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Abstract— The  method  for  extracting natural  vibration
frequencies and modes of design models arising when the finite
element method is applied to the problems of structural and
solid mechanics is proposed. This approach is intended to be
used on multicore SMP computers and is an alternative to the
conventional  block  Lanczos  and  subspace  iteration  methods
widely  used in modern FEA software.  We present  the  main
idea of the method as well as the parallel fast block incomplete
factorization  approach for  creating  efficient  preconditioning,
the shift technique and other details accelerating the  solution
and improving the numerical stability. Real-life examples are
taken from  the  computational practice  of  SCAD  Soft  IT
company and approve the efficiency of the proposed method.

I. INTRODUCTION

HE application  of  the  finite  element  method  to  the

problems of natural vibrations of structures results in a

generalized algebraic eigenvalue problem 

T
0 MVΛKV ,                                      (1)

where K and M are the symmetric positive definite stiffness

and semidefinite mass sparse matrices, V = {v1, v2, … , vn }

– matrix of eigenvectors vi, located in V column-by-column,

Λ is a diagonal matrix of eigenvalues λ1, λ2, … , λn , λi = ωi
2,

ωi = 2πfi, i ∈ [1, n], ωi is a cyclic frequency in s-1 and fi is a

frequency in Hz. The dimension of the problem is N and the

number of required eigenpairs is n << N.

For  large  finite  element  design  models the  problem

dimension  N reaches  200 000  –  6 000 000  equations  and

more. The required number of eigenpairs {λi, vi}, i ∈ [1, n]

depends on the type of dynamic analysis and properties of

construction.  Usually  n =  20  –  100,  but  in  the  case  of

seismic analysis it can be 1 000 – 3 000 and more. Some of

the constructions have a lot of local vibration modes in the

lower part of the spectrum. Such modes produce very small

contributions  in  a  seismic  response  of  the  structure,  but

create  huge  difficulties  for  eigenvalue  solvers,  because  a

very large number of eigenpairs are required in such cases.

The  block  Lanczos  method or  block  subspace  iteration

method is used most often in contemporary FEA software.

But  these  powerful  methods  use  the  inverse  iteration

procedure  on each  iteration  step which  requires  the twice
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reading of the factorized stiffness  matrix  [10]. Most  users

prefer  to  solve  these  problems  on  laptops  and  desktops,

which have the amount of RAM 8 – 16 GB. In the case of a

large  dimensionality  of  the  problem,  the  amount  of  core

memory  is  insufficient  for  storing  a  factorized  stiffness

matrix,  which  is  stored  on  the  disk.  Therefore,  when

performing  forward  and  backward  substitutions  at  each

iteration, we need to read twice from the disk the amount of

data on the order of 6 – 20 or more GB. The above methods

work with the speed of a slow disk, not a fast processor, and

it takes many hours to solve the problem.

Therefore, it seems interesting to develop a method that

would solve the problem (1) in a core memory. Our choice

is based on the preconditioned  conjugate  gradient  method

(PCG).  It  is  known  that  for  many  problems  of  structural

mechanics,  which are poorly conditioned for  a number of

reasons  [21],  the  conjugate  gradient  method  demonstrates

unacceptably  slow  convergence.  In  order  to  correct  the

situation, it is necessary to create efficient preconditioning

[2],  [3],  [5],  [6],  [8],  [9],  [13] –  [15],  [19],  [20],  [22]. Our

experience  shows  that  a  stable  convergence  of  the

eigenvalue problem (1) is much more difficult to obtain than

when solving a system of linear algebraic equations

Kx=b ,                                          (2)

where x and b are respectively the unknown vector and the

right-hand part vector. Therefore, the successful solution of

the  problem  (1)  usually  requires  more  effective

preconditioning  than  when  solving  the  problem  (2).  In

addition,  in  order  to  obtain  the  stable convergence in  the

presence of multiple and close eigenvalues, it is required to

introduce the shift into preconditioning

(B−σM ) z
i

k=r
i

k
,                                (3)

where  B is a preconditioning operator without shift, σ is a

shift, zi
k – residual vector for a preconditioned problem and

k is an iteration step number. The preconditioned algebraic

eigenvalue problem is formulated as

B
σ

−1 (KV−MVΛ )=0 ,                          (4)
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where Bσ = B – σM. The residual vector of an initial 

problem (1) is: 

k

i

k

i

k

i

k

i KxMxr  .                            (5) 

Here subscript i denotes a mode number and xi
k, λi

k are the 

approximations of the i-th eigenmode and eigenvalue on 

iteration step k. 

The article [5] presents PCG method with element-by-

element aggregation multilevel preconditioning [6] and 

shift technique. This method does not use multithreading, it 

was implemented in SCAD software in 2004 and enables to 

extract a relatively small number of eigenpairs (5 – 30). A 

parallel version of PCG method has been proposed in [9], 

but acceleration with the increasing number of threads was 

poor. 

The local block PCG method (LOBPCG – [17], [18], 

[25]) uses the following approximation: 
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   (6) 

where pj
k is a conjugate direction vector and m is a 

dimension of the block. The dimension of the block m ൒ n 

and is constant until all required eigenpairs are extracted. 

For the problems of structural mechanics, we found that as 

soon as the first eigenpair begins to converge, the method 

loses the computational stability (see section IV, A), because 

for a converged eigenpair the residual vector ri
k in (5) tends 

to zero, vector zi
k tends to zero too (3) and a zero column 

appears in the projection matrix Qk = {Zk, Xk, Pk}, where 

Zk = {z1, z2, …, zm}k, Xk = {x1, x2, …, xm}k and Pk = {p1, 

p2, …, pm}k.  

To ensure the computational stability of the method, we 

keep a constant dimension of the block m < n, and as soon 

as some vectors in the block converge, we immediately 

remove them, store them as the final results and replace 

them with the new start vectors. In addition, when the 

columns in the projection matrix Qk become almost linearly 

dependent, we orthogonalize all the vectors in the block 

using the modified Gram-Schmidt method. 

This article is a continuation of [10], and we focus our 

attention on a block parallel sparse Cholesky incomplete 

factorization method used for a fast creation of efficient 

preconditioning, shift technique, allowing to improve the 

computational stability of PCG method and other important 

moments of the proposed approach. 

II. BLOCK SUBSPACE PROJECTION PRECONDITIONED 

CONJUGATE METHOD 

The details of our approach have been presented in [10], 

therefore here we briefly mention their general stages. 

A. Initialization 

To ensure a load balance between threads, we accept that 

dimension of block m is multiple to the number of threads 

np: m%np = 0. Usually, we accept m ∈ [16, 64]. There are 

no strict recommendations, and the value of m depends on 

the number of required eigenpairs and peculiarities of the 

problem. We prepare the block of linearly independent start 

vectors X0, set P0 = 0 and start the iteration process k = 0, 1, 

… , until all required eigenpairs are extracted. 

B. Computing of residual vectors 

On the k iteration step we obtain the residual vectors 

using (5) and replacing the subscript i by j ∈ [1, m]. The 

approximations of eigenvalues are computed applying the 

Rayleigh quotient 

     .k
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j
MxxKxx                          (7) 

Using (3) (i → j), we receive the block of vectors Zk . The 

procedures (5), (7) and (3) are produced in a parallel region 

because for each mode j ∈ [1, m] we can run all 

computations separately. 

The check of convergence is performed. If ||rj
k||2 / λi

k < 

tol, where tol is a required tolerance, convergence is 

achieved, all approximations of eigenpairs in the block, {λj
k, 

xj
k}, satisfying this condition, are stored as the final results. 

The new start linearly independent vectors xj
k are generated 

and put instead of the converged vectors. The 

orthogonalization of these vectors against all converged 

eigenvectors is performed. The conjugate direction vectors, 

corresponding to new start vectors, are accepted as pj
k = 0. 

The evaluation of approximations of eigenvalues (7) for the 

new start vectors, residual vectors rj
k (5) and vectors zj

k (3) 

are produced in a parallel region because it often turns out 

that several vectors are converged. The new vectors zj
k, xj

k 

and pj
k are located on positions of converged and removed 

vectors in blocks Zk, Xk and Pk. 

C. Projection of mass and stiffness matrices on the 

subspace 

The reduced matrix m = Qk
TMQk is prepared in a 

parallel region. The developed algorithm bypasses zero 

columns pj
k in the projection matrix Qk, if any appeared at 

the previous step B. If Cholesky factorization of matrix m is 

successful, we evaluate the reduced matrix k = Qk
TKQk in a 

parallel region. Otherwise, the total reorthogonalization of 

columns in the projection matrix Qk is applied to ensure the 

linear independence of basis vectors. In comparison with 

the previous version [10] we have parallelized this 

algorithm (section V). After reorthogonalization procedure, 

we recalculate the matrix m and prepare the matrix k in a 

parallel region. After this, we solve the reduced 

eigenproblem 

0mqμkq ,                                    (8) 
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where q is a matrix of eigenvectors located column by 

column, and μ is a diagonal matrix of eigenvalues. The 

LAPACK procedures from Intel Math Kernel Library (Intel 

MKL) [26] are applied. We omit a subscript k denoting the 

iteration number. 

D. Evaluation of basis vectors at the next iteration step 

After solving (8), the eigenvectors in matrix q have been 

sorted in the ascending order of eigenvalues. Then, we 

compute: 

pkzkkkk
qPqZPqQX   11

, ,                 (9) 

where q  – the first m eigenvectors from q, qz and qp – the 

blocks of subvectors from q , related to residual vectors and 

conjugate direction vectors respectively. 

E. Orthogonalization of basis vectors against all converged 

eigenpairs. 

We perform the orthogonalization of columns in 

subblocks X and P against all converged modes in a parallel 

region. 

III. THE BLOCK PARALLEL INCOMPLETE CHOLESKY 

FACTORIZATION 

We found that a stable solution of the partial algebraic 

generalized eigenvalue problem (1) by the PCG method 

requires a more efficient preconditioned technique than the 

solution of the linear algebraic equations with the same 

stiffness matrix K. It means that in the case of the 

incomplete Cholesky factorization approach we must accept 

a much smaller drop parameter ȥ than when we solve the 

linear equations. In the last case, we apply the incomplete 

Cholesky factorization using a sparse matrix technique [8]. 

However, it turned out that in order to solve many large-

scale real-time problems of natural vibrations, the drop 

parameter ȥ must be so small that the time of incomplete 

factorization by this method becomes unacceptably large. 

Therefore, there was an urgent need to develop a left-

looking two-level incomplete Cholesky solver “by value” for 

multi-core SMP computers. 

First of all, we prepare a nodal adjacency graph and 

perform its reordering with the help of the METIS or MMD 

reordering method [16]. Then, we assemble a stiffness 

matrix, the lower triangular part of which is packed in a 

compressed column format (CCF). It is source information 

for the solver. 

A. Analysis stage 

Taking the nonzero structure of the stiffness matrix from 

CCF, we prepare an equation adjacency graph and produce 

a symbolic factorization procedure [4] to create a nonzero 

structure of the completely factorized matrix, which is 

accepted as an initial nonzero structure for the incomplete 

factorization. 

Then, we create an elimination tree and reorder the 

sequence of elimination in accordance with moving along 

the elimination tree from the leaves to the root. Such 

reordering does not change the amount of fill-in, but puts 

the columns of the matrix, processed consequently, in the 

close memory addresses and slightly improves the work 

with the caches of processors. The symbolic factorization 

procedure runs again to correct the nonzero structure of the 

factorized matrix for a changed sequence of elimination and 

CCF for source matrix is repacked. 

After this, we combine the neighbor vertexes of the 

elimination tree in supernodes, where it is possible [12], 

and create a structure of levels for the supernodal 

elimination tree. It is well-known that the supernodal 

elimination tree is poorly balanced to ensure a load balance 

between processors. In order to balance the supernodal 

elimination tree, we apply the algorithm 1 (Figure 1). 

 

Fig.  1 Balancing of supernodal elimination tree 

 

Algorithm 1. The task scheduling for the first 

parallelization level. 

 

level = 1; 

root ← str_lev(level);  put vertexes of level to root 

L0 ← root;                  put root to L0 

while(1) 

{ 

 sum_weights ← 0; 

 ∀v ∈ L0: weightv ← get_weight_subtree(v); 

 Find: max_weight = max{weightv} and vmax_weight; 

 L0 ← (L0\ vmax_weight); 

 L0 ← all descendants of vmax_weight 

 sort{L0}; 

 ∀v ∈ L0:  

sum_weights[ip_min] ← get_weight_subtree(v); 

stack[ip_min] ← v; 

if((max{ sum_weights } – min{ sum_weights })/  
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max{ sum_weights } < tol1) break; 

} 

 

Here we denote: str_lev is a structure of levels for 

supernodal elimination tree and str_lev(level) returns all 

vertexes belonging to level; get_weight_subtree(v) returns 

the sum of weights for vertexes of all subtrees, outgoing 

from vertex v; weight of vertex is equal to the number of 

columns in the given supernode, L0 – “level zero”, sort{L0} 

is a sorting of all vertexes belonging to L0 in the 

descending order of their weights. All vertexes of 

supernodal elimination tree, placed above L0, create a 

second level of parallelization. Remaining vertexes 

constitute the first level. Parameter ip_min means the thread 

number which comprises a minimum sum of weights of all 

supernodes, mapped onto this thread. 

Algorithm 1 searches for a set of L0 until an imbalance 

of weights for vertices of the first level is less than the 

required tolerance tol1. The general operations include 

finding a vertex with the maximum weight of subtrees 

among all vertexes of L0 (∀v ∈ L0: weightv ← 

get_weight_subtree(v); Find: max_weight = max{weightv} 

and vmax_weight;), removing this vertex from L0 (L0 ← (L0\ 

vmax_weight);) and adding all descendants of removed vertex to 

L0 (L0 ← all descendants of vmax_weight) (see Figure 1). A 

similar algorithm but with cyclic mapping onto threads has 

been used in [1]. We found that sorting vertexes in L0 in 

the descending order of weights and mapping of the current 

vertex from L0 to the thread which has a minimum sum of 

weights, results in a better load balance than cyclic mapping 

[11], [12]. 

After algorithm 1 is finished, we add the vertexes of all 

subtrees to vertexes of L0, belonging to stack[ip], where ip ∈ [0, np-1] and ip is a current thread number. So, we 

obtained the set of parallel tasks in stack[ip], ip ∈ [0, np-1] 

for the first level of parallelism. Each vertex, added to any 

stack[ip], ip ∈ [0, np-1], is marked. 

Then, we run Algorithm 2 to prepare the parallel tasks 

for the second level of parallelism. 

 

Algorithm 2. The task scheduling for the second 

parallelization level. 

 

sum_weights ← 0; L1 ← 0; 

while(until all vertexes are marked) 

{ 

 loop ∀v ∈ L0: → vnext; 

 if(vnext is unmarked) 

{ 

 marks vnext; 

 L1 ← vnext; 

 weightv ← weight(vnext) 

 queue[ip_min] ← vnext; 

 sum_weights[ip_min] += weightv; 

} 

end of loop 

L0 ← 0; L0 ← L1; L1 ← 0; 

} 

 

Loop while runs until all vertexes of supernodal 

elimination tree are marked as added to the parallel tasks. 

For each vertex belonging to L0 (loop ∀v ∈ L0), we obtain 

its parent vertex vnext. If vnext is marked, pass to the next 

vertex of L0. Otherwise, we mark vnext , add it to the set L1, 

map onto thread ip_min (queue[ip_min] ← vnext), which has 

a minimum sum of weights of mapped vertexes, and add the 

weight of vnext to sum_weights[ip_min] += weightv. After 

loop ∀v ∈ L0 is finished, we reset L0 and L1 to the next 

iteration. 

The parallel tasks of the second level of parallelism are 

presented by queues queue[ip], ip ∈ [0, np-1]. After 

Algorithms 1 and 2 have been run, all vertexes of the 

supernodal elimination tree must be marked. 

B. Numerical factorization stage 

Algorithm 3 presents the numerical factorization stage. 

 

Algorithm 3. The two-level left-looking numerical 

factorization. 

 

parallel region 

{ 

 //the first level of parallelization 

 while(stack[ip] is not empty) 

{ 

 jb ← stack[ip] (stack[ip]\jb) 

 alloc_block(jb); 

 aggreg_block(jb); 

 if(!update_block(jb)) 

  { push_front: stack[ip] ← jb; continue; } 

 factor_block(jb); 

} 

 

//the second level of parallelization 

while(queue[ip] is not empty) 

{ 

 jb ← queue[ip] (queue[ip]\jb) 

 alloc_block(jb); 

 aggreg_block(jb); 

if(!update_block(jb)) 

  { push_back: queue[ip] ← jb; continue; } 

 factor_block(jb); 

} 

} 

 

In a parallel region of the first parallelization level, we 

run the loops while until the stack[ip], corresponding to the 
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thread ip ∈ [0, np-1], is empty. On each iteration, we 

extract from stack[ip] the last element jb (the number of 

block-column in the matrix, corresponding to the supernode 

in the supernodal elimination tree), and remove it from 

stack[ip] (stack[ip] \ jb). 

Then, we allocate memory for sparse block-column jb, 

calling the procedure allock_block(jb), assemble a block-

column jb (aggreg_block(jb)) and update it by columns 

placed at left (update_block(jb)). 

The procedure allock_block(jb) prepares the list of global 

equation numbers for non-zero rows of block-column jb. 

The nonzero rows of the block-column jb of the initial 

stiffness matrix as well as the fill-in that appeared at the 

previous steps of the incomplete factorization take part in 

the creation of this list. Then we apply the parallel dynamic 

allocation of memory, using a separate heap for each thread 

and the Thread Local Storage technique [24]. 

The aggreg_block(jb) procedure puts the elements of the 

initial stiffness matrix stored in CCF to the non-zero 

structure of block-column jb. 

The update_block(jb) procedure in the critical section 

extracts from List[jb] the block-column number kb, kb ∈ 

List[jb], placed at left from the block-column jb and 

updating it, removes kb from List[jb] and checks, whether 

the block-column kb is currently factorized. If yes, the 

update of block-column jb is performed using the dgemm 

procedure from Intel MKL (see Figure 2): 

 

Fig.  2 An update of the block-column jb by block-column kb, placed at 

left. The black areas correspond to the updated elements of the block-

column jb. 

 

T

kbjbkbibjbibjbib ,,,,
LLAA  ,                       (10) 

where ib belongs to the non-zero structure of the block-

column jb. 

Otherwise (the block-column kb is not currently 

factorized) the number kb puts to the end of List[jb], and the 

next element of List[jb] is extracted. When all the block-

columns from the List[jb] have participated in the 

correction of the block-column jb and List[jb] is empty, the 

procedure update_block(jb) returns true. Otherwise, the 

update_block(jb) returns false, and the given block-column 

jb is pushed in stack[ip] and we have to wait until the 

remaining threads factorize all the block-columns from 

List[jb]. Such a technique is similar to [23]. 

The factor_block(jb) procedure produces a Cholesky 

factorization of the diagonal block using the dpotrf 

procedure from Intel MKL [26]: 

T

jbjbjbjbjbjb ,,,
LLA   ,                                  (11) 

and updates the off-diagonal part of the block-column jb, 

applying the dtrsm procedure from Intel MKL [26]: 

jbibjbibjbibjbjb ,,,,
LALL  ,                (12) 

where a lower triangular matrix Ljb,jb has been obtained in 

(11) and ib belongs to the nonzero structure of the block-

column jb.  

After this, we run the drop_proc(jb) procedure, presented 

by algorithm 4. 

 

Algorithm 4. The drop procedure. 

 

do iloc = 0, M – 1 

{ 

 djj = ∑Hjj, j ∈ [Ns, Ne]  

 si = ∑Hij
2  

 dii = Bii 

 if(si < ȥN djj dii) 

 { 

  reject_list ← iloc;  s ← 0; 

for(j= Ns; j൑ Ne; ++j) 

{ 

 Hjj += |Hij|√(Hjj/dii);  

s += |Hij|/√(Hjj/dii) 

} 

critical section 

diag_add[i] = s; 

end critical section 

 } 

} 

 

Here M is the number of non-zero rows in the block-

column jb, iloc – the current local row number in block, Ns 

– the global number of the first column in the block, Ne – 

the global number of the last column in the block, djj is a 

sum of diagonal elements in the block-column jb, si is a 

sum of elements in the i-th row (i belongs to the  nonzero 

structure of the block-column jb), Hij is an element of the 

factorized matrix, i and j are the global subscripts, Bii = Hii, 

if the block-column comprising an element Hii has been 

already factorized, and Bii = Aii – an element of the initial 
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matrix otherwise. If the sum of squares of elements in the 

row i is less than ȥN djj dii, we put i number to reject_list, 

and correct the diagonal elements to ensure the positive 

definiteness of the lower triangular part of the incomplete 

factorization H. The value s corrects the diagonal element 

Dii, which at the current time is not factorized. Such a 

correction is accumulated in the array diag_add and will be 

used later. Several threads can produce this correction 

simultaneously, therefore we use a critical section. 

After loop do is over, we remove from the nonzero 

structure of the block-column jb the entire rows, stored in 

reject_list, compress the block-column jb and reallocate the 

memory in order to free up the amount of memory occupied 

by the rejected rows of the block-column. 

When stack[ip] is empty (see Algorithm 3), the thread ip 

begins to run the second loop while from the second level of 

parallelization. The nearest element of queue[ip] is 

extracted and removed from the queue. If update_block(jb) 

returns a false, jb is pushed at the end of queue[ip] and will 

be processing later. 

After the numeric factorization is finished, we start the 

post-factorization drop procedure, which is similar to the 

one, presented in Algorithm 4. The post-drop procedure 

uses a post-drop parameter ȥ1 instead of the drop parameter 

ȥ (0 ൑ ȥ ≤ ȥ1 < 1) and does not produce the correction of 

the diagonal entries. This approach allows us to maintain a 

low level of error accumulation if the value of the parameter 

ȥ is small because every rejection in the incomplete 

factorization process leads to the accumulation of errors [8]. 

And only after the factorization is completed, secondary 

dropping is performed to reduce the amount of data in the 

preconditioning and accelerate the procedure (3) without 

considerable degradation of the quality of preconditioning. 

In addition, if ȥ = 0 and ȥ1 > 0, the proposed method 

produces the complete Cholesky factorization and then 

makes a post-factorization dropping. For large poorly 

conditioned problems, the application of this approach can 

be very efficient if the capacity of the core memory allows 

the allocation of the completely factorized matrix. 

IV. SHIFT TECHNIQUE 

It is widely known ([5], [7], [9] and others) that the 

application of a properly selected shift accelerates the 

convergence of methods based on the iteration by the 

inverse matrix. In the PCG method, based on minimizing of 

Rayleigh quotient, we introduce a shift into preconditioning 

– see (3), (4). We do not evaluate Bσ directly and use the 

iterative procedure [5], [9] when solving the system of 

linear equations (3). Let us assume that 
k

i
ẑ  is an 

approximation of the exact vector 
k

i
z  and q is a small 

correction: 

qzz  k

i

k

i
ˆ .                                   (13) 

Then, after substituting (13) in (3) we obtain: 

  
termfirstthewithcomparingdroppedis

k

i

k

i

k

i MqzBrzMBq   ˆˆ  .      

(14) 

Due to the assumption that q is a small correction, we 

neglect σMq in comparison with other terms and accept 
k

i

k

i rzB ˆ . In addition, the iterative procedure for the 

solution of (3) is: 

 

Algorithm 5. Iterative solution of (3) 

 

doend

Ssdo

k

i

k

i

k

i

k

i

k

i

k

i

qzz

qzMBq

zrzB
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


ˆˆ
ˆ

,,,2,1

ˆˆ
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Usually, 1 – 2 iterations are required. We start the natural 

vibration problem analysis with σ = 0. The shift value is 

corrected at the iteration step k, where the convergence of at 

least one eigenpair is achieved, and new starting vectors are 

added to the block, or when five iterations are performed, 

on which no eigenpair has converged. The new value of 

shift is taken as a current approximation of the eigenvalue 
k

shifti _
 , where i_shift = (m – 1)/4 + 1 and m is the 

dimension of the block. 

V. THE ALGORITHM OF TOTAL REORTHOGONALIZATION 

When the Cholesky factorization of the reduced mass 

matrix m has failed (section II,C), we perform the total 

reorthogonalization (Algorithm 6) of the columns in the 

matrix Qk.  

 

Algorithm 6. The parallel reorthogonalization of the 

columns of the matrix Qk 

 

Parallel loop for i =1, 3m 

{ 

 qi = qi/√(qi
TMqi) 

} 

 

do i =2, 3m 

 w ← Mqi 

 Parallel loop for j = 1, i – 1 

{ 

 βij = qj
T∙w 

} 

  

 Parallel loop for l = 1, N, schedule (static, chunk) 
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 { 

  do j = 1, i – 1 

   ql
i ← ql

i – βij ql
j 

  end do 

 } 

 

 qi ← qi/√(qi
TMqi) 

end do 

 

In the first parallel loop, we perform the normalization of 

all columns in the matrix Qk. Then, we apply the modified 

Gram-Schmidt orthogonalization method (loop do i =2, 

3m). The second parallel loop (Parallel loop for j = 1, i – 1) 

calculates βij = qj
TMqi. Here it is very important to ensure 

the coherence in caches of different processors, and we 

make a padding of the array for βij to exceed the dimension 

of the cache line – 64B. The third parallel loop (Parallel 

loop for l = 1, N) covers all elements of vectors qi and qj. It 

is very important to ensure the coherence in caches too, and 

we accept a chunk size as the 16 words of double. The inner 

loop do covers the number of vectors j. Finally, each 

corrected vector qi should be normalized. 

We underline that it is very important to ensure the 

coherence in caches of different processors because 

otherwise, we obtain a drastic degradation of performance 

at least on the AMD Opteron 6276 processor, not protected 

at the hardware level. The second column in Table III 

demonstrates the efficiency of the proposed parallel 

algorithm. 

VI. NUMERICAL RESULTS 

Let us consider examples taken from the collection of 

SCAD Soft (http://www.scadsoft.com) — IT Company, 

developer of the SCAD FEA software, one of the most 

popular softwares used in the CIS countries for structural 

analysis and design, certified according to the regional 

standards. 

We use the computer A with 16-core processor AMD 

Opteron 6276, 2.3/3.2 GHz, 64 GB DDR3 RAM, OS 

Windows Server 2008 R2 Enterprise SP1, 64 bit, and 

computer B with 4-core processor Intel® Core™ i5 – 2500 

CPU 3.30 GHz, 24 GB DDR3 RAM, OS Windows 7, 64 bit. 

Computer A is a workstation and computer B – usual 

desktop. 

A. Problem 1 

The uniform beam (Figure 3) is considered. 

 
Fig.  3 The clamped beam 

 

We accept: a = 2 m, E = 200 000 MPa, ρ = 7 600 kg/m3, A 

= 0.001 m2, I = 0.0001 m4, where E is the Young’s 

modulus, ρ – the material density, A – the cross-sectional 

area and I – the moment of inertia. Three eigenpairs are 

extracted (n = 3). The dimension of the problem N = 24 and 

the dimension of the block m = 3. The preconditioning 

parameters: reordering method is MMD (multiple minimum 

degree), ȥ = 10-16, ȥ1 = 10-13, tol = 10-6 (section II.B). 

Figure 4 presents the comparison of convergence for both: 

the LOBPCG method [17], [18] and the proposed block 

subspace projection PCG (BSPPCG) method. The minimal 

error for the iterated approximations of eigenvectors in the 

block is depicted on the vertical axis. 
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Fig.  4 The convergence of the LOBPCG and BSPPCG methods 

 

The proposed BSPPCG method performs the control of the 

linear independence of the basis vectors in the subspace 

projection matrix Qk, decomposing the reduced mass matrix 

m by the Cholesky method (section II.C). If the Cholesky 

factorization of the m matrix has failed, the total 

reorthogonalization of columns in the projection matrix Qk 

ensures the linear independence of the basis vectors. As 

soon as the first eigenpair begins to converge, the residual 

vector ri
k corresponding to this pair tends to zero, since for 

an exact solution this vector must be strictly zero. The 

vector of the conjugate direction pi
k behaves similarly since 

at the stationary point of the Rayleigh functional the 

gradient vector is also zero and its direction is not defined. 

Hence it follows that the convergence of eigenpairs leads to 

a linear dependence between the columns of the projection 

matrix Qk. Therefore, we remove the converged 

eigenvectors from the block, replacing them with the new 

start vectors, and restore the linear independence of the 

columns of the matrix Qk, if necessary. As a result, we 

obtain a fast and stable convergence for the BSPPCG 

method, and the given example demonstrates it. 

B. Problem 2 

The design model of the multi-storey building, resting on 

the soil, is shown in Figure 5. The number of equations is 

2 989 476. Solid finite elements simulating the soil 
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behavior contribute a relatively dense part in the sparse 

stiffness matrix. The size of the completely factorized 

stiffness matrix using the METIS reordering [16] is 36.53 

GB. Therefore, this problem is very hard for a direct 

solution. We accept the required number of eigenpairs n = 

100, the dimension of the block m = 32. Parameters of 

preconditioning are as follows: METIS reordering, ȥ = 10-

50, ȥ1 = 10-13. The required tolerance is tol = 10-3. 

We compare the performance and speed up with an 

increase of the number of threads of the proposed 

incomplete block Cholesky solver with PARDISO from 

Intel MKL 11.3 accepting a complete factorization mode (ȥ 
= ȥ1 = 0) because in this mode the incomplete solver 

processes the maximum amount of data. 

 
Fig.  5 Multi-storey building, based on a prism of soil 

 

Moreover, for a lot of large poorly conditioned problems 

of structural and solid mechanics, we must take the 

parameter ȥ as very small. Therefore, the mode of 

incomplete solver in such a case will be close to the 

complete factorization, which allows us on the scheduling 

of load on the processors based on the non-zero structure of 

the completely factorized matrix. If the problem admits a 

relatively large value of the dropping parameter ȥ, the 
duration of the incomplete factorization considerably 

decreases and ceases to be critical in comparison with other 

stages of the solution of the problem, and we apply in such a 

situation the non-block version of the incomplete Cholesky 

solver [8], which results in better properties of 

preconditioning than the block Cholesky method due to 

dropping of single elements in columns instead of the 

rejection of the entire rows in the block-columns. 

The Table I presents a comparison of the complete 

factorization time and speed up, when the number of 

threads increases, for the proposed block Cholesky solver 

and PARDISO from Intel MKL 11.3. As it turned out, on 

computer A with AMD Opteron processor the PARDISO 

solver limits the number of threads to eight. The solver 

proposed by us demonstrates a steady acceleration of up to 

15 threads, and only when the number of threads is equal to 

the number of processor cores, there is a slight decrease in 

performance. As a result, we achieve on 15 threads a 

slightly shorter total factorization time than PARDISO. In 

general, both solvers show close results, and this fact allows 

to conclude, that the developed incomplete block Cholesky 

solver can be used successfully for the solution of real-life 

large problems. 

TABLE I 

COMPARISON OF THE COMPLETE FACTORIZATION TIME AND SPEED UP. 

PROBLEM 2, COMPUTER A. 

Nos of 

threads 

Duration of 

the block 

Cholesky, 

factorization s 

Duration of 

the 

PARDISO, 

factorization, s  

Block 

Cholesky, 

Sp = T1/Tp 

PARDISO, 

Sp = T1/Tp 

1 10 211 8 282 1 1 

2 5 448 6 539 1.87 1.27 

4 3 151 3 114 3.24 2.66 

8 1 984 1 898 5.15 4.36 

12 1 713 – 5.96 – 

14 1 635 – 6.25 – 

15 1 629 – 6.27 – 

16 1 704 – 6.00 – 

 

The sums of weights for each thread for both: first and 

second parallelization levels (see section III.A) are 

presented in Table II. We take a parameter tol1 = 0.05. 

Even on 16 threads, the proposed scheduling algorithms 

1 and 2 ensure an acceptable balance of computational load 

between threads. 

The duration of factorization using a conventional 

incomplete Cholesky solver [8] on eight threads (in such 

case this method demonstrates the best performance) is 

42 638 s, and we believe that such a long time is 

unacceptable.  

Table III presents the duration of the main stages of 

BSPPCG method. We use the following abbreviation: Reort. 

time – time of the total reorthogonalization when the 

columns of matrix Qk become almost linearly dependent; 

Orth. against conv. modes – orthogonalization of columns 

in the subblocks X and P against all converged modes (see 

section II.E); Evaluation of residuals – see section II.B; 

Subsp. project. – evaluation of the subspace projection 

matrices m and k (section II.C); Prolong. – prolongation 

procedure (section II.D). All these stages are parallelized. 

Table IV shows the comparison of computing time 

required for the extraction of 100 eigenpairs for different 

methods. The BSPPCG method runs in the core memory, 

requires 35.3 GB RAM and produces 61 iterations and 17 

total reorthogonalization when ȥ = 10-50, ȥ1 = 10-13. When 
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we assign ȥ = 10-8, ȥ1 = 10-8, the amount of required RAM 

is 16.4 GB, the ability of preconditioning of accelerating of 

the convergence is worse than in the previous case, and 142 

iterations and 50 total reorthogonalization is required. 

TABLE II 

THE DISTRIBUTION OF COMPUTATIONAL WORK AMONG THREADS. 

PROBLEM 2, COMPUTER A. 

Thread 

number 

First level of parallelization Second level of 

parallelization 

1 81 957 982 200 429 150 

2 81 992 420 200 070 240 

3 81 051 034 200 507 916 

4 78 914 973 200 263 442 

5 81 610 575 200 230 611 

6 81 862 179 200 518 532 

7 81 724 138 200 079 318 

8 81 287 287 199 915 628 

9 79 117 086 200 671 820 

10 79 027 153 200 172 374 

11 80 780 854 201 390 756 

12 81 153 035 200 164 913 

13 82 434 985 200 463 860 

14 79 223 228 200 221 723 

15 81 595 566 200 978 565 

16 83 031 954 201 070 606 

TABLE III 

COMPUTING TIME OF SEVERAL PHASES VIA A NUMBER OF THREADS. 

PROBLEM 2, COMPUTER A. 

np Reort

time, 

s 

Orth. 

against 

conv 

modes, s 

Evalua-

tion of 

residuals, 

s 

Subsp. 

project. 

s 

Pro-

long., 

s 

Total, 

s 
Snp  

1 5241 6420 40039 8515 319 62711 1 

2 2384 3197 21861 5303 183 34323 1.82 

4 1628 2298 12039 3621 122 20814 3.01 

8 1068 2315 9031 2809 104 16390 3.82 

16 620 2183 8229 2415 103 14552 4.31 

 

The block Lanczos method with the spectral 

transformations (SBLANC, [7]) runs in two modes. When 

the entire amount of the core memory is accessible (100 % 

RAM), solver PARFES [11], [12] – one from the fastest 

sparse direct solvers for multicore computers on today – 

works in a core mode, and the lower triangular factorized 

matrix L, having the size 36.53 GB, is located in RAM. 

Therefore, the forward and back substitutions, performed at 

each step of the Lanczos method, run extremely fast. In this 

case, we obtain practically the same durations for both 

methods. 

When we allow using only 50% of RAM for the Lanczos 

method, PARFES runs in the out of core mode (OOC), and 

the matrix L is written block-by-block on disk. The forward 

and back substitutions run very slowly, and the solution 

time for the Lanczos method increases more than two times. 

TABLE IV 

COMPARISON OF COMPUTATION TIME FOR DIFFERENT METHODS. 

PROBLEM 2, COMPUTER A. 

Method Total time, s 

BSPPCG (core mode, ψ = 10-50, ψ1 = 10-13) 14 552 

BSPPCG (core mode, ψ = 10-8, ψ1 = 10-8) 16 334 

SBLANC (100% RAM) 14 096 

SBLANC (50% RAM) 34 660 

 

C. Problem 3. 

Figure 6 presents the design model of the multi-storey 

building, having quite a different topology and construction 

than the previous problem. 

 

 

 
Fig.  6 Multi-storey building, having three towers 

 

 

The dimension of the problem is N = 4 262 958 

equations, number of required eigenpairs – n = 100, 

dimension of the block m = 32. The parameters of 

preconditioning are: ȥ = 0, ȥ1 = 10-13, tol = 10-3. We use a 

usual desktop – computer B. 

This problem is very hard for stable convergence due to 

the presence of a large number of almost multiple 

frequencies, produced by similar towers, resting on the 

same stylobate, and we were forced to apply a shift 

technique. Table V shows that the given approach proved to 

be stable when the shift correction procedure (algorithm 5) 

performs at least two iterations. 

As a result, we obtain about the same time of solving the 

problem by both methods: BSPPCG and SBLANC, but 

BSPPCG method works in RAM, and when Lanczos 

method is applied, PARFES uses the out of core (OOC) 

mode. 
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TABLE V

COMPARISON OF COMPUTATION TIME FOR DIFFERENT METHODS.

PROBLEM 3, COMPUTER B.

Method Number of 
shift’s 
corrections,
S

Number of
iterations

Number of
total

reorthogona-
lization

Total
time, s

BSPPCG 0 Lock of convergence after 42 eigenpairs
are converged

BSPPCG 1 Lock of convergence after 53 eigenpairs
are converged

BSPPCG 2 70 19 16 901
SBLANC — — — 16 568

VII. CONCLUSION

The  proposed  BSPPCG  method  can  compete  with  the
block  Lanczos  method  widely  used  in  FEA  software  on
shared  memory  multi-core  computers.  The  presented
approach,  based  on  the  PCG  method,  uses  the  block
incomplete Cholesky factorization approach which allows to
keep  a very small  value  of  the rejection parameter  ψ and
produces  a  lower  triangular  matrix  H,  B =  HHT,  which
possesses a high ability to accelerate the convergence. The
use of the iteration technique in a block of fixed dimension,
the shift technique and the parallel algorithm for the total re-
orthogonalization,  when  a  linear  dependence  between  the
columns of the projection matrix Qk was detected, ensure the
high computational stability of the proposed approach.
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