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Abstract—This paper aims to review the most important
aspects of the classifier evaluation process including the choice of
evaluating metrics (scores) as well as the statistical comparison of
classifiers. Some recommendations, limitations of the described
methods as well as the future, promising directions are presented.
This article provides a quick guide to understand the complexity
of the classifier evaluation process and tries to warn the reader
about the wrong habits.

I. PROBLEM DESCRIPTION

L
LEARNING A CLASSIFIER from a dataset of labeled

data instances taken from unknown distribution where

each instance is characterized by a feature vector and a class to

which it belongs is a central task of supervised classification.

A learned classifier is a function mapping whole feature space

into a label space. Then, the learned classifier, after evaluation

its quality, can be used to classify new samples with unknown

class label. There are many classification paradigms/models:

the detailed description of the supervised classification prob-

lem can be found in books on machine learning (see for

example [1]). The following question usually arises: “which

is the best classification paradigm for a given problem?”.

Answering this question requires the evaluation as well as

the comparison of the many candidate models. Usually, the

problem of classifier evaluation is performed by using the

scores that try to summarize the specific conditions of classi-

fier behavior. The examples of such scores are classification

error or accuracy. It is now generally agreed that the whole

evaluation process of a classifier should include the following

steps ([4], [5], [6], [10], [11], [12]):

1) choosing the score(s) according to the properties of the

classifier as well as the domain objectives,

2) choosing the score estimation method,

3) choosing the statistical test,

4) choosing the datasets,

5) running the evaluation.

The main purpose of this paper is to provide the reader with

a better understanding about the overall classifier evaluation

process. As there is no fixed, concrete recipe for the classifier

evaluation procedure, we believe that this paper will facilitate

the researcher in the machine learning area to decide which

alternative to choose for each specific case.

This paper is focused only on a supervised classification

problem as defined in the beginning. Other types of classifi-

cation such as classification from data streams or multi-label

TABLE I
CONFUSION MATRIX FOR A TWO-CLASS PROBLEM

Predicted positive Predicted negative

Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

classification are not addressed here, since they may impose

specific conditions to the calculation of the score.

The paper is set up as follows. In section 2 till 4 we shortly

present the mentioned steps of classifier evaluation. In section

5 we conclude giving some recommendations and propose

new, future directions for classifier evaluation methodology.

II. CHOOSING CLASSIFIER SCORES

Typical scores for measuring the performance of a classifier

are accuracy and classification error, which for a two-class

problem can be easily derived from a 2x2 confusion matrix

as that given in table reftable1. These scores can be computed

as:

Acc = (TP + TN)/(TP + FN + TN + FP )

Err = (FP + FN)/(TP + FN + TN + FP )

Empirical evidence shows that accuracy and error rate are

biased with respect to data imbalance: the use of these scores

might produce misleading conclusions since they are strongly

biased to favor the majority class, and are sensitive to class

skews.

In some application domains, we may be interested in how

our classifier classifies only a part of the data, i.e. positive or

negative data samples. Examples of such measures are: True

positive rate (Recall or Sensitivity): TPrate = TP/(TP +
FN ), True negative rate (Specificity): TNrate = TN /(TN +
FP), Precision = TP/(TP + FP).

Each entry in the confusion matrix may be misleading by

two confounding issues: asymmetric misclassification costs

and asymmetric class distributions. Shortcomings of the ac-

curacy or error rate have motivated search for new bal-

anced measures which aim to obtain a trade-off between the

evaluation of the classification ability on both positive and

negative data samples. Some straightforward examples of such

alternative scores are: the arithmetic, geometric or harmonic

means between Recall and Specificity. They give the same

relevance to both components. There are other proposals that
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try to enhance one of the two components of the mean. For

instance, Index of Balanced Accuracy [7]:

IBAα = (1 + α(TPrate − TNrate))× TPrate × TNrate

and F-score [14]:

F-scoreβ =
(β2 + 1)Precision × Recall

β2 × Precision + Recall

The parameters α, β can be tuned to obtain different trade-offs

between both components.

The cost matrix can be used if the severity of misclassifica-

tions can be quantified in terms of costs and then, to weight the

entries in the confusion matrix. When the classification costs

cannot be accessed, the above mentioned balanced scores may

be used to set more relevance to the costliest misclassification.

Another most widely-used technique in this case is the ROC

curve [3]. However, recent studies have shown that AUC (Area

under the ROC curve) is a fundamentally incoherent measure

since it treats the costs of misclassification differently for

each classifier. This is undesirable because the cost must be

a property of the problem, not of the classification method.

In [8], the H measure has been proposed as an alternative to

AUC.

Ground truth assumption states that the true class labels of

data samples are deterministically known even though they

are the result of an arbitrary unknown distribution that a

classifier aims to approximate. This make it impossible to

take into account that correct classification could be a result

of coincidental concordance between classifier’s output and

label-generation process. Cohen’s kappa statistics corrects for

this problem:

κ =
Po − P c

o

1− P c
o

where Po represents the probability of overall agreement over

the label assignments between the classifier and the true

process, and P c
o represents the chance agreement over the

labels as is defined as the sum of the proportion of examples

assigned to a class times the proportion of true labels of that

class in the dataset.

Performance measures for multi-class classification are still

an open research topic. Generally, the two approaches are

commonly used. Macroaveraging (per category) takes the

average of measures on separate classes:

Bmacro =
1

n

n
∑

i=1

B(TPi, FPi, FNi, TNi)

where B is a binary score. Microaveraging (per case) sums up

individual TP, FP, FN, TN for different classes and then apply

to get a measure:

Bmicro = B(
n
∑

i=1

TPi,
n
∑

i=1

FPi,
n
∑

i=1

FNi,
n
∑

i=1

TNi)

There is no complete agreement among the authors on which

is better. In this paper, we focus on the scores since they

are popular way to measure classification quality. But these

measures do not capture all the information about the quality

of classification methods some graphical methods may do. The

presented list of scores is by no means exhaustive. There are

other important aspects of classification such as robustness to

noise, scalability, stability under data shifts, etc. which are not

addressed here.

III. CHOOSING SCORE ESTIMATION METHOD

Various re-sampling methods are commonly used to esti-

mate the classifier scores (the review of re-sampling methods

can also be found in the mentioned literature on machine

learning). The most commonly used k-fold cross-validation

(CV) creates a k-fold partition of the entire dataset once. Then,

for each of k experiments, it uses (k-1) folds for training and

a different fold for testing. The classification error is estimated

as the average of separate errors obtained from k experiments.

In order to obtain more stable estimates, it is useful to perform

multiple runs of simple re-sampling schemes. Two specific

schemes has been suggested: 5x2CV and 10x10CV.

The danger of re-sampling is that it is usually followed by

statistical testing which relies on the fundamental assumption

that the data used to obtain the sample must be independent.

In re-using the data, this important assumption is broken and

the results of the statistical test are invalid.

IV. CHOOSING STATISTICAL TEST

In most situations, the statistical assessment of the observed

classifier scores such as hypothesis testing is required. For the

comparison of two classifiers on one dataset, the corrected

resampled t test has been suggested in the literature [2]. This

test is associated with a repeated estimation method: in i-th
of the m iterations, a random data partition is conducted and

the values for the scores A
(i)
k1 and A

(i)
k2 of compared classifiers

k1 and k2, are obtained. The statistic is:

t =
A

√

(

1
m

+ Ntest

Ntrain

)

·
∑m

i=1
(A(i)

−A)
2

m−1

where A = 1
m

∑m

i=1 A
(i), A(i) =

(

A
(i)
k1 −A

(i)
k2

)

, Ntest ,

Ntrain are the number of samples in the test and train

partitions. A non-parametric alternative for comparing two

classifiers that is suggested in the literature is McNemar’s test

[9].

For the comparison of two classifiers on multiple datasets

the Wilcoxon signed-ranks test [9] is widely recommended. It

ranks the differences di = A
(i)
k1 −A

(i)
k2 between scores of two

classifiers k1 and k2 obtained on i-th of N datasets, ignoring

the signs. The test statistic of this test is:

T = min(R+, R−)

where:

R+ =
∑

di>0

rank(di) +
1

2

∑

di=0

rank(di),

R− =
∑

di<0

rank(di) +
1

2

∑

di=0

rank(di)
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are the sums of ranks on which the k2 classifier outperforms

k1, respectively. Ranks di = 0 are split evenly among the

sums.

Comparison among multiple classifiers on multiple datasets,

the general recommended methodology is as follows. First, we

apply an omnibus test to detect if at least one of the classifiers

performs different than the others. Friedman nonparametric

test [9] with Iman-Davenport extension is probably the most

popular omnibus test. It is a good choice when comparing

more than five different classifiers. Let Rij be the rank of the

j-th of K classifiers on the i-th of N data sets and

Rj =
1

N

N
∑

i=1

Rij

is the mean rank of the j-th classifier. The test compares the

mean ranks of the classifiers and is based on the test statistic:

FF =
(N − 1)χ2

F

N(K − 1)− χ2
F

χ2
F =

12N

K(K + 1)





K
∑

j=1

R2
j −

K(K + 1)2

4





which follows an F distribution with (K−1) and (K−1)(N−

1) degrees of freedom.

For the comparison of five or less different classifiers,

Friedman aligned ranks [9] is a more powerful alternative.

Second, if we find such a significant difference, then we

apply a pairwise test with the corresponding post-hoc correc-

tion for multiple comparisons to control the family-wise error

[13]. For the described above Friedman test, comparing the

r-th and s-th classifiers is based on the mean ranks and has

the form:

z =
Rr −Rs
√

K(K+1)
6N

The z value is used to find the corresponding probability

from the table of normal distribution, which is then compared

with an appropriate significance level α. There are multiple

proposals in the literature to adjust the significance level α:

for example, Holm, Hochberg, Finner [9].

V. DATASET SELECTION

The commonly accepted approach in classifier evaluation

methodology is to use benchmark datasets as a representation

of all the classification problems that can arise in reality and

then, to demonstrate that one classifier is, on average, better

than the others. However, such representation assumption is

questionable as well as the following conclusions (i.e. the

generalization to unseen problems).

No free lunch theorem [15] states that for any two classi-

fiers, there are as many classification problems for which the

first classifier performs better than the second as vice versa.

Thus, it does not make sense to demonstrate that one classifier

is, on average, better than the others. Instead, we should focus

our attention on exploring the conditions of the classification

problems which make our classifier to perform better or worse

than others. Additionally, artificially generated datasets may

easily reproduce the specific conditions of interest.

VI. RECOMMENTATIONS AND FUTURE DIRECTIONS

The evaluation of classification performance is very impor-

tant to the construction and selection of classifiers. Below, we

give some recommendations and limitations of the presented

methods for classifier evaluation. We also try to define new

promising research directions.

• There are many scores for evaluating classifiers: gener-

ally, you shouldn’t take any of the existing scores in an

isolated way. No single metric is capable of encapsulated

all the aspects of interest. Multiple metrics need to be

reported to detail classifier’s performance even for a

single aspect of interest. There is not a best way to

evaluate any system, but different scores give us different

and valuable insights into how a classification model

performs. Many research efforts should be undertaken to

investigate principles of combining these scores to yield

a summary measure.

• The vast majority of the published articles use the

accuracy (or classification error) as the score in the

classifier evaluation process. But these two scores may

be appropriate only when the datasets are balanced and

the misclassification costs are the same for false posi-

tives and false negatives. In the case of skew datasets,

which is rather typical situation, the accuracy/error rate is

questionable and other scores, especially balanced scores

such as Index of Balanced Accuracy, F-score, geometric

or harmonic means, H measure are more appropriate.

New methods that aim to obtain a trade-off between the

evaluation of the classification ability on both positive

and negative classes are need to be developed.

• Ground truth assumption make it impossible to take

into account that correct classification could be a result

of coincidental concordance between classifier’s output

and label-generation process. Cohen’s kappa is the sim-

plest measure that corrects for this problem. New, better

chance-corrected measures of the validity of classifiers

are needed.

• In the case of multi-class classification, generally,

macroaveraging can be bad practice in cases that there

is a considerable difference in number of examples of

each class label. Actually, the majority believe that class

examples should indeed count proportionally to their

frequency, and thus lean towards microaveraging. But,

there is no complete agreement among authors on which

is better. Performance measures for multi-class classifica-

tion are still an open research topic and many empirical

investigations are needed.

• k-fold cross-validation is the best known resampling

technique which is commonly used in score estimation.

Through high overlapping in the training folds, main

independence assumption of many statistical tests used

further for statistical comparison is not fulfilled. This can
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affect the bias of the classifier score and requires new,

corrected versions of classical statistical tests which still

should be developed.

• In order to obtain more stable estimates of classifier

performance, it is useful to perform multiple runs of

simple re-sampling schemes. Two such schemes are rec-

ommended: 5x2CV and 10x10CV. More experiments on

different schemes are needed to investigate replicability

of the results.

• The comparison of two classifiers on a single dataset is

generally unsafe due to the lack of independence between

the obtained score values. Thus, the new corrected ver-

sions of the resampled t test or t test for repeated cross-

validation are more appropriate. McNemar’s test, being

non-parametric, does not make the assumption about

distribution of the scores but it does not directly measure

the variability due to the choice of the training set nor

the internal randomness of the learning algorithm.

• When comparing two classifiers on multiple datasets (es-

pecially from different sources), the measured scores are

hardly commensurable. Therefore, the Wilcoxon signed-

rank test is more appropriate.

• Regarding the comparison of multiple classifiers on mul-

tiple datasets, if the number of classifiers involved is

higher than five, the use of the Friedman test with Iman

and Davenport extension is recommended. When this

number is low, four or five, Friedman aligned ranks and

the Quade test are more useful. If the null hypothesis

has been rejected, we should proceed with a post-hoc

test to check the statistical differences between pairs of

classifiers. The multiple comparisons are usually per-

formed using the mean-ranks test. Because of fundamen-

tal inconsistencies of this test we discourage its use in

machine learning. To overcome these issues, we suggest

instead to perform the multiple comparison using a test

whose outcome only depends on the two algorithms being

compared, such as the sign-test or the Wilcoxon signed-

rank test.

• Regarding dataset selection, we must carefully choose the

datasets to be included in the evaluation process to reflect

the specific conditions, for example class imbalance,

classification cost, dataset size, application domain, etc.

The choice of the datasets should be guided in order

to identify specific conditions that make a classifier to

perform better than others.

Summarizing, this review tries to provide the reader with

a better understanding about the overall process of classifier

evaluation. We believe, that this review can improve the way

in which researchers and practitioners in machine learning

contrast the results achieved in their experimental studies

using statistical methods. The propositions mentioned above

(in italic) can direct researchers in their work on the new,

better solutions for classifier evaluation procedures.
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