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Abstract—Distributed energy scheduling constitutes a tough
task for optimization algorithms, as the underlying problem
structure is highdimensional, multimodal and non-linear. For this
reason, metaheuristics and especially distributed algorithms have
been in the focus of research for several years with promising
results. The modeling of the distributed energy units’ flexibility is
a specific research task, with different concepts like comfort-level
based approaches, enumeration of possible schedules, and contin-
uous schedule representation using machine learning and decoder
techniques. Although a continuous representation of flexibility
has shown better results regarding the global optimization goal,
there have been hints that the susceptibility to local minima traps
enlarges compared to the enumeration of distinct schedules. In
this contribution, we present an exemplary system for predictive
scheduling of distributed energy units consisting of a continuous
flexibility modelling approach and a fully distributed planning
heuristic. A prestudy is presented, where we analyze the problem
structure regarding local minima and describe planned work to
reduce the heuristic’s susceptibility to be kept in these.

Index Terms—Distributed Energy Scheduling, Agent-Based
Control, Self-Organization, Unit Commitment, Local Minima,
Meta-Heuristics.

I. INTRODUCTION

I
N FUTURE energy systems, distributed energy units like

renewables, small combined heat and power (CHP) plants,

and electrical storages are needed for both energy provision

and grid stabilization purposes. Typically, these units are oper-

ated in an aggregated fashion by so-called virtual power plants

(VPP), constituting the core concept for renewable energy

systems [1]. One of the main challenges during operation of

such a VPP arises from the complexity of the scheduling task

due to the large amount and the diverse nature of energy units

in the distribution grid [2].

The general optimization problem to be solved for this

scheduling task is known as unit commitment problem [3]

and constitutes a combinatorial optimization problem: Under

given constraints specific for the respective energy units (local

constraints) operation modes for each unit have to be chosen

in such a way that the global optimization goal is reflected for

the whole planning horizon. These kind of problems have been

described as multiple-choice subset-sum problem [4]. It has

been shown that for the given task of predictive scheduling the

problem is weakly NP-complete, if the continuous operation of
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energy units is discretized to operation states per time interval

(schedules) [5]. Following this discretization, the optimality

depends on the combination of the schedules of all energy

units in each interval.

Thus, the problem of predictive scheduling in VPP shows

the following characteristics: First, for day-ahead scheduling

with a resolution of 96 time intervals the problem is high-

dimensional. Second, the combinations of schedules may

show the same performance with different combinations of

schedules – thus the problem is multimodal. Third, with the

non-convex structure of the solution space that is given with

the physical properties of the energy units, the problem has

to be classified as non-linear. Due to this structure of the op-

timization problem, several heuristic optimization algorithms

have been proposed and evaluated for predictive scheduling in

VPP [5], [6], [7], [8].

With the concept of schedules as discretized operation

modes, a reduced view on the potential flexibility of the

respective energy unit is chosen: While some units may be

operated in a fine-grained manner, the coarse grained solution

space narrows schedule choices to a distinct set of schedules

without tapping the units’ full optimization potential. To this

end, a support vector data description (SVDD) model and a

decoder approach have been introduced [9], allowing for a con-

tinuous representation of flexibility combined with a targeted

unconstrained search based on this surrogate model. Although

the usage of the decoder largely helps to identify solutions that

better use the units’ flexibility [10], there has been evidence

that the amount of local minima increases as well. With the

general predisposition of heuristic algorithms to local minima

[11] a more in-depth analysis of the relation of flexibility

modelling and optimization performance is necessary: The

combination of a search space representation and the heuristic

using this search space has to be chosen carefully [12].

In this contribution we present a preliminary study on the

predisposition of the combination of SVDD based flexibility

modelling, decoder based search and the distributed optimiza-

tion heuristic COHDA [5] for local minima and give an outline

of planned work to analyze the dependencies in greater depth.

The rest of this position paper is structured as follows: In

section II we give an introduction to different approaches to

flexibility modelling, followed by an overview on distributed

energy scheduling in section III. We then present a preliminary

study on the occurance of local minima in different search

space settings and conclude with an outline of planned work.
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II. FLEXIBILITY MODELING

Flexibility modeling can be understood as the task of

modeling constraints for energy units. Apart from global

VPP constraints, constraints often appear within single energy

components; affecting the local decision making. Popular

methods treat constraints or aggregations of constraints as

separate objectives or penalties, leading to a transformation

into a (unconstrained) many-objective problem [13], [11].

For optimization approaches in smart grid scenarios, black-

box models capable of abstracting from the intrinsic model

have proved useful [14], [15]. The units do not need to

be known at compile time. A powerful, yet flexible way of

constraint-handling is the use of a decoder that gives a search

algorithm hints on where to look for schedules satisfying local

hard constraints [15], [16].

A decoder is a technique that gives algorithms hints on

where to look for feasible solutions and thus allows for a

targeted search. It imposes a relationship between a decoder

solution and a feasible solution and gives instructions on

how to construct a feasible solution [16]. Using directly a

given set X of feasible schedules derived from a simulation

model can already serve as a decoder [5] without a need

for machine learning techniques to deduce a meta-model, a

response surface, or similar. Each schedule is simply mapped

on the most similar one from X with the lowest distance.

We regard a schedule of an energy unit as a vector x =
(x0, . . . , xd) ∈ F ⊂ R

d with each element xi denoting mean

power generated (or consumed) during the ith time interval.

A simple, yet easy way to find a surrogate model for the

flexibility of an energy unit is to abstract from operation

and constraints by maintaining a set S of feasible example

schedules and use this set as abstraction layer. Any given

schedule x is feasible iff x ∈ S . A relaxed variant might

demand that ∃x̂ ∈ S • ‖x̂ − x‖ ≤ ǫ for some small, given

threshold. We take the strict version.

So far, this surrogate is capable of checking feasibility when

already given a schedule. In this way, the surrogate may tell

apart feasible and infeasible schedules on behalf of the specific

simulation model of the energy unit and thus already allows

for an abstraction from any model specific implementation.

On the other hand, it is not yet a sufficient constraint-handling

technique as it still needs externally (e. g. by any optimization

algorithm) generated schedules which can merely be checked.

Hence, we need to guide an algorithm where to look for

feasible schedules. A decoder can do this. For the set based

approach, a decoder can simply be derived as follows:

τset :

{

R
d → S

x 7→ x′ ∈ S, ‖x− x′‖ < ‖x− x∗‖ ∀x∗ ∈ S,x′ 6= x∗

(1)

In this way, any given (feasible or not) schedule x is mapped

onto the nearest feasible schedule from S . The granularity of

this model depends on the cardinality of the set S . The larger

|S| the more the model resembles a continuously modeled

feasible space. We will now discuss a way of modeling

flexibility in a real continuous space.

R
d

S

H(k)
Φ : X → H

Φ−1(S)

(a)

H(k)R
d

x

Ψ̂x

Ψ̃x

x∗

(b)

Fig. 1. General support vector decoder scheme for solution repair and
constraint handling [19].

Fig. 1 shows the idea of a support vector decoder starting

with a set of feasible example schedules derived from a

simulation model of the respective energy unit and using it as

a stencil for the region that contains just feasible schedules.

A training set X containing only valid schedules, can e. g.

be derived after a sampling approach from [17]. From such

training set, a SVDD [18] derives a geometrical description

of the sub-space that contains the given data (in our case: the

set of feasible schedules). Given a set of data samples, the

enclosing envelope can be derived as follows: After mapping

the data to a high dimensional feature space, the smallest

enclosing ball in this feature space is determined. When

mapping back the ball to data space, it forms a set of contours

enclosing the given data sample.

This task is achieved by determining a mapping Φ : X ⊂
F ⊂ R

d → H; x 7→ Φ(x) such that all data from a sample X
is mapped to a minimal hypersphere in H. The minimal sphere

with radius R and center a in H that encloses {Φ(xi)}N can

be derived from minimizing ‖Φ(xi) − a‖2 ≤ R2 + ξi with

slack variables ξi ≥ 0 for a smoother ball.

After some relaxations one gets two main outcomes: the

center a =
∑

i βiΦ(xi) (with β weighting the impact of

different schedules) of the minimal sphere in terms of an

expansion into H and a function that allows to determine

the distance of the image of an arbitrary point from a ∈ H,

calculated in R
d is derived: R2(x) = 1−2

∑

i βikG(xi,x)+
∑

i,j βiβjkG(xi,xj). Because all support vectors are mapped

onto the surface of the sphere, the sphere radius RS can be

easily determined by the distance of an arbitrary support vector

to the center a. Thus the feasible region can now be modeled

as F = {x ∈ R
d|R(x) ≤ RS} ≈ X .

The model can be used as a black-box that abstracts from

any explicitly given form of constraints and allows for a deci-

sion on whether a given solution is feasible or not. From the

support vector model, a decoder can be derived automatically.

The set of feasible schedules is represented as pre-image of a

high-dimensional ball S. Fig. 1(a) shows the geometric situ-

ation. This representation has some advantageous properties.

Although the pre-image might be some arbitrary shaped non-

continuous blob in R
d, the high-dimensional representation is

a ball and thus geometrically easier to handle.

If a schedule is feasible it is inside the feasible region

(grey area on the left in Fig. 1(b)). Thus, the schedule is
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Fig. 2. Solution quality (as mean absolute percentage error, mape) as a
function of the granularity of the flexibility model.

inside the pre-image (representing the feasible region) of the

ball and thus its high-dimensional image lies inside the ball.

An infeasible schedule (e. g. x in Fig. 1(b)) lies outside

the feasible region and thus its image Ψ̂x lies outside the

ball. But we know some relations: the center of the ball,

the distance of the image from the center and the radius

of the ball. Hence, we can move the image of an infeasible

schedule along the difference vector towards the center until

it touches the ball. Finally, one can calculate the pre-image of

the moved image Ψ̃x and get a schedule at the boundary of the

feasible region: a repaired schedule x∗ that is now feasible.

No mathematical description of the original feasible region

or of the constraints is needed to do this. More sophisticated

variants of transformation are e. g. given in [9]. Formally, the

decoder τ is given by

τ : Rd → FUi
⊆ R

d, x 7→ τ(x) = Φ̂−1 ◦ τmove ◦ Φ̂. (2)

Using any decoder, the global scheduling problem can be

transformed into a formulation that is unconstrained regard-

ing local constraints. Apart from finding a combination of

schedules whose sum resembles a given target power profile

best, further objectives are usually integrated due to the many-

objective nature of energy scheduling. In the following, we

consider predictive scheduling, where the goal is to select

exactly one schedule xi for each energy unit Ui from a

search space of feasible schedules with respect to a future

planning horizon, such that a global objective (e. g. resembling

a target power profile) is optimized by the sum of individual

contributions [10]. A basic formulation of the scheduling

problem is given by

δ

(

m
∑

i=1

xi, ζ

)

→ min; s.t. xi ∈ F (Ui) ∀Ui ∈ U . (3)

In equation (3) δ denotes a distance measure for evaluating

the difference between the aggregated schedule of the VPP

and the desired target schedule ζ. To compare results and for

scalability reasons we used the mean absolute percentage error

(mape) δ(x, ζ) = 100
d

∑d

i=1

∣

∣

∣

ζi−xi

ζi

∣

∣

∣
.

To each energy unit Ui exactly one schedule xi has to be

assigned. F (Ui) denotes the individual set of feasible schedules

that are operable for unit Ui without violating any (technical)

constraint. Solving this problem without unit independent

constraint handling leads to specific implementations that are

not suitable for handling changes in VPP composition or unit

setup without having changes in the implementation of the

scheduling algorithm [15]. Using a decoder for constraint

handling one can now rephrase the optimization problem as

δ

(

m
∑

i=1

τi(xi), ζ

)

→ min, (4)

where τi is the decoder function of unit i that produces

feasible schedules from x ∈ [0, xmax]
d resulting in schedules

that are operable by that unit. Please note, that this is a

constraint free formulation. With this problem formulation,

many standard algorithms for optimization can be easily

adapted as there are no constraints (apart from a simple box

constraint x ∈ [0, xmax]
d) to be handled and no domain

specific implementation (regarding the energy units and their

operation schedules) has to be integrated in the optimization

algorithm. Equation (4) is used as a surrogate objective to find

the solution to the constrained optimization problem Eq. (3).

Fig. 2 shows some mean optimization results obtained

by using different flexibility models. Four discrete flexibility

models (cf. decoder Eq. 1) have been used with sets ranging

from n = 10 to 10000 elements (schedules). Additionally one

fully continuous flexibility model has been used. It is obvious

that the optimization result gets better the more choices are

contained in the model. Moreover, a significant improvement

can be made by transition to a fully continuous model. On

the other hand, with growing granularity, the variance of the

results and the number of worse outliers also grow indicating a

growing risk to premature convergence. Also in the continuous

case outliers indicating results worse than with the coarse

grained model (upper triangle) are present. This result also

reproduces preliminary results from [10].

It seems immediately advantegeous to use continuous or at

least fine grained models to obtain better results. On the other

hand, this design decision entails a growing complexity and a

larger modality to the objective making the problem harder to

solve due to problems with premature convergence. We will

show this in greater detail in the following section.

III. DISTRIBUTED ENERGY SCHEDULING

Heuristic and especially distributed and agent-based algo-

rithms have been in the focus of research within the last years.

Nevertheless, the notion of what constituted a distributed algo-

rithms still differs a lot: Whereas early publications focussed

on the atomic units (mainly named agents) as a gateway to

distributed energy units, many hierarchical approaches have

been presented for both energy market aspects [20], [21],

[22] as balancing approaches [23]. In recent years, some fully

distributed algorihms have been presented, with the individual

agents being capable of solution generation and evaluation

without a centralized components [24], [25].
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The Combinatorial Optimization Heuristic for Distributed

Agents (COHDA, originally introduced in [5]) has been eval-

uated for predictive scheduling problems in VPPs and has

been chosen for our analysis of local minima susceptance

with a continuous flexibility model. Although parts of the

planned work regarding local minima convergence reduction

is specific for COHDA (the algorithmic parts), the general

problem analysis is valid for all heuristic distributed algorithms

using a continuous flexibility model. In the following, COHDA

is described in a concise fashion, based on the description in

[26].

A. Introducing COHDA

The key concept of COHDA is an asynchronous itera-

tive approximate best-response behavior, where each agent –

representing a decentralized energy unit – reacts to updated

information from other agents by adapting its own selected

schedule with respect to the global objective function (OF).

All agents ai ∈ ❆ initially only know their own respective

set of schedules ❙i. From an algorithmic point of view, the

difficulty of the problem is given by the distributed nature

of the system in contrast to the task of finding a common

allocation of schedules for a global target power profile.

Thus, the agents coordinate by updating and exchanging

information about each other. For privacy and communication

overhead reasons, the potential flexibility (i.e. the set of

feasible schedules) ❙i is not communicated as a whole by

an agent ai. Instead, the agents communicate single selected

schedules within the approach as described in the following.

First of all, the agents are placed in an artificial communi-

cation topology based on the small-world scheme, such that

each agent is connected to a non-empty subset of other agents.

This overlay topology might be a ring in the least connected

variant.

Each agent ai collects two distinct sets of information:

on the one hand the believed current configuration γi of the

system (that is, the most up to date information ai has about

currently selected schedules of all agents), and on the other

hand the best known combination γ∗i of schedules with respect

to the global objective function it has encountered so far.

Beginning with an arbitrarily chosen agent by passing it a

message containing only the global objective (i. e. the target

power profile), each agent repeatedly executes the three steps

perceive, decide, act (cf. [26]) as visualized in Fig. 3:

1) perceive: When an agent ai receives a message

κp from one of its neighbors (say, ap), it imports the

contents of this message into its own memory.

2) decide: The agent then searches ❙i for the best sched-

ule regarding the updated system state γi and the global

objective function. Local constraints are taken into ac-

count in advance. Details regarding this procedure have

been presented in [19]. If a schedule can be found that

satisfies both the objectives, a new schedule selection is

created. If the resulting modified system state γi yields

a better rating than the current solution candidate γ∗i , a

new solution candidate is created based on γi. Otherwise

perceive
𝜅𝑝

act

𝜅𝑖

𝜅𝑖
decide

private

search space

public

knowledge

Fig. 3. The perceive–decide–act behavioral pattern in COHDA from the
point of view of an agent ai [19].

the old solution candidate still reflects the best schedule

combination regarding the global objective the agent

is aware of, so the just created schedule selection is

discarded and the agent reverts to its schedule selection

stored in γ∗i .

3) act: If γi or γ∗i has been modified in one of the previous

steps, the agent finally broadcasts these to its neighbors

in the communication topology.

Following this behavior, only small subsets of the sets of feasi-

ble schedules ❙i are communicated by the agents. During this

process, for each agent ai, its observed system configuration γi
as well as solution candidate γ∗i are filled successively. After

producing some intermediate solutions, the heuristic eventually

terminates in a state where for all agents γi as well as γ∗i are

identical, and no more messages are produced by the agents.

At this point, γ∗i is the final solution of the heuristic and

contains exactly one schedule selection for each agent.

B. Convergence of COHDA in local minima

During the above described phases perceive, decide, and

act, a better solution candidate always prevails over inferior

solution candidates, and the system always terminates with

convergence. Due to the asynchronous search in the solution

space, inferior local optima are discarded as long as other

agents are able to identify better solutions.

The susceptibility to local minima convergence depends

on both the structure of the solution space and the search

algorithm. With a course-grained representation of schedules

as enumerated set, COHDA always reached near-optimal

convergence [5]. In the following we present results of two

application examples of COHDA where this behavior can not

be guaranteed and thus motivate a deeper analysis of local

minima susceptibility.

1) Continuous scheduling: In [19], COHDA has been cou-

pled with a continuous flexibility modeling approach, thus

allowing for a targeted search within that search space and

delivering a fine-grained flexibility description. This system

has been applied for the task of continuous scheduling in

VPP: after an initial predictive scheduling, incidents (DER
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breakdowns, prognoses faults, ...) may render the initial sched-

ules infeasible. In this case, the infeasible schedules have been

marked as invalid and an adapted variant of COHDA has been

restarted for a new cooperative search.

In Fig. 4 an exemplary outcome of such a continuous

scheduling process with 10 CHP outages is shown. On the x-

axis, the solution evaluation is chronologically ordered: Each

time an agents evaluates a VPP schedule within the OF, this is

logged within the system. On the y-axis, the expected product

delivery performance is given. A value of 1.0 means perfect

product delivery (i.e. 150 kWh in all 4 product hours). In the

left part of the diagram, the initial planning process is shown:

The agents yield an expected product delivery performace of

0.99 in the day ahead planning process. For all following

values, the simulated time is given on top of the diagram for

ease of understanding. Incidents are depicted using arrows.
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Fig. 4. Example for incident detection and expected product delivery
performance [27].
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Fig. 5. Product fulfillment, simulation duration and cooperation overhead
with rising sensitivity values, adapted from [28]. Each simulation set shows
the result of 100 simulation runs as boxplot.

In the first half of product delivery, each incident leads to

an initially reduced product delivery performance. The agents

manage to enhance this value within the cooperative search for

a new VPP schedule though. Convergence of the processes can

be recognized from the plateaus before the next incident.

During the second half of product delivery, an effect not yet

explained is observed: with an incident, the product delivery

performance does not decrease as expected, but increases to a

better value at once. A possible explanation for this might

be that the incidents lead to a restart of the heuristic and

thus an escape from a local minimum. In Fig. 4 only one

exemplary optimization restart process is given. During the

examination of the approach presented in [27] the effect of a

better performance after disturbance has been observed several

times, even with the effect of a better performance after an

incident compared to the initial predictive scheduling.

2) Reducing evaluation sensitivity: Due to the continuous

representation of the flexibility, it is not possible to calculate

the global optimum even in small scenarios. Therefore, the

analysis if a simulation has converged within a local minimum

cannot be done using a brute force approach in the combined

system of COHDA and SVDD based flexibility description.

To analyze the susception to local minima of this combined

system, a trick can be chosen: Inspite of analysing the problem

structure, the sensitivity of the agents when analysing the

problem structure and searching for a new solution candidate

can be changed by artificially reducing the precision within

the OF.

In Fig. 5, results of this approach are shown for a scenario

with 100 energy units (CHP and PV plants). The agents had

to plan a product of 600 kWh to be delivered within one

hour. The results for product fulfillment (with a value of 1.0

denoting perfect fulfillment of 600 kWh and values above

1.0 denoting overfulfillment), simulation duration until con-

vergence and cooperation overhead (total amount of messages

until convergence). For all settings of the sensitivity value,

the problem structure has been the same. The precision of the

optimization evaluation has been modified from 0.0 (i. e. full

precision) to 0.01. It can be seen that with a larger sensitivity

value, both simulation duration and cooperation overhead go

down. The result quality though, given as product fulfillment,

seems to be instable: While with a sensitivity value of 0.005 all

simulation runs lead to a product fulfillment close to 1.0, the

opposite is the case with a value of 0.01: All simulation runs

converge with a product fulfillment of 1.2, a local minimum

that already has been encountered in the other runs. Obviously,

the system has been trapped in a local minimum in the last

simulation series.

Up to now, we did not analyze the effects of combining the

continuous flexibility representation with COHDA in sufficient

detail. With these results, it has been decided to analyze the

context of continuous flexibility modeling, COHDA and local

minima susceptibility on more detail.
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IV. PRESTUDY: OCCURENCE OF LOCAL MINIMA

In order to underpin our conjectures regarding the increase

of local minima with introducing fine grained flexibility mod-

eling, we investigated the changes in problem complexity with

means from fitness landscape analysis.

A. Structure analysis

We start by analyzing the structure of fitness landscapes. A

landscape L is defined by the search space S , a neighborhood

relation N and an error function (equivalently: the fitness) ν.

Plotting ν over all x ∈ S yields the landscape that is scanned

by some optimization algorithm for the optimal point. The

structure of this landscape determines (premature) convergence

and thus whether the algorithm succeeds with a sufficiently

small budget or gets stuck within some local optimum.

One can analyze the structure of this landscape e. g. by

scrutinizing the error correlation of neighboring candidate

solutions [29]. Neighboring solutions from flat regions of the

landscape exhibit a higher correlation than solutions from

rugged parts of the landscape. Thus, the correlation can be

seen as some measure for the ruggedness of L .

We scrutinize the autocorrelation of random paths on the

landscape (random walk through N ) [30]. Let X = (xij) be

a solution of the predictive scheduling problem Eq. (4) with

each row denoting a schedule for unit i and each element

representing mean active power during the respective time

interval j. Let {ft}
n
t=1 be a sequence of n objective values,

sampled as follows: starting from a randomly chosen solution

X1 ∈ S successive, neighboring solutions Xt+1 are generated

after [31] by altering each element in Xt by adding or

subtracting 0.1 with a probability of 1/3 each. It is ensured

that the solution stays within the feasible region and that at

least one element of Xt is altered. The series F = {ft}
n
t=1 now

contains values ft = ν(Xt), with ν(X) = δ(
∑

xi∈X x, z).
Now one can calculate the autocorrelation

ρ(σ) =
E[ftft+σ]− E[ft]E[ft+σ]

V [ft]
(5)

for a given path length σ, with E[ft] and V [ft] denoting

expectation and variance respectively. Moreover, [30] defines

the correlation length λ = − 1
ln(ρ(1)) , denoting the mean

distance (in the sense of neighboring hops of N ) from which

the majority of the solutions is no longer correlated [29].

The correlation length can also be interpreted as the expected

maximum width of flat valleys in the landscape.

B. Information analysis

Analyzing the correlation of random paths on the landscape

yields an impression of the structure. In [29] an extended

analysis is proposed based on entropy measures on {ft}
n
t=1.

Founded on ideas from algorithmic information theory [32]

and the entropy from Shannon [33], a characterization of the

distribution and number of local optima along the path is given

as a measure of the complexity of the fitness landscape.

For the following indicators, random paths on the landscape

are seen as ensemble of base elements. Three element types

(token) can be distinguished: flat areas (neighboring points

have similar fitness), isolated points (surrounded merely by

better, or worse points), and slope points (neither isolated nor

flat). In a first step, each path is transformed in a sequence of

tokens S(ǫ) = s1s2 . . . sn over the alphabet {1, 0, 1} by

Si = ψft(i, ǫ) =











1, if fi − fi−1 < −ǫ

0, if |fi − fi−1| ≤ ǫ

1, if fi − fi−1 > ǫ

(6)

for a given ǫ ∈ [0,max ft ] (cf. [29]) A string S(ǫ) then

contains information on the structure of the landscape along a

randomly chosen path. Now one can define an object by two

successive tokens in the string. For example, the sequence 11
denotes a change from downslope to upslope and thus a trough.

The entropy measure for such an ensemble of objects can be

determined after [29]:

H(ǫ) = −
∑

p 6=q

P[pq] log6 P[pq], (7)

with P[pq] denoting the frequency of the occurrence of the

sequence pq in S(ǫ). The modality of the objective function

can also be derived from S(ǫ). As opposed to the entropy

which is a measure of the diversity of objects along the path,

the modality must be measured by a classification of objects

in order to determine the number of (local) optima. First, the

partial information content is determined [29]. To achieve this,

the string S(ǫ) is transformed into S′(ǫ) = o1o2 . . . oµ over the

alphabet {1, 1}. This yields the shortest string that represents

the alternations from uphill to downhill changes along the path.

The partial information content is recursively defined by [29]:

M(ǫ) =
µ

n
=

|S′(ǫ)|

|S(ǫ)|
∈ [0, 1]. (8)

A value of 1 denotes the maximum modality. The absolute

number of (local) optima (according to a given ǫ) can be

derived by
⌊

(n ·M(ǫ))−2
⌋

. All these measures are sensitive

to the choice of ǫ. Small values lead to a higher sensitivity to

changes in fitness between neighbouring solution. The smallest

value of ǫ that lets all differences vanish is called information

stability [29] (fully flat error function).

C. Results

As a unit model we used a co-generation model that has

already served in several studies and projects for evaluation

[34], [35], [10], [36]. This model comprises a micro CHP

bundled with a thermal buffer store. Constraints restrict power

band, buffer charging, gradients, min. on and off times, and

satisfaction of thermal demand. Thermal demand is determined

by simulating a detached house. For each agent the model

is individually (randomly) configured with state of charge,

weather condition, temperature range, allowed operation gra-

dients, and similar. We experimented with problem sizes of 20

energy units for scheduling.

First, we scrutinized the complexity of the fitness landscape

using the correlation analysis. Figure 6(a) shows the result.

66 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017



n
=
10

n
=
10
0

n
=
10
00

n
=
10
00
0

co
ntin

uos

2

2.5

3

3.5

4

3.
65

3.
14

3.
16

3.
83

3.
18

2.
87

2.
39

1.
98

1.
83

2.
05

3.
27

2.
25

1.
84

1.
76

1.
68

co
rr

el
at

io
n

le
ng

th

l = 8 l = 48 l = 96

(a)

101 102 103 104 105 106

0.2

0.4

0.6

0.8

1

flexibility granularity n

entropy

partial information content

information stability

∞

(b)

n
=
10

n
=
10
0

n
=
10
00

n
=
50
00

n
=
10
00
0

co
nt

in
uo

s

20

30

40

50

60

17
.8
9

26
.5

32
.6
5

35
.9
1

36
.7
5

54
.8
3

#
o

f
lo

ca
l

o
p

ti
m

a

(c)

Fig. 6. Experimental results of the fitness landscape analysis.

TABLE I
COMPARISON OF DIFFERENT TYPES OF ENERGY UNITS.

unit type entropy part. inf. # local optima inf. stability

heat pump 0.708 ± 0.045 0.495 ± 0.039 49.04 ± 3.91 0.462 ± 0.095
boiler 0.69 ± 0.046 0.459 ± 0.039 45.48 ± 3.93 0.372 ± 0.171
cool storage 0.501 ± 0.096 0.171 ± 0.050 16.74 ± 5.03 0.709 ± 0.173
chp 0.354 ± 0.097 0.113 ± 0.044 11.13 ± 4.42 0.943 ± 0.104

Comparing the correlation length of the scheduling problem

with different granularity of flexibility modeling, one can

derive that the complexity grows with finer grained models.

The correlation length almost vanishes with the continuous

model. Thus, neighboring solutions are mostly uncorrelated

with fine grained models. This result is immediately apparent

as the coarse grained models map many neighboring solutions

onto the very same phenotype solution, resulting in a higher

correlation. The experiment has been conducted for different

schedule lengths. The effect is different for different problem

complexities (cf. Fig. 6(a)), because shorter schedules exhibit

less regions with high information content [15].

Fig. 6(b) shows results of the information analysis. Whereas

information stability and partial information indicate a rising

modality with rising granularity in flexibility modeling, the

entropy slightly recedes for the continuous case. This might

be founded in vanishing steps that are prominent in the discrete

case. The result in Fig. 6(c) most prominently shows the

difference in complexity when comparing the discrete and the

continuous flexibility models: the mean (absolute) number of

local minima that are encountered along a random path across

the fitness landscape. Although the absolute number depends

on path length (200 in this case) and on the choice of ǫ, the

general trend is still always the same for this experiment.

Obviously, also the types of modeled energy units have

an impact on these results. Table I compares the results for

different problems with different types of energy units.

V. CONCLUSION AND FURTHER WORK

Predictive scheduling with its combinatorial optimization

problem is a frequent task in future virtual power plants. As

any algorithm implementation should be designed indepen-

dently from the aggregated energy units an abstraction layer

renders indispensable. Flexibility modeling with decoders al-

lows integrating any energy unit into the optimization model

without domain specific knowledge on the possible future

operations, technical constraints or on the structure of the

individual search space of feasible schedules by building up a

constraint-free search space.

Flexibility modeling may be achieved with different surro-

gate techniques. First we presented hints from earlier studies

to problems regarding local minima susceptance with a fine-

grained decoder based flexibility model. Then we scrutinized

the effect of two possible implementations and showed the

dependencies on the granularity of the model: Fine grained

or continuous models allow for higher precision and better

optimization results and are thus desirable. On the other hand,

such fine grained models introduce complexity by additional

local minima in the objective.

These results lead up to further work, with the general goal

of (a) getting a deeper understanding of the predisposition

of fine-grained flexibility modeling combined with distributed

algorithms for predictive scheduling to premature local min-

ima convergence and (b) analzing algorithmic adaptations to

COHDA to reduce premature local minima convergence rates.

The following studies will be conducted with these goals:

1) Topology adaptations: For COHDA, different overlay

topologies have been analyzed in detail. After a first

setup of the agents’ neighborhood though, no adapta-

tions have been made during an ongoing optimization.

In a simulation study we want to analyze the effect of

dynamically adapting the communication topology on

local minima convergence.

2) Artificial restart: There have been indications that the

result quality benefits from a restart of the cooperative

search within COHDA (see figure 4). To fully under-

stand this effect, we plan to artificially restart an already

terminated optimization (e. g. by schedule invalidation,

minor target adaptation, or similar).

3) Sensitivity adaptations: In preliminary studies we could
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show that introducing a sensitivity factor to the OF leads

to changes within the local minima convergence. In these

studies though, the factor has been chosen statically. In

future work, we plan to dynamically adapt this factor,

using approaches like simulated annealing.

Later work could include a change in the reaction delay of the

agents and a temporary acceptance of deprecated solutions. For

the latter, the convergence has to be assured.
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