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Abstract—To spot malicious manipulation, remote attestation
and maintenance for devices that are under legal control is
very important. One example are measuring instruments, where
the manufacturer and the market surveillance want to check
if system integrity is preserved. In Europe, legal requirements
state that a software identifier needs to be supplied/output by
the device, which is often just a checksum over the files that are
considered to be legally relevant for the measuring purpose. As
measuring instruments and also other legally monitored devices
are often small embedded systems, the need for a fast algorithm
arises that creates a small file system list containing as much
information as possible. In this paper, a new file system structure
called FLOUDS is explained that fulfills these requirements. The
FLOUDS uses theoretical optimal space to represent the file
system structure, while it, nevertheless, enables fast file searches
by names and also properties. For example, all files of a specific
file type, e.g., pictures, movies, executables, etc., can be listed in
O(p lg n) time, where p is the number of files of the specific file
type searched for, and, where n represents the total number of
file types in the system.

I. INTRODUCTION

I
N MANY states, law obliges manufacturers of devices that

are under legal control, to implement an easy procedure

to output a software identifier. For example, measuring instru-

ments under legal control, e.g., commodity meters for the sup-

ply of gas, water and electricity, etc., output these identifiers

to show market surveillance agents that the approved software

is still running on the device and system integrity is preserved.

Hereby, the agents check the devices on sidein predifined

intervals, e.g. every two years. Often, just a checksum over the

legally relevant files is calculated. As measuring instruments

and also other legally supervised devices are ofen powerful

embedded instruments, it can be inferred that more efficient

algorithms can be implemented that enhance the checksum or

hash value with additional information, like the file system

structure. Additionally, data exchange between devices over

the internet has become an important aspect, nowadays. In

the era of the Internet of Things (IoT), the number of these

devices will, according to Gartner [46], exceed 25 billion in the

year 2020. As storage units have become smaller and cheaper,

these devices can already save millions of files. Considering

that in the future the automatic data exchange between these

devices will blossom, the creation of a small data structure

listing all the files on a device is handy. Despite being small,

this data structure should also be quickly traversable. It should

list as much information about a file as possible to check, for

example, the name, the format, the size, and the checksum.

This paper describes such a data structure which makes use

of succinct approaches to store trees. In this structure, a fast

file search is made possible by using space-efficient algorithms

to store the file names. Hence, the data structure is not only

usable as a file list, but can easily be used as the fundamental

structure for a read-only file system in which files can be

located and listed efficiently.

A. Outline

The paper is structured as follows: In Section I, an intro-

duction about the topic will be given, outlining the importance

and usability of a succinct file system structure. In Section

II, an overview of succinct data structures will be supplied,

explaining important operations like rank- and select, which

are needed to traverse many succinct data structures, one such

data structure is the "Level Order Unary Degree Sequence"

(LOUDS). The "File system Level Order Unary Degree Se-

quence" (FLOUDS), which is based on the LOUDS, will be

explained in detail in Section III. Afterwards, practical tests

in Section IV will show the efficiency of the FLOUDS by

comparing it with the locate database of UNIX systems. At

the end, before the conclusion in Section VI, a discussion is

given in Section V which describes where the FLOUDS can

be used and how file modifications can be handled.

II. SUCCINCT DATA STRUCTURES

In this section existing data structures are presented that

form the basis of the new succinct file system representation.

All the results are in the word-RAM model of computation,

i.e. the machine consists of words of width w bits that can

be manipulated in O(1) time by a standard set of logical and

arithmetic operations, and the problem size n is not larger than

O(2w).

In the past two decades, succinct data structures have been

one of the key contributions to the algorithmic community.

The aim of these structures is to represent objects from a

universe of size u in information-theoretical optimal space

lg u bits of space (function lg denotes the binary logarithm

throughout this paper). Additionally, fast operations should be

supported, ideally in time no worse than with a "conventional"

data structure for the object. Usually, a space overhead of no

more than o(lg u) bits space arises for this property.
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Ordered trees are just one example, where succinct data

structures yield good result. Hereby, with n nodes we have a

universe of size u ≈ 4n. In 1989, Jacobson first described

such a tree representation that used only 10n + o(n) bits,

while supporting the most common navigational operations

in O(lg n) time [29]. With time, new succinct data structure

for trees where developed that use the optimal 2n+ o(n) bits

and optimal O(1) navigation time, e.g. [39]. A conventional,

pointer-based data structure, for example, requires Θ(n lg n)
bits.

There are many more examples of succinct data structures:

bit-vectors [41], dictionaries [40], binary relations [3], permu-

tations [37], suffix trees [45], etc. In nearly all cases, attempts

were made at practical implementations, with successful re-

sults [20], [24], [31].

A. Rank and Select

Many succinct data structures make use of two fundamental

operations, called rank- and select. In this paper, these oper-

ations on S, with S[1, n] being a bit-string of length n, are

defined as follows:

• rank1(S, i) gives the number of 1’s in the prefix S[1, i]
• select1(S, i) gives the position of the i’th 1 in S, reading

S from left to right (1 ≤ i ≤ n)

To give an example, in a string S = 01001 of size 5, where

position 1 denotes the leftmost bit, rank1(S, 3) = 1, and

select1(S, 2) = 5. Operations rank0(S, i) and select0(S, i)
are defined similarly for 0-bits. S can be represented in

n + o(n) bits such that rank- and select-operations are sup-

ported in O(1) time [39].

The approach used to achieve this is to divide the bit-string

S into blocks of fixed size, e.g. 64 bit, and store the number

of ones before the blocks. These blocks can be combined into

bigger blocks, e.g. of size 4096 bits, often called super-blocks,

which again store the number of ones at the position in front of

each super-block. After each super-block the number of ones

for the upcoming smaller block is reset to 0. Every super-

block needs lg n bits and with the example of 4096 bit size

super-blocks, each small block needs only lg(4096) = 12 bits

to store the number of ones till this position. rank1(S, i) can

then be performed by accessing the blocks and adding them

together. Getting the number of ones inside a block is done

by bit-operations and/or table-lookups to speed up the process.

The approach for select1(S, i) is similar but a little bit trickier,

a nice description can be found in [9], where a three level

directory structure is used.

B. Storing Trees Succinctly

There are several ways to represent an ordered tree with

n nodes using 2n bits. The best known are the "level order

unary degree sequence" (LOUDS), the "balanced parantheses"

(BP) and the "depth first unary degree sequence" (DFUDS)

[5], [29], [38]. A comparison of these structures is depicted

in Figure 1.

The LOUDS is formed by performing a breadth-first traver-

sal (BFT) on the tree, starting with an artificial super-root that

is added in front of the real root node and connected to it. At

every step of the BFT 1d0 is added to the LOUDS for each

node, with d being the number of children of the respective

node.

The BP and DFUDS use the depth-first traversal (DFT) for

their construction. The BP is constructed as follows: when the

DFT descends a level, an opening parenthesis is written, and

when it ascends, a closing one is written.

The DFUDS combines the BP and the LOUDS. Hereby,

when the DFT descends to a node, d open parentheses are

written out, with d being the number of the children of that

node. After the node traversal a closing parenthesis is written

out. Like in the LOUDS, an opening parentheses is added at

the beginning, similar to the artificial super-root.

Fig. 1: Comparison between LOUDS, BP und DFUDS (s is

the artificial super-root)

For the LOUDS only rank- and select is needed to enhance

the data structure with navigational operations. The BP and

the DFUDS need some more structures:

• enclose(S, p): Finds the pair of parentheses, which en-

closes the open parentheses at position p most tightly

and returns the position of the open parenthesis of the

pair of parentheses.

• findclose(S, p): Returns the position of the closing paren-

theses which belongs to the open parentheses at position

p.

• findopen(S, p): Returns the position of the open parenthe-

ses which belongs to the closing parentheses at position

p.

All these functions can be implemented in O(1) time with

o(n) space, with very small and fast practical data structures,

see, e.g [19]. As can be noticed, all succinct data structures for

trees [5], [10], [14], [29], [38] must have the freedom to fix

a particular naming for the nodes; natural such namings are

post- or pre-order [5], [29], [38], in-order [10], and level-order

[29].

As the LOUDS is easier to implement and needs only rank-

and select, it practically also uses less space. Therefore, we

think the best choice is to use it as the fundamental structure

of the file system structure explained in Section III.

Augmenting the LOUDS with rank- and select results in

the total space of 2n+ o(n) bits, where the basic navigational

operations on trees are simulated in O(1) time: Getting the

parent of node i (1 ≤ i ≤ n) is done by jumping to the
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position y of the i’th 1-bit in S by y = select1(S, i), and

then by counting the number j of 0’s that are present before

y, with j = rank0(S, y). The resulting j represents the level-

order number of the parent of i. Listing the children of i is

done by going to the position x of the i’th 0-bit in S by

x = select0(S, i), and then iterating over the positions x +
1, x+2, . . . , as long as the corresponding bit is ‘1’. For each

such position x+k with S[x+k] = 1, the level-order numbers

of i’s children are rank1(S, x) + k, which can be simplified

to x− i+ k + 1.

To give an example, we look more close at Fig. 1. Here, the

LOUDS is S = 10111010011100000, with the corresponding

tree depicted at the left hand side of the figure. Now, to get the

children of the forth node (in Fig. 1 denoted as d), we calculate

the position of the first child of d in S: x1 = select0(S, 4) +
1 = 10. We then check if S[x1] = 1 and if so (S[10] = 1)

we increment the position by one until we arrive at a 0. In

our example until position 13, i.e. positions 10, 11, 12 are

the positions of the children of node 4 (d). To convert the

positions tho the tree numbers, we then have to calculate c1 =
rank1(S, 10) = 6 (f in alphabetical numbering as shown in

Fig. 1) , c1 = rank1(S, 10) = 7 (g), and c1 = rank1(S, 10) =
8 (h). For a parent, let us take node the third node as an

example (in Fig. 1 denoted as c). Here, y = select1(S, 3) = 4
is the position of the node in the LOUDS, and with j =
rank0(S, 4) = 1, we get 1 as a result (a).

C. Wavelet Trees

The operations rank- and select have been extended to se-

quences over larger alphabets, at the cost of slight slowdowns

in the running times [4], [21]. In this section a practical

approach is discussed, called wavelet tree [23]. A wavelet tree

is constructed as follows: First each character c in a text S is

assigned to exactly one bit (a 0 or a 1). The root node v1 is

situated on the first level and contains the bit-vector B1 and the

actual text S1 = S. Now the tree is built recursively: If a node

v contains a text Sv that has at least two different characters,

then two child nodes vl and vr are created. All characters

which are marked with a 0 go to the left node and all other

characters go to the right node. Note that at the end the Sv’s

of every node are not saved, only their bit vectors Bv with

the rank- and select data structures, and the mappings "c to

leaf" and "leaf to c". If a balanced wavelet tree is constructed,

in which the first half of a node’s alphabet is written into the

left child and the other half into the right one, the mappings

from "c to leaf" and from "leaf to c" do not need to be stored,

and the tree can still be easily traversed. Figure 2 shows such

a balanced wavelet tree for S = 303302013032012010010.

The advantage of these wavelet trees is that selectc(S, i),
rankc(S, j) and access(j) queries for an alphabet of size σ

can be answered in O(lg σ) time for every character c in S

and position j in S, while using only n lg σ+o(n lg σ) space.

To give an example, we look at Fig. 2. Here, rank3(S1, 6)
can be calculated as follows. We know that 3 is in the second

half of our alphabet (0, 1 are represented as a 0 in B1,

and the numbers 2 and 3 are represented as a 1). So first,

S1 = 303302013032012010010

B1 = 101101001011001000000

S2 = 0001001010010

B2 = 0001001010010

0

0

1

1

0

S3 = 33323322

B3 = 11101100

2

0

3

1

1

Fig. 2: Illustration of a balanced wavelet tree.

rank1(B1, 6) = 4 and then rank1(B3, 4) = 3 (here again 3 is

represented as a 1 in B2 because it is in the second half of the

alphabet, and 2 in the first), meaning in total rank3(S1, 6) = 3.

For select a similar procedure is being used only that now we

start from the leaves. To calculate select1(S1, 2), we know

that 1 is represented by a 0 in B1 and as a 1 in B2. Hence, we

get select1(B2, 2) = 7, and afterwards select0(B1, 7) = 14,

so the result is select1(S1, 2) = 14.

III. FLOUDS

An approach that is also based on the LOUDS to store tree-

like graphs, which file systems with links can be regarded as,

is explained in [16]. This method was developed primarily

for storing phylogenetic networks (phylogenetic networks are

used in biology to express relationships between species). The

structure consists of a trit (ternary digit) variant to store the

enhanced LOUDS, which is rather not suitable for file systems,

because one can only differentiate between two types of files,

e.g., links and regular files (the 0s in the trit-variant are used to

end the children listing of a node as in the LOUDS). In this

section, a new version called FLOUDS ("File system Level

Order Unary Degree Sequence") is described, which makes

use of the wavelet tree presentation described in Section II-C.

Therefore, files can be divided into more than two types, e.g.

the types listed in Figure 3:

• regular files

• directories

• links (hard-, soft)

• block-oriented device

• char-oriented device

This list can be expanded, e.g. to sockets, pipes, MIME

types (pictures, videos, ...) etc., or shortened as needed.

The FLOUDS is created as follows: First a BFT at the root

of the file system tree is started. For every node (file/folder)

a predefined number representing the file type is appended to

S. If the node is the first child of its father, a 1 is written to

B, otherwise a 0. The array S can be created directly as a

wavelet tree, when the number of file types t is known from

the beginning; if not, it can be created later, after the complete

BFT run.

Additionally, the file/folder names are successively written

to N , whereas Bn marks the beginning of a new file name by

a 1. After a complete BFT S, B, N and Bn are created and
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Fig. 3: File system structure FLOUDS, consisting of S, B, H ,

N and Bn.

the number of nodes n and the number of links l are known.

This information can then be used to create the wavelet tree

H , which is needed to retrieve the link address to the file. In

total H requires l lg n + o(l lg n) space. In H the FLOUDS

numbers of the real files of the links are stored, in the order in

which they were traversed by the BFT. Now, H can be used

to check if a file is a link, and afterwards get the linked file,

as described in the next section.

A. Navigating through the FLOUDS

With the help of S and B, a file system tree traversal can be

done much like it in the LOUDS. Functions parent and child

are as follows:

• child(x, i) = select1(B, rank1(S;x)) + i− 1, if S[x] =
1 and i < number of children

• parent(x) = select1(S, rank1(B;x))

For example, in Figure 3, the folder-entries of node 9 can be

listed by first checking if node 9 is a folder S[9] = 1, and then

getting its folder-number fn = rank1(S; 9) = 4. Afterwards,

a jump to its first child is done, child(9, 1) = select1(B; 4) =
13. All the children of node 9 are between the first and the

last child l: child(9, l) = select1(B; 5)−1 = 14 (the position

before encountering the next ’1’: 4 + 1 = 5). So the folder-

entries of node 9 are 13 and 14 (and l = 2).

The time complexity of outputting a child (folder entry)

lies in O(lg t), with t being the number of file types in the

FLOUDS, because all rank and select operations on B are

supported in O(1), and for S, which is saved in a wavelet tree

format, in O(lg t).
The array H can be used to check if a node is a link (in

the example from Figure 3: S[n] = 3) or if a file is referenced

by links, and where these links are situated in the file system

tree, by using the wavelet tree of H:

• getLink(n, i) = select3(S; selectn(H; i))
• getOrig(n) = H[rank3(S;n)], if S[n] = 3

Looking again at the example of Figure 3: the

first link that points to node 7 is getLink(7, 1) =
select3(S; select7(H; 1)) = 11; and the file-number (node)

12 points to is getOrig(12) = H[rank3(S; 12)] = 8. Hence,

the FLOUDS also enables to print out its direct parent direc-

tory, and additionally, if it is a link or has links pointing to it,

the parent directories the other links are stored in. Hereby, the

time complexity depends on the wavelet tree of H and S to

find the files, so summing up, listing all parent folders of a file

including the parent folders of its links, is in O(a∗(lg l+lg t)),
with l being the number of all original files that have links, t

the number of total file types in the whole file system, and a

the actual number of links of the searched file.

Additionally, with the help of rank- and select, the following

functions are directly executable:

• Getting the number of files in a folder and listing them.

• Getting the number of files of a specific file-type in a

folder and listing them.

For example, if every file is assigned a MIME-type number,

all pictures in the file system can be listed efficiently.

B. Efficiently Storing File Names

A simple method to find files fast can be achieved by sorting

the folder entries in alphabetical order. Hereby, the prefix of

a file name in a folder can be found by a binary search.

A more efficient search that also finds substrings of file

names can be achieved by applying 2-Way dictionaries. An

example would be using the Burrows-Wheeler Transform

(BWT) [8] with Run-Length Encoding. Such a method is

described in [15], for example. Hereby, substrings can be

found efficiently, and afterwards be mapped to their FLOUDS

numbers, or the file names can be read out via the FLOUDS

numbers, respectively.

Another method that aims at compression, is described in

[2]. There, the Lempel-Ziv algorithm 78 (LZ78 [47]) is altered

in a way that makes locating prefixes possible. The LZ78

compression algorithm for a string S[1, n] proceeds by parsing

S from left to right. Hereby, S is divided into blocks that

are one-letter extensions of previously parsed substrings. The

set of current blocks is called the phrase dictionary D. The

dictionary D is prefix-closed and represented with a trie (the

LZ-trie), which is stored in [2] with some enhancements to

achieve look-up and access support. The method is good for

checking the integrity of file system structures, because finding
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substrings of file names is not really needed (the exact file

name is known a priori).

C. Integrity checking

There are several variations to check file system integrity

on request:

1) The FLOUDS is signed and transferred with the file

names.

2) The FLOUDS is newly created and while traversing the

file system tree, a hash value of each file is calculated.

These hash values are written into a hash array of size

n and transmitted together with the FLOUDS and the

file names.

3) To save space, the file name list can be omitted. The

file names can just be included in the computation of

the hash values, mentioned in point 2.

4) Only a predefined number of files are hashed to save

even more space.

5) Only one hash value over the entire structure is calcu-

lated and transmitted.

The fifth method requires the least amount of space, because

only a hash value needs to be transmitted. This value can, for

example, be displayed on the device’s display. If the hash has

an unexpected value, one of the other four methods can be

executed to check, how the file system structure has changed

and which files have been altered.

The used hash algorithm should be as collision-free as

possible. Still, it can be freely chosen, for example from a

simple checksum like CRC16, to secure hashing algorithms

such as SHA-2, depending on performance, space or safety

demands.

IV. PRACTICAL RESULTS

The aim of this section is to show the practicality of our

approach by comparing it with a well known database for

Unix systems, which the locate command uses to efficiently

find files.

For our test we used the succinct libraries https://github.

com/ot/succinct and https://github.com/simongog/sdsl, which

have well-tuned succinct data structure implementations (other

sources are [1], [18]). Our machine was equipped with an Intel

Core i7@2.2GHz and 8GB of RAM, running under Ubuntu

14.04.

Table I shows the sizes of the mlocate database,

which in Unix systems is normally situated at

"/var/lib/mlocate/mlocate.db", the size of the FLOUDS

with the file names just stored in plain text, and the

lzFLOUDS with the file names stored by the LZ78 method

[2] described in Section III-B.

We used 4 different file lists for comparison:

1) buildroot: buildroot (http://buildroot.uclibc.org/) is a tool

to generate embedded Linux systems, the file system we

generated contained 435 nodes (files/folders/link etc.).

2) linux_src: The Linux 4.2 Kernel source tree containing

54 171 nodes.

3) comp1: A small file system of a desktop computer

containing 333 854 nodes.

4) comp2: A bigger file system of another desktop com-

puter with 1 853 354 nodes.

TABLE I: Comparison of sizes in MB: 1. buildroot, 2.

linux_src, 3. comp1, 4. comp2.

F mlocate FLOUDS lzFLOUDS

1. 0.004 0.003 0.002
2. 0.957 0.625 0.218
3. 7.722 4.964 1.932
4. 42.876 22.928 9.141

The second table, Table II, compares the running times to

find a file name. Hereby, the LZ78 variant of the FLOUDS

searched for exact matches, whereas the other two searched

for substrings. We averaged the running times over 100 tests,

searching for random strings.

TABLE II: Comparison of running times in sec: Legend as in

Table I.

F mlocate FLOUDS lzFLOUDS

1. 0.004 0.027 8 ∗ 10
−6

2. 0.035 0.105 10 ∗ 10
−6

3. 0.381 0.565 9 ∗ 10
−6

4. 0.823 9.854 12 ∗ 10
−6

It can be observed that the naive FLOUDS representation is

already around 40% smaller than the mlocate database. Still

the running times for file-systems with many files are up to

12 times slower. On the other hand, the lzFLOUDS is some

magnitudes faster than the other structures. The drawback of

the lzFLOUDS is that it can only be used to find prefixes,

and in our tests it just output a result, if the exact match was

found. We think that this is enough, if the FLOUDS is used

for integrity checking, because the exact file names should be

known.

V. DISCUSSION

Succinct data structures perform very well on static objects

and not that well on dynamic ones. The same applies to

the FLOUDS, hence it is better suited for a read-only file

system. For many embedded devices this poses no restriction,

because mostly they are put in commission to fulfil only a

certain scope; changes to the file system structure are often

not allowed and would be a sign of malicious manipulation.

However, if changes are to be made, the FLOUDS needs

to be rebuilt. A fast rebuild can be easily achieved if the

names are not compressed and saved in plain form. For

the other representations, the file name string needs to be

completely rebuilt, which can be slow. Still, dynamic succinct

data structures exist that can be used to this end, e.g., [34].

Figure 4 shows how the file system manager should be

separated from the computing component to hinder malicious

applications from tampering with files if file integrity is an
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Fig. 4: Separating the file system Manager

issue. These components can be separate devices, where the

file system component is at a secure location. Hereby, the

computing component could have a copy of the FLOUDS in its

internal storage, to speed up locating files. If a file is needed,

the FLOUDS-number and the number of requested bytes can

be sent to the file system manager, which then answers the

request. This communication can be encrypted if an open

network is used for communication. In the same manner, an

entitled entity can check the integrity of the file system by

just sending a request to the computing component, which

in turn gets the FLOUDS encrypted with the private key of

the file system manager. Afterwards, it sends this encrypted

FLOUDS back to the entitled authority. After decrypting it

with the public key of the file system component, the entitled

authority can make sure that the computing component did

not manipulate the FLOUDS-file (assuming of course that the

private key of the file system manager is not known by the

computing component).

Another approach is software-separation through virtualiza-

tion. There are some papers that come to the conclusion that

the microkernel approach for virtualization is recommended

to construct secure systems [26]–[28], [33], [35], [42]. A

concrete modular system architectures is described in [43],

which yields good results also for embedded devices. It is

based on virtualization by dividing critical parts of software

from non-critical ones through virtual machines.

Another area of application for the FLOUDS is to use it as

the fundamental structure of a whole file system. A possible

approach would be to combine it with a read-only, compressed

file system like squashFS (http://squashfs.sourceforge.net/).

The idea is to use the FLOUDS numbers of the nodes to rep-

resent the block numbers, which in turn point to compressed

blocks. Nevertheless, if compression is not that important, the

FLOUDS needs to be evaluated against a dynamic file system,

e.g., based on the Bǫ-tree, because these show good results

for locating files and have fast write operations [11], [30].

VI. CONCLUSION

In this paper, a flexible file list structure called FLOUDS

was presented. This structure was explained in detail to show

that it can be used in many ways. Firstly, it is well suited for

embedded devices that need to be validated for integrity in

commission, or which want to exchange file lists. Secondly,

it can be used as the groundwork for a read-only file system,

which uses as little space as possible. Lastly, it can be used to

efficiently find and list files by using succinct data structures

for trees and 2-way dictionaries. For the latter, the FLOUDS

was evaluated by comparing it to another file name database,

which is used in Unix systems by the locate command. These

tests show that the FLOUDS stores more information, is

smaller, and for integrity checking also faster.
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