.

5) Alice calculates x · w = 4050
6) Bob calculates y · v = 4050

VI. IMPLEMENTATION AND PERFORMANCE

We implemented this algorithm using the C++ programming

language. Implementation uses open source long arithmetics

library GNU MP (GMP). The values for k, n,m, p, q are fixed:

k = 60, n = 45,m = 40, p = 30, q = 35. Table 1 represents

the average results of 400 tests being executed on the single

PC with CPU Intel Core i7-640M Processor with 4M Cache,

2.80 GHz. Here what represents each row:

1) Key size – amount of bits required to contain the key in

memory.

2) Time spent on initialization – time taken by Alice to

perform part 1 of algorithm (part 2 for Bob respectively).

3) Time spent on calculation – time taken by Alice to

perform calculations from part 3 and 5 (4 and 6 for

Bob respectively).

4) Time spent on data transmission – this time is a theo-

retical value. We calculated it assuming that both users

have stable Internet connection of 50 Mbps.

5) Time spent on key exchange with preparation – time

taken by user to perform the key exchange assuming

that user already generated the data from part 1-2.

6) Time spent on key exchange without preparation – the

opposite, time taken by user to perform key exchange

with data generation.

7) Amount of transmitted data – size of messages sent by

users.

VII. CONCLUSION

The reviewed algorithm is a promising cryptographic prim-

itive that is believed to be resistant to quantum attacks.

The implementation results are presented in Table 1. The

benchmarking results are measured on Intel Core i7-640M

794 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

with 2 cores running at 2.8 GHz. The implementation details

are shown in GitHub repository1

REFERENCES

[1] Erdem Alkim, Leo Ducas, Thomas Poppelmann, and Peter Schwabe.
Post-quantum key exchange - a new hope. Cryptology ePrint Archive,
Report 2015/1092, 2015. http://eprint.iacr.org/2015/1092.

1github.com/dargonaxxe/homomorphic-encryption-key-exchange

[2] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key
exchange for the tls protocol from the ring learning with errors
problem. In 2015 IEEE Symposium on Security and Privacy, pages
553–570, May 2015.

[3] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael
Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas
Stebila. Frodo: Take off the ring! practical, quantum-secure key
exchange from lwe. Cryptology ePrint Archive, Report 2016/659,
2016. http://eprint.iacr.org/2016/659 .

[4] Chris Peikert. Lattice Cryptography for the Internet, pages 197–219.
Springer International Publishing, Cham, 2014.

ILYA KUZMIN, SERGEY KRENDELEV: KEY EXCHANGE ALGORITHM BASED ON HOMOMORPHIC ENCRYPTION 795

