
Evaluation of Hearthstone Game States With Neural

Networks and Sparse Autoencoding

Jan Jakubik

Wrocław University of Science and Technology

Department of Computational Intelligence

Wrocław, Poland

Email: jan.jakubik@pwr.edu.pl

Abstract—In this paper, an approach to evaluating game states
of a collectible card game Hearthstone is described. A deep
neural network is employed to predict the probability of winning
associated with a given game state. Encoding the game state as an
input vector is based on another neural network, an autoencoder
with a sparsity-inducing loss. The autoencoder encodes minion
information in a sparse-like fashion so that it can be efficiently
aggregated. Additionally, the model is regularized by decorre-
lation of hidden layer neuron activations, a concept derived
from an existing regularizing method DeCov. The approach was
developed for AAIA’17 data mining competition "Helping AI to
play Hearthstone" and achieved 5th place out of 188 submissions.

I. INTRODUCTION

V
IDEOGAME AI is one of the most well-known ap-

plications of Artifcial Intelligence methods in software

development. Designing challenging, smart and believable

opponents has always been an important goal for videogame

developers. Implementation of intelligent actors in games

requires development of efficient methods for searching large

state spaces and designing game-specific heuristics for state

evaluation.

Recently, a breakthrough in the domain of board games

achieved by the AlphaGo [1] project has demonstrated the

potential of machine learning methods, specifically deep neural

networks [2], in game AI. Coupled with a Monte Carlo tree

search approach [3], a combination of neural networks for

move policy and game state evaluation has achieved results

previously thought to be at least a decade of research away

and was shown capable to defeat top-level human players. The

results are promising for multiple types of games, as Monte

Carlo tree search approach is general enough to cover varying

types of gameplay, including card games.

This paper describes a solution to the data mining challenge

competition organized within the framework of the 12th Inter-

national Symposium on Advances in Artificial Intelligence and

Applications. The goal of the challenge was to evaluate game

states of the collectible card game Hearthstone, using machine

learning algorithms, given a training sample of contextless

game states with a single win/loss variable to predict. Our

solution is based on a combination of autoencoder neural

network for game state encoding and a deep neural network

for the actual game result prediction.

II. CHALLENGE DESCRIPTION

Hearthstone is a collectible card game developed by Bliz-

zard Entertainment in which two players, represented by

heroes chosen from a pool of 9 character classes, fight each

other using minion, spell and weapon cards. Additionally, each

hero has access to a "hero power" which can be used once per

turn. Possible plays are limited by crystals called "mana". A

player starts the game with a single mana crystal, gains one

mana crystal per turn and can use their mana crystals once per

turn to pay the cost associated with playing a card.

Minions persist on the game board until destroyed, can

attack the opposing player or other minions once per turn, and

can have various special properties. Minions are positioned on

the game board in a single line for the player and another for

the opponent; up to 7 minions can be played on each side and

adjacency can be relevant to the functioning of certain cards.

Spells are cast by the player, affect the game state in a

particular way, and leave the game afterward. Most of spells

do not persist on the game board after resolving their effect.

Weapons can be equipped by the player’s hero, are persis-

tent, and allow the hero to attack, similarly to the way minions

do. However, weapons have a limited durability, which goes

down by 1 with each attack, effectively limiting the number

of times they can be used. Moreover, only one weapon can be

equipped at a time.

The goal of the game is to bring down the opposing player’s

health points (HP) to 0 or below, with both players starting

at 30 HP. Minions are particularly important for this purpose

due to their persistence on the game board and the ability to

attack every turn.

The challenge data consists of contextless snapshots of

game states during the player turn. For training data, a single

variable indicating whether the game was won or lost by the

player is provided. The data was created using simulations of

games between two AI, driven by a Monte Carlo tree search

approach. The simulations only use cards from the original

card set of Hearthstone, released in 2014. Provided datasets

are divided as follows:

• initial training set: 4 data chunks of 500000 game states

each

• initial test set: 1250000 game states; later became avail-

able as training set

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 135–138

DOI: 10.15439/2017F559

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 135

TABLE I
PROPERTIES OF THE PLAYER AND THE OPPONENT

Property Meaning

deck_count Number of cards in deck

played_minions_count Number of minions in play

fatigue_damage Takes this much damage with next draw

hand_count Number of cards in hand

crystals_all Number of mana crystals

spell_dmg_bonus Damage added to damaging spells

crystals_current Mana crystals still available this turn

weapon_durability Uses of equipped weapon left

armor Additional HP which can go above 30

hp Health points, maximum 30

attack Deals this much damage on attack

hero_card_id One of 9 hero classes

special_skill_used Hero power was used this turn

• final test set: 750000 game states

The goal of the challenge was to provide real number

evaluations of game states present in the final test set, quality

of which would be measured by area under the ROC curve

(AUC).

III. GAME STATE ENCODING

In the following section, the term "player" will be used in

reference to the player from whose perspective the games are

observed, and the term "opponent" will refer to the second

player.

The key properties of a single game state conists of turn

number, player stats, opponent stats, up to 7 player minions,

up to 7 opponent minions and up to 10 cards in player’s hand.

Representing these variables so that they can serve as an

input to a neural network is non-trivial due to the varying

number of minions. Basic information about a single minion

can be expressed as a numerical vector. However, a concatena-

tion of seven vectors into a single "board vector" representing

one side poses multiple problems. Firstly, this representation

does not guarantee equivalent or even similar results for equiv-

alent board states (i.e., shuffling minion positions). Secondly,

samples with minions present on all positions are rare in the

training set. Usually, only the first few positions are occupied.

Proposed solution is based on using a sparse autoencoder

to encode minion data. While autoencoders are typically a

dimensionality reduction method, sparse coding aims to detect

patterns and improve aggregation of data. E.g., given a set of

objects which form clusters in the data space, the simplest

form of sparse coding is a dictionary approach in which each

object is encoded as a one-hot vector that contains the object’s

cluster assignment. A sum of such sparse vectors contains

information of how much objects of each type there are in

the dataset. More complex dictionary encoding methods exist

[4], and neural network encoding with sparsity constraints can

be viewed as a non-linear extension of them [5].

In our approach, we encode information about each player’s

minion sparsely and then sum them into a single vector

TABLE II
PROPERTIES OF A MINION

Property Meaning

hp_max Initial HP, cannot be healed above this value

charge Can attack on the turn it is played

frozen Cannot attack until next turn

taunt Allies (without taunt) cannot be attacked

poisonous Kills any minion it damages

freezing Attacked enemies become frozen

forgetful 50% chance to attack wrong enemy

crystals_cost Cost to play in mana

shield Negates first instance of damage dealt to it

attack Deals this much damage on attack

hp_current Current HP

windfury Can attack twice per turn

stealth Cannot be targeted by spells and attacks

id Unique ID number of a card

can_attack Can still attack this turn

representing player minions. The same is done to opponent

minions. The input vector is a concatenation of these minion

vectors and the remaining information about the game state.

The training vector takes a form shown below (1):

turn|player|opponent|

7∑

i=1

pi|

7∑

i=1

oi|hand (1)

where x|y denotes concatenation of vectors. turn is the turn

number, player is all of the available player information and

opponent is all of the available opponent information. pi is

a vector of information about i-th player minion encoded by

the autoencoder network described in Section IV, and oi is a

vector of information about i-th enemy minion encoded using

the same network.

In order to build player and opponent vectors, hero class

information is encoded in a 9 element one-hot vector. All

remaining binary and numerical properties (Table I) are treated

as real numbers. Numerical properties are normalized to have

values in [0,1] range.

The input to the autoencoder network is a 17-element vector,

where first 14 elements are all numerical and binary properties

of a minion (Table II), with the exception of the "id" property

(unique identification number). The remaining elements of the

vector are used for information about certain unique abilities.

15-th is a unique board-buffing ability (set to 1 for Stormwind

Champion, 0.5 for Raid Leader, 0 for other minions), 16-

th is a unique adjacent minion buffing ability (set to 1 for

Flametongue Totem, 0.33 for Dire Wolf Alpha, 0 for other

minions) and 17th element is set to 1 only for Healing Totem

to represent its unique healing ability.

Vector hand contains information about player’s hand and

uses dictionary encoding. Its dimensionality is equivalent to

the number of unique cards in the training set, and i-th element

indicates the number of times i-th card occurs in player’s hand.

136 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Cards which appear in the player’s hand in the test set, but

not the training set are ignored.

IV. SPARSE AUTOENCODER

Autoencoder [7] is a network that attempts to recover input

data from a hidden layer representation, as seen in equations

(2-4):

hi = σe(Wexi + be) (2)

x′

i = Wdhi + bd (3)

RE(X) =

n∑

i=1

‖xi − x′

i‖
2

2
(4)

where xi is the ith input vector, hi is its encoded hidden

layer representation, and x′ is the input reconstruction. ‖...‖2
denotes L2 norm. σe is a log-sigmoid activation function.

Weight matrices We, Wd and bias vectors be, bd of the model

are trained to minimize reconstruction error RE(X) using

stochastic gradient descent.

It is possible to encourage a sparse representation within an

autoencoding network adjusting the loss function, as seen in

equation (5):

SparsePenalty(X) =

m∑

i=1

(ρ log
ρ

ρ̂i
+(1−ρ) log

1− ρ

1− ρ̂i
) (5)

where ρ̂i is the average activation of i-th output in the encoding

layer (m is the number of neurons in the layer). Parameter

ρ is a low positive value, which encourages low average

activations. In practice, this causes the network to encode

information in a sparse-like way, i.e., some "active" neurons

have significantly higher activations than others. The "inactive"

neurons do not have zero activations if rectified linear units

are not used, so the representation is not sparse in the strict

sense.

Overall loss function of a sparse autoencoder can be defined

as (6):

L(X) = RE(X) + λ0SparsePenalty(X) (6)

where λ0 is a hyperparameter.

V. REGULARIZATION OF THE PREDICTION MODEL

The prediction model is a deep neural network with four

hidden layers. The detailed network parameters and the learn-

ing process are described in Section VI. In this section,

regularization of the model is described in detail. As training

set contains data from a set of simulations disjoint from the

set of simulations used to create the test data, it is easy to

overfit any model by learning to identify specific games, so

regularization becomes a key issue.

For regularization, standard L2 norm penalty is applied to

weight matrices. In addition, the correlation between outputs in

hidden layers is explicitly punished. This is inspired by DeCov

[6], a recently proposed regularization method that adds a loss

based on the covariance between outputs in a hidden layer (7):

DeCov(Hi) = ‖Cov(Hi)− diag(Cov(Hi))‖
2

F (7)

where ‖...‖F is the Frobenius norm and Cov(Hi) denotes the

covariance matrix of outputs in i-th layer, i.e., element in j-

th row, k-th column is the covariance (7) between activations

of j-th and k-th hidden unit in that layer. Diagonal of the

covariance matrix is substracted from it since the diagonal

elements correspond to standard deviations of particular units.

Covariance between outputs hi, hj with means µi, µj and

standard deviations σi, σj is given by equation (8):

cov(hj , hk) = (hj − µj)(hk − µk) (8)

And the relation between correlation and covariance is (9):

cov(hj , hk) = σjσkcorr(hj , hk) (9)

This means DeCov punishes both correlation and high

standard deviation in activations for any neuron that has a non-

zero correlation with another neuron. The authors of DeCov

mention this issue and remark the effects of a loss depen-

dent on standard deviations are similar to L2 regularization.

However, a similar regularization penalty term which does not

punish standard deviations can be used (10):

DeCorr(Hi) = ‖Corr(Hi)‖
2

F (10)

where Corr(Hi) denotes a correlation matrix of Hi, analogous

to Cov(Hi). Full loss function (11) is then formulated as:

L(X,Y) = MSE(X,Y)+λ1

∑

i

DeCorr(Hi)+λ2

∑

i

‖Wi‖
2

F

(11)

where MSE(X,Y) denotes mean square error given inputs

X and target outputs Y , Hi denotes outputs of the i-th hidden

layer, Wi is the weight matrix of the i-th hidden layer. Unlike

the original formulation of DeCov, this loss function allows

us to control respective regularizing effects of the L2 weight

penalty and decorrelation through the hyperparameters λ1 and

λ2.

VI. EXPERIMENTAL SETUP AND RESULTS

The neural network was implemented using Theano [8]

python library which handles both gradient calculation and

GPU computation.

The tuning process which led to choosing parameters re-

ported below was based on four original chunks of training

data. We trained on three chunks and evaluated on the fourth,

repeating the process four times with a different chunk for

evaluation. In preliminary tests, we noticed this approach

achieved worse performance (measured by AUC) compared to

a setup in which all chunks are mixed together and then 75%

of data is selected for training. This led us to hypothesize that

contents of a single chunk may be sharing similarities which

JAN JAKUBIK: EVALUATION OF HEARTHSTONE GAME STATES WITH NEURAL NETWORKS AND SPARSE AUTOENCODING 137

Fig. 1. Observed performance during training on the initial training set (one
chunk used for verification, three remaining for training).

TABLE III
RESULTS OF THE COMPETITION - TOP 10 SUBMISSIONS

Team AUC

iwannabetheverybest 0.80185414

hieuvq 0.799223

johnpateha 0.79895085

vz 0.79733467

jj 0.79706854

karek 0.79684963

podludek 0.79657371

akumpan 0.79653594

iran-amin 0.79636944

basakesin 0.79617152

would not be present between training and test data and the

better result achieved with mixed chunks may be artificially

inflated. Therefore, we decided to avoid mixing chunks during

the parameter tuning. The results of training the tuned network

on the initial training set can be seen in Fig. 1.

The size of the minion representation returned by the

autoencoder network was set to 20, which resulted in overall

size of the vector representing a game state equal to 182.

Autoencoder was trained with hyperparameters λ0 = 10,

ρ = 0.01, for 100 epochs on all minion data from both training

and test sets.

The neural network used for result prediction was 5 layers

deep, with hidden layers of size 128, 64, 32, 16 and a single

output neuron. Hyperbolic tangent activation was used in

hidden layers and logistic sigmoid in the output layer. The

weight of L2 penalty term λ2 was set to 0.5, while the weight

of DeCorr penalty term λ1 was 0.1.

The network was trained using adaptive gradient [9] (initial

learning rate 0.05) for 100 epochs, although the results were

saved for 20-th, 40-th, 60-th and 80-th epoch. All results were

uploaded and the one with the best performance on the test

set (60 epochs) was chosen as the final submission. The final

results of the competition are shown in Table III.

VII. CONCLUSIONS

As a submission to AAIA ’17 data mining competition,

we proposed a neural network approach to evaluation of

game states for the collectible card game Hearthstone. Sparse

autoencoder was used to encode minion data, and a deep

neural network was employed to obtain the evaluation of a

game state. Additionaly, we regularized the network with a

novel approach, based on adjusting an existing regularization

method DeCov to allow more control over the training process

through parametrization. The solution placed 5th on the final

leaderboard of the challenge.

The main weakness of our method was not accounting for

unique effects which are not expressed through numerical

properties and appear in the test, but not training data. An

example of such effect is the Northshire Cleric card, a minion

which allows its owner to draw a card whenever a minion is

healed. It is a complex interaction which is not expresssed in

any way in a contextless game state description. Evaluation

of such special abilities and their effect on gameplay cannot

be easily achieved through a machine learning model alone.

It would require either an extended set of training data or

employing additional Monte Carlo simulations in the process

of training and evaluation of the neural network.

ACKNOWLEDGEMENTS

We would like to thank Silver Bullet Solutions and Knowl-

edge Pit for providing the simulation data and a platform for

the competition.

REFERENCES

[1] Silver, David, et al. "Mastering the game of Go with deep neural
networks and tree search." Nature 529.7587 (2016): 484-489.

[2] Deng, Li. "A tutorial survey of architectures, algorithms, and applica-
tions for deep learning." APSIPA Transactions on Signal and Information
Processing 3 (2014): e2.

[3] Brugmann, Bernd. "Monte carlo go." Syracuse, NY: Technical report,
Physics Department, Syracuse University, (1993).

[4] Y. Vaizman, B. McFee, and G. Lanckriet, "Codebook based audio feature
representation for music information retrieval," IEEE/ACM Transactions

on Acoustics, Speech and Signal Processing, vol. 22, no. 10, pp. 1483-
1493, 2014.

[5] J. Nam, J. Herrera, M. Slaney, and J. Smith, "Learning sparse feature
representations for music annotation and retrieval," in Proceedings of the

13th International Society for Music Information Retrieval Conference

(ISMIR), pp. 565-570, 2012.
[6] Cogswell, Michael, et al. "Reducing overfitting in deep networks by

decorrelating representations." arXiv:1511.06068 (2015).
[7] Ng, Andrew. "Sparse autoencoder." CS294A Lecture notes 72.2011

(2011): 1-19.
[8] Theano Development Team, "Theano: A Python framework for fast

computation of mathematical expressions", arXiv:1605.02688 (2016).
[9] Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient

methods for online learning and stochastic optimization." Journal of
Machine Learning Research 12 (2011): 2121-2159.

138 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

