
Helping AI to Play Hearthstone

using Neural Networks

Łukasz Grad

University of Warsaw

Email: lg334481@students.mimuw.edu.pl

Abstract—This paper presents a winning solution to the
AAIA’17 Data Mining Challenge. The challenge focused on
creating an efficient prediction model for digital card game
Hearthstone. Our final solution is an ensemble of various neural
network models, including convolutional neural networks.

I. INTRODUCTION

H
EARTHSTONE: Heroes of Warcraft is a digital col-

lectible card game that gained huge interest from players

and AI researchers over the last couple of years. Although the

rules of the game are simple, creating an AI model that would

succesfully challenge an experienced human opponent is a

difficult task, mainly due to inherent stochasticity and partial

information. The goal of AAIA’17 Data Mining Challenge:

Helping AI to Play Hearthstone was to design a model that can

accurately evaluate arbitrary intra-game states, by predicting

likelihood of winning the game by the first player.

In this paper, we present a winning solution that utilizes

both neural network and convolutional neural network archi-

tectures. The proposed method requires only minimal domain

knowledge and relies on basic feature preprocessing with no

feature selection.

The rest of the paper is organized as follows. In section II

we describe the details of the AAIA’17 challenge. Section III

provides the description of features extracted from the data.

Finally in section IV we present the details and results of our

solution.

II. THE CHALLENGE

A. Game description

Hearthstone [1] is a turn based game between two players

with custom built decks of thirty cards. Each player starts with

thirty health points and zero mana crystals. At the start of each

turn, player gains an additional mana crystal, draws a random

card and his mana crystals are refreshed. Each card costs mana

to play. Some cards are creatures, also called minions, that

stay on the game board as long as their health is above 0.

Players can make arbitrary number of actions during their

turns, limited only by the mana crystals left. The goal of a

game is to reduce the opponent’s health to zero.

B. Problem statement

The given problem is an instance of binary classification

task. Given a detailed representation of an arbitrary intra-game

state, the goal is to predict the likelihood of winning the game

by the first player, assuming it is his turn to play. The game

state need not be a beginning state of a current turn. The

predicted values do not need to be in particular range, however

higher values should indicate a higher chance of winning. The

accuracy of a model is defined as an area under the ROC

curve (AUC). AUC can be interpreted as a probability that a

classifier will rank a randomly chosen winning state higher

than a randomly chosen losing state.

C. Data

Data sets provided in competition were extracted from large

collection of play outs between weak AI players. Play outs

were generated using all available nine classes and decks

assembled from basic set of cards. The data was split into

seven training sets and three test sets. In total, the training

set consisted of 3 250 000 observations for which the correct

decision label was provided. The test set had 750 000 game

states in total and was missing the true labels. Game states

contained in the test set were extracted from different play

outs. Competitors were asked to submit their predictions on

the whole test set.

Furthermore, data sets were provided in two different for-

mats. The main set is a collection of JSON records containing

a detailed description of each game state. Each record in JSON

file contained:

• information about player and opponent heroes

• detailed description of all played creatures for both player

and opponent

• detailed description of cards in player’s hand

• current turn number

However, there was no information about previously played

cards neither by player nor the opponent. The remaining cards

in the player’s deck were also unknown. The second data set

was available in a simpler, tabular format. It contained the most

important features extracted from JSON format and a handful

of additional columns that aggregated information from several

JSON fields.

D. Evaluation

Preliminary leaderboard was available for all competitors,

based on a randomly chosen 5% subset of the test data set.

This subset was the same for all participants and was known

only to the organizers. There was no hard limit on the number

of submisions available. Each team could select only one

submission as their final solution that was evaluated on the

remaining 95% of the data set.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 131–134

DOI: 10.15439/2017F561

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 131



III. FEATURE ENGINEERING

Since the main data sets were given in a raw JSON format, a

crucial first step in the competition was to extract meaningful

features. Moreover, usage of external knowledge bases about

cards was allowed, as long as it was publically available. In

general, we can divide created features into three groups:

• played minion features

• hero features

• aggregating features

The following features were extracted from JSON data for

each creature:

• attack - attack value

• health - current health value

• can_attack - whether minion can attack this turn

• forgetful - whether minion has 50% chance to miss

a target

• taunt - whether minion has taunt

• hp_max - maximum health value

Other features extracted from JSON data:

• all player and opponent hero information

• all aggregating features from tabular data

• hero and opponent class in one-hot encoding

In addition, the following variables were added to the set:

• for each minion played: aura - whether a creature

provides an active bonus for other minions

• effective_health - difference between total health

of hero and total attack value of enemy minions

• hand_power - sum of marginal player hand card values

based on Heartharena Tierlist [2]

• hand_aoe - total damage of ‘area of effect’ spells in

hand

• hand_answers - number of ‘hard removal’ spells (that

neutralize arbitrarily strong minions)

IV. SOLUTION

A. Preprocessing

In all models, we normalize the data using Min-Max scaling.

All features are scaled down to a fixed range from 0 to 1. Min-

Max scaling proved to give slightly better results on holdout

test sets than standarization with regard to mean and standard

deviation.

In both neural network and convolutional neural network

models, we also decided to include square and logarithm

transformed features for all variables, excluding minion fea-

tures and one-hot encoded hero class. This increased the total

number of features to 260. In terms of bias-variance tradeoff,

we want to decrease the bias even at the cost of increased

variance of a single model.

B. Evaluation

Given a very large dataset we decided to evaluate our

models using standard random train and test split, with 70%

and 30% size respectively.

C. Initial models

To better understand the difficulty of the problem, we de-

cided to train several standard linear and non-linear classifiers.

We utilized Python’s scikit-learn machine learning package

(ver. 0.18.1) [3], [4]. For all models, if not explicitly stated,

we used default parameters. Optimal hyperparameters where

found using basic grid search approach on a small, random

subsample of data.

• Logistic Regression fitted using Stochastic Average Gra-

dient [5] solver with penalty parameter C = 2.0 and L2

regularization which resulted in 0.79321 score on local

test set.

• Support Vector Machine (SVM) with RBF kernel and

penalty parameter C = 35.0 trained on a random sample

of size 50000 achieved a score of 0.78835 on local test

set subsample of size 25000.

• Random Forest with 500 trees, minimum number of

samples to split a node equal to 5 and maximal depth

of 30 which resulted in 0.83494 score on local test set,

around 0.784 on online preliminary test set.

We can see from the above results that a decent result can be

achieved with a simple Logistic Regression model. However,

an SVM trained on a very small data sample achieved only

a slightly worse result. This tells us that the problem is

highly non-linear and more complex models should perform

better. On the other hand, the discrepancy between local and

preliminary results for a Random Forest model is a clear sign

of overfitting. The final test set has different characteristics

and a good generalization is the key to win the competition.

D. Neural network

Feedforward neural network satisfies all requirements stated

in section IV-C. The model can have arbitrary complexity,

depending on the number of neurons and hidden layers, is very

flexible and provides many techniques to reduce overfitting.

Neural networks can also successfully be trained on very large

datasets, as opposed to SVMs with non-linear kernels. On

the downside, neural network training is highly sensitive to

parameter initialization and can be hard to reproduce.

Both neural networks and convolutional networks were

implemented in Tensorflow (ver. 1.1.0) [6] framework, a

library for numerical computations using data flow graphs.

Network architecture consists of two hidden layers with

dense connections and ReLU as an activation function [7].

Each hidden layer is followed by a Batch Normalization layer.

Batch Normalization can speed up learning and reduce the

exploding gradient problem [8]. We use L2 regularization of

weights with λ = 0.0002. λ was set to a maximal value that

did not hinder the network learning performance on local test

set.

We trained many models with different number of hidden

layer neurons. Best single network consisted of 100 neurons in

first hidden layer and 50 neurons in second. It scored 0.7980
on the preliminary leaderboard.

132 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



E. Convolution layer rationale

From bayesian perspective, we can think of convolutional

layer as a fully connected layer with an infinitely strong

prior over some of its weights [9]. An infinitely strong prior

places zero probability on parameters, making them forbidden,

regardless of how much support the data assigns to those

parameters. In case of convolution, this prior states that the

layer should only learn local interactions and be equivariant

to translation. Such prior results in sparse connections and

parameter sharing, that significantly reduces the parameter

space, when compared to fully connected layer of the same

size.

The overall performance of convolutional network depends

on whether our prior beliefs are reasonably accurate. If we are

not correct, the network will likely underfit. On the other hand,

if our prior is acceptable, we can expect the convolutional

model to perform similarly, or even better then the original

fully connected network, while having much less parameters.

F. Convolution layer in detail

Recall from section III that for each played minion we

extracted 7 features. Each player can have up to 7 minions

in play, giving a total of 98 variables. Since we already

included features that describe the overall state of the game

board, from the detailed minion features we want to extract

information about how well they perform against each other.

We state our belief that such performance should be measured

independently of the position of a minion. Let pi be the i’th

player minion feature vector and oi be the i’th opponent

minion feature vector. We have pi, oi ∈ ℜ7, and pi, oi = ~0
whenever there is no minion at the position i.

We can reshape the input vector as a [7, 2, 7] tensor (mul-

tidimensional array), see Fig. 1a. We now introduce a partial

cyclic shift (PCS) operation on such tensor, that applies a row-

wise shift of player minion features, while leaving opponent

minion features intact, Fig. 1b. We apply PCS 7 times with

shift from 0 to 6. We then reshape each resulting tensor to

[7, 14], so that i’th row contains features of both i’th player

and i’th opponent minions. Finally the tensors are stacked

along third dimension, Fig. 1c shows a single row of final

tensor (indices modulo 7). We want a convolution kernel to

process the effectiveness of all player minions againt a single

opponent minion.

p0 o0
p1 o1
p2 o2
p3 o3
p4 o4
p5 o5
p6 o6

(a) Minion features

p1 o0
p2 o1
p3 o2
p4 o3
p5 o4
p6 o5
p0 o6

(b) PCS with shift 1

pi oi
pi+1 oi
pi+2 oi
pi+3 oi
pi+4 oi
pi+5 oi
pi+6 oi

(c) Final i’th row

Fig. 1

Fig. 2: Test set AUC scores during learning using minion features
only. FC - fully connected layer, BN - batch normalization, CNN(d1)
- single convolution with depth d1, CNN(d1, d2) - double convolution
with depths d1, d2.

We introduce new hyperparameter d1 - the depth of convo-

lution result. After the preprocessing we run two convolutions

in parallel creating a layer similar to inception layer [10]. First

one, with kernel shape [1, 14, 7, d1], measures performance of

player minions against a single oppponent minion. Second one

with kernel shape [2, 14, 7, d1] that can take into account coop-

eration against 2 adjacent opponent minions. All convolutions

are without padding, resulting in tensors with shapes [7, 1, d1]
and [6, 1, d1] for first and second convolutions. We again use

ReLU as activation function.

We also tested running additional convolutions with kernel

[1, 1, d1, d2] on top of the resulting tensors described above.

Applying such operation creates the same d2 linear combina-

tions from d1 features for each spatial location, see Fig. 3.

We then tested the performance of our convolution layer on

minion features only with different d1, d2 hyperparameters,

merging and flattening the resulting tensors and using a double

layer fully connected network. We compared the results with

double layer dense networks with raw minion features as input.

Results are presented in Fig. 2.

We see that there is a lot of information contained only

in minion features about the depending variable. Also, the

convolutional layers can extract features that lead to similar

classification performance as the raw inputs, despite the im-

ŁUKASZ GRAD: HELPING AI TO PLAY HEARTHSTONE USING NEURAL NETWORKS 133



p0 o0
p1 o1
p2 o2
p3 o3
p4 o4
p5 o5
p6 o6

Input





7
14
7









7
14
7









7
1
d1









6
1
d1









7
1
d2









6
1
d2





Merge

Cyclic shift

Cyclic shift









1
14
7
d1

















2
14
7
d1

















1
1
d1
d2

















1
1
d1
d2









Flatten

Flatten

Fig. 3: Overview of the convolutional layer architecture. Node vectors
represent tensor shapes at each step of computation. Edge vectors
represent convolution kernel shapes.

posed prior. We believe that those features will allow a network

achieve better generalization performance.

G. Convolutional network

We create a convolutional network by flattening the output

from the convolutional layer and concatenating it with the

original features, including raw minion features. We then use

3-layer feedforward network with ReLU activation and batch

normalization after each hidden layer, without scaling factors.

We did not include batch normalization in convolutional layer.

We again use L2 regularization with λ = 0.0002. In some

models, we substituted L2 regularization with dropout [11]

with 0.5 probability, applied only to the last hidden layer. We

present two best convolutional architectures in Table I.

H. Training

All networks were trained using Adam [12] optimizer with

initial learning rate of 0.0001 or 0.0002, without learning rate

decay and with cross entropy loss function. Network weights

were initialized by sampling from truncated normal distribu-

tion with 0 mean and 0.1 standard deviation. Larger convo-

lutional networks were also initialized using lower standard

deviation of 0.05. Biases were initialized with 0.1 constants.

TABLE I: CNN with L2 regularization on the left and with dropout
regularization on the right

[7x14x1] MINION INPUT

[7x14x7] CYCLIC_SHIFT(MINION INPUT)

[7x1x12]
CONVOLUTION [1x14]

[6x1x12]
CONVOLUTION [2x14]

[7x1x24]
CONVOLUTION [1x1]

[6x1x24]
CONVOLUTION [1x1]

[312 + 260] MERGE WITH INPUT

[300] FULLY CONNECTED

[300] BATCH NORM

[60] FULLY CONNECTED

[60] BATCH NORM

[1] FULLY CONNECTED

[7x14x1] MINION INPUT

[7x14x7] CYCLIC_SHIFT(MINION INPUT)

[7x1x12]
CONVOLUTION [1x14]

[6x1x12]
CONVOLUTION [2x14]

[7x1x24]
CONVOLUTION [1x1]

[6x1x24]
CONVOLUTION [1x1]

[312 + 260] MERGE WITH INPUT

[300] FULLY CONNECTED

[300] BATCH NORM

[120] FULLY CONNECTED

[120] BATCH NORM + DROPOUT

[1] FULLY CONNECTED

We used stochastic batch gradient descent with batch size

of 320 and trained final models for around 16000 iterations on

whole dataset, roughly 1.5 epochs. Such early stopping method

was chosen empirically, basing on preliminary test results,

since the holdout test scores proved to be highly unreliable.

I. Ensembling

We retrained each model a couple of times and selected

top networks, based on preliminary results. Choosing models

solely on preliminary results certainly could lead to overfitting,

thus we created ensembles of top scoring predictors, with

manually adjusted weights. All submitted ensembles scored

far better than single models, see Table II. Final submission

contained 11 models and won the competition with 0.80185
AUC score.

TABLE II: Excerpts of preliminary results

Model Best model AUC

CNN L2 0.8012

CNN Dropout 0.8005

NN Ensemble 0.80

CNN Ensemble 0.8041

Final Ensemble 0.8037

REFERENCES

[1] Blizzard Entertainment. (2017) Hearthstone official game site. [Online].
Available: https://eu.battle.net/hearthstone/en/

[2] HearthArena. (2017) Heartharena’s hearthstone arena tierlist. [Online].
Available: http://www.heartharena.com/tierlist

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning

Research, vol. 12, no. Oct, pp. 2825–2830, 2011.
[4] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,

V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler et al., “Api design
for machine learning software: experiences from the scikit-learn project,”
arXiv preprint arXiv:1309.0238, 2013.

[5] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with
the stochastic average gradient,” Mathematical Programming, vol. 162,
no. 1-2, pp. 83–112, 2017. doi: 10.1007/s10107-016-1030-6. [Online].
Available: http://dx.doi.org/10.1007/s10107-016-1030-6

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint

arXiv:1603.04467, 2016.
[7] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-

mann machines,” in Proceedings of the 27th international conference on

machine learning (ICML-10), 2010, pp. 807–814.
[8] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.
[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.
[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015. doi: 10.1109/CVPR.2015.7298594 pp. 1–9.
[Online]. Available: http://dx.doi.org/10.1109/CVPR.2015.7298594

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[12] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

134 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


