
Multi-model approach for predicting the value

function in the game of Heathstone: Heroes of

Warcraft.

Alexander Morgun

Email: alexander.morgun.usu@gmail.com

Abstract—This document describes the problem presented at
AAIA’17 Data Mining Challenge and my approach to solving
it. In terms of reinforcement learning the task was to build

an algorithm that predicts a value function for the game of
Hearthstone: Heroes of Warcraft. I used an ensemble of 85
models trained on different features to build the final solution
which scored the 36th place on the final leaderboard.

Index Terms—data mining competition; classification; ranking;
faeature engineering; algorithm composition; hearthstone;

I. INTRODUCTION

I
N THE RECENT time, there are many pieces of re-

search about applying machine learning algorithms to video

games. The most famous of them led to the creation of a learn-

ing model for playing Atari 2600 games [1]. This work was

followed by many others, including the ones about Starcraft

[2] [3] [4] and DotA [5] [6]. In summary, the main point of

these works is developing new machine learning approaches

which can be applied to other areas such as algorithm trading

[7] or robotic manipulation [8] later. Following this trend the

task of AAIA’17 Data Mining Challenge was to create an

efficient prediction model which would help in building an

agent capable of playing the game of Hearthstone: Heroes of

Warcraft.

A. Game description

Hearthstone: Heroes of Warcraft is a turn-based card video

game. It is played by two players. Each player uses his own

deck of 30 cards. The final goal of each player is to destroy

the opponent’s hero by setting his health points to zero. To do

so each turn players can play cards limited by fixed amount

of mana crystals. There are three types of cards:

• Minions - creatures that can be placed on the game board.

Minions can attack enemy minions and the hero.

• Spells - single-use cards that cause various effects.

• Weapons - cards that allow the player’s hero to attack

enemy minions trading health for board advantage.

In addition, minions can have different abilities. The most

notable of them is taunt. Players minions cannot attack enemy

hero until there are enemy minions with taunt on the board.

Complete rules can be found on the official site [11].

B. Problem statement

The task of AAIA’17 Data Mining Challenge was to predict

the probability of player’s victory. The metric used for the

TABLE I
COMPARISON OF THE LOCAL CROSS-VALIDATION TO THE PUBLIC

LEADERBOARD RESULTS. WE CAN SEE THAT AN IMPROVEMENT IN THE

CROSS-VALIDATION RESULTS DOES NOT RESULT IN A BETTER SCORE ON

THE PUBLIC LEADERBOARD AND CANNOT BE USED AS A RELIABLE WAY

OF VALIDATION.

Local validation Public leaderboard

0.883 0.788

0.837 0.7926

0.877 0.7924

0.810 0.7842

0.816 0.7754

0.824 0.7646

0.8125 0.7819

evaluation was the ROC-AUC metric [9]. We can see that

this probability can be used as a value function for building

an agent capable of playing the game [10]. Each provided

game state got data about minions played by player and

opponent, cards in player’s hand and state both of the heroes.

Information about active secrets and the history of played cards

was unavailable.

C. Related Work

Hearthstone: Heroes of Warcraft is not a well-studied envi-

roment. There are very little scientific publication about apply-

ing machine learning methods to this game [16]. This could be

explained by the fact that the game’s license agreement [17]

explicitly prohibits the use of bots and modification of the

game files. Regardless of this fact bots exist in the game but

there is no publicly available description of their algorithms.

II. THE PROPOSED SOLUTION

A. Local validation

I used 5-fold cross-validation stratified by target labels.

This method helped me in choosing hyperparameters for each

algorithm but it was not very correlated with the public

leaderboard. Because of that, I choose my final solution based

on its public leaderboard score. My validation scheme was

flawed because of the information leakage between train and

test folds. This leakage was caused by states from the same

game appearing in the train and test folds.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 139–142

DOI: 10.15439/2017F568

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 139

B. Bagging

Because of the technical limitations, I could not train models

on all provided data so I used a technique similar to the

bagging [14]. First, I created multiple different subsets of

the training data by sampling randomly the examples, trained

separate instances of the same model on this subsets and got a

number of finally different models which predictions could be

combined afterwards. Random subsampling allowed the final

composition to use information from the whole dataset.

C. Composition methods

Due to unreliable local validation results, I decided to use

a simple averaging instead of more complex techniques like

stacking and blending. The idea was that I did not want to

favor any algorithm because I did not know its true quality so

I averaged highly correlated answers before final averaging to

avoid higher weights of them in the final result. I used two

methods of averaging [13]:

1) Averaging of probabilities: I calculated the arithmetic

mean of probabilities returned by all models.

2) Rank averaging: ROC-AUC is a ranking metric and

correct ordering of test states is more important than predicting

precise probabilities. Averaging ranks instead or probabilities

helps with different calibration of classifier probabilities.

D. Models

1) Tree-based models: Most of the used models were

XGBoost tree ensembles [15]. I also used one random forest.

2) Linear models: I used two kinds of linear models: linear

classifier trained by stochastic gradient descent with log loss

and multilayer perceptrons with different numbers of hidden

layers and neurons.

E. Features

1) Baseline features: Features provided by competition

hosts was used to train baseline models and measure the qual-

ity of other features I tried. My first model was the XGBoost

model trained on these features. Leaderboard scores showed

that rank averaging of a few XGBoost models with different

maximum tree depth performs better than the single best one

(0.7926 vs. 0.788) and rank average performs exactly the

same way on the public leaderboard but slightly worse on the

local validation. Bagging improved result of this modest even

further so I decided to use such composition of bagging plus

rank averaging of three XGBoosts with a different maximum

depth of the trees. I ended up using three instances of such

blocks trained on different features.

2) Additional handcrafted features: I extracted a few more

features from the provided game states based on my knowl-

edge of the game and intuition.

• player.hand.hp calculated as sum of minion health only.

For some reason in baseline features this sum included

durability of weapons in hand.

• opponent.played.taunts

• opponent.played.total_taunts_hp

• opponent.played.max_taunts_hp

• opponent.played.poisonous

• player.played.taunts

• player.played.total_taunts_hp

• player.played.max_taunts_hp

• player.played.poisonous

• opponent.played.possible_attack - sum of attack for min-

ions with flag ”can_attack”

• player.played.possible_attack

• player.card_advantage as difference betwen number of

cards left in player deck and in opponent deck.

• player.hand.nOfPlayableSpells

• player.hand.nOfPlayableMinions

• player.hand.nOfPlayableWeapons

• opponent.total_weapon_damage

opponent.total_weapon_damage =

opponent.hero.attack

·opponent.hero.weapon_durability

• player.total_weapon_damage

Minions with taunt ability basically serve as additional hero

health so the next group of features is linear combinations of

hero health, total attack of enemy minions and total health of

player minions with taunts. These features were supposed to

help tree-based and we can see that their importance is quite

high.

• player.max_hp_danger

player.max_hp_danger =

player.hp

+ player.armor

+ player.played.total_taunts_hp

− opponent.played.attack

• player.current_hp_danger

player.current_hp_danger =

player.hp

+ player.armor

+ player.played.total_taunts_hp

− opponent.played.possible_attack

• opponent.max_hp_danger

opponent.max_hp_danger =

opponent.hp

+ opponent.armor

+ opponent.played.total_taunts_hp

− player.played.attack

140 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

• opponent.current_hp_danger

opponent.current_hp_danger =

opponent.hp+ opponent.armor

+ opponent.played.total_taunts_hp

− player.played.possible_attack

I also calculated WOE (Weight of Evidence) for hero

classes. For categorical feature f , object x and target label

y

WOE(f)(x) = P (y(x) = 1|f(x)) .

WOE can be calculated for a set of categorical variables

by considering all their combinations as separate

categories. Basically WOE(player.hero_card_id) is a

win rate of player class, WOE(opponent.hero_card_id)
is a loss rate of opponent class and

WOE(opponent.hero_card_id, player.hero_card_id)
is a probability that player class will win against opponent

class. WOE can be estimated from dataset X using the

formula

WOE(f)(x) =
K ·mean+ α · global_mean

α+K

where

K = |{i|i ∈ X&y(i) = 1&f(x) = f(i)}|

mean =
K

|{i|i ∈ X&f(x) = f(i)}|

global_mean =
|{i|i ∈ X&y(i) = 1}|

|X |

and α is a regularization parameter. I used α = 50. In the

result for each category we obtain a single WOE feature in

contrast with multiple features produced by one hot encoding.

This single feature is highly informative and tree-based models

can utilize it effectively. This technique is well known among

Kaggle [12] participants and was popularized in the Russian

data science community by Stanislav Semenov.

• player.class_score = WOE(player.hero_card_id)
• opponent.class_score =

WOE(opponent.hero_card_id)
• class_pair_score =

WOE(opponent.hero_card_id, player.hero_card_id)

With addition of this features, I trained three groups of

models. First of all the second ensemble of XGBoost described

above. Then a group of linear models was added. Due to

data size, I used stochastic gradient descent for training and

bagging with result averaging to diminish randomness of the

final prediction. Lastly, I added a random forest because it is

usually a safe bet to try it.

0 500 1000 1500 2000 2500
F score

player.hand.attack
opponent.played.hp_max

player.deck_count
player.played.hp_current

class_pair_score
player.hand.hp

opponent.class_score
opponent.played.hp_current

player.current_hp_danger
opponent.deck_count

player.class_score
player.card_advantage
opponent.hand_count
player.hero_card_id

opponent.hero_card_id
opponent.hp

opponent.current_hp_danger
opponent.max_hp_danger

player.hp
player.max_hp_danger

Fe
at
ur
es

908

910

1039

1370

1376

1394

1473

1501

1517

1577

1622

1694

1731

1780

1820

1928

2101

2117

2459

2577

Feature importance

Fig. 1. The 20 most important features from one of XGBoost models. We
can see many handcrafted features at the top.

3) WOE features: All features listed above can be treated as

categorical and I calculated WOE for all of them. For example

player.hp is an integer feature with values between 1 and 30

so we naturally get at most 30 categories. Using this features

I trained the third block of XGBoosts.

4) Logarithmed features: Sometimes linear models perform

better on logarithmed data. So I calculated log(1 + x) for

positive-valued features and replaced each of other features

with two new ones: log(max(x, 0)+1) and log(max(−x, 0)+
1). Using these new features I trained a group of linear models

in the way described earlier. Because of the good result of

these models on the leaderboard, I also trained a number of

multilayer perceptrons with a different structure using the same

features. There is no point in training separate XGBoost using

this features because logarithm cannot change the ordering of

feature values.

F. Final composition

At the end, I averaged ranks of all models from the previous

steps. I also added two particular groups of XGBoost models

directly to the final average because of the low correlation

between their predictions and results of the corresponding

XGBoost blocks.

III. CONCLUSION

During this work I constructed a number of features, used

them for training multiple models and combined predictions

of these models in order to improve quality of prediction over

a single model. Almost all described methods can be applied

to an arbitrary classification problem. Averaging method is

simple enough to be safe from overfitting but requires manual

selection of uncorrelated classifiers. It allowed to build model

ALEXANDER MORGUN: MULTI-MODEL APPROACH FOR PREDICTING THE VALUE FUNCTION IN THE GAME OF HEATHSTONE 141

0 10 20 30 40 50 600

200000

400000

600000

800000

1000000
opponent.played.hp_max

0 1 2 3 40

100000

200000

300000

400000

500000
log(1 + opponent.played.hp_max)

Fig. 2. Histograms of the feature ”opponent.played.hp_max” before and after
the logarithm transformation.

Baseline features
Bagging

10^6 rows
3 times

Baseline features
+ additional features

Random
forest

Bagging
10^6 rows

3 times

Bagging
1.5 * 10^6 rows

15 times

Logarithmed features

Multilayer perceptron
layers=(60, 60, 10)

Multilayer perceptron
layers=(200, 100, 10)

Multilayer perceptron
layers=(30, 30, 10)

Multilayer perceptron
layers=(100, 60, 10)

Bagging
1.5 * 10^6 rows

15 times

WOE features
Bagging

10^6 rows
3 times

XGBoost
max_depth=5

Rank averaging

XGBoost
max_depth=10

XGBoost
max_depth=20

XGBoost
max_depth=5

Rank averaging

XGBoost
max_depth=10

XGBoost
max_depth=20

Rank averaging

XGBoost
max_depth=5

Rank averagingXGBoost
max_depth=10

XGBoost
max_depth=20

SGD
penalty=’l1’

Averaging
SGD

penalty=’l2’

SGD
penalty=’l1’

Averaging

SGD
penalty=’l2’

Fig. 3. Final composition scheme

that performs well even without reliable way of local valida-

tion. Problem-specific feature engineering also improved final

score.

REFERENCES

[1] ”Playing Atari With Deep Reinforcement Learning” Volodymyr Mnih,
Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, Martin Riedmiller, NIPS Deep Learning Workshop,
2013.

[2] H. Cho, K. Kim, S. Cho, Replay-based Strategy Prediction and Build
Order Adaptation for StarCraft AI Bots, IEEE CIG, 2013.

[3] M. Stanescu, S. Hernandez, G. Erickson, R. Greiner, M. Buro, Predicting
Army Combat Outcomes in StarCraft, AAAI AIIDE, 2013.

[4] Y. N. Ravari, S. Bakkes, P. Spronck, StarCraft Winner Prediction, AAAI
AIIDE, 2016.

[5] K. Conley and D. Perry, ”How Does He Saw Me? A Recommendation
Engine for Picking Heroes in Dota 2”, tech. rep., 2013.

[6] Kalyanaraman (2014). ”To win or not to win? A prediction model to
determine the outcome of a DotA2 match”. https://cseweb.ucsd.edu/
~jmcauley/cse255/reports/wi15/Kaushik_Kalyanaraman.pdf

[7] Du, Xin, Jinjian Zhai, and Koupin Lv. ”Algorithm Trading Using Q-
Learning and Recurrent Reinforcement Learning.” CS229, n.d. Web. 15
Dec. 2016

[8] Yahya, A., Li, A., Kalakrishnan, M., Chebotar, Y., and Levine, S. (2016).
Collective robot reinforcement learning with distributed asynchronous
guided policy search. ArXiv e-prints

[9] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recogn.
Lett. 27, 8 (June 2006), 861-874. doi:10.1016/j.patrec.2005.10.010

[10] Michael L. Littman. 2001. Value-function reinforcement learning
in Markov games. Cogn. Syst. Res. 2, 1 (April 2001), 55-66.
doi:10.1016/S1389-0417(01)00015-8

[11] Game guide, http://us.battle.net/hearthstone/en/game-guide/
[12] Kaggle, https://www.kaggle.com/
[13] Kaggle Ensembling Guide, https://mlwave.com/

kaggle-ensembling-guide/
[14] Breiman, L. Machine Learning (1996) 24: 123.

doi:10.1023/A:1018054314350
[15] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting

System. Preprint.
[16] Elie Bursztein, “I am a legend: Hacking Hearthstone using

statistical learning methods“ https://cdn.elie.net/publications/
i-am-a-legend-hacking-hearthstone-using-statistical-learning-methods.
pdf

[17] Battle.net end user License Agreement http://us.blizzard.com/en-us/
company/legal/eula.html

142 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

