


Abstract— The method for extracting natural vibration
frequencies and modes of design models arising when the finite
element method is applied to the problems of structural and
solid mechanics is proposed. This approach is intended to be
used on multicore SMP computers and is an alternative to the
conventional block Lanczos and subspace iteration methods
widely used in modern FEA software. We present the main
idea of the method as well as the parallel fast block incomplete
factorization approach for creating efficient preconditioning,
the shift technique and other details accelerating the solution
and improving the numerical stability. Real-life examples are
taken from the computational practice of SCAD Soft IT
company and approve the efficiency of the proposed method.

I. INTRODUCTION

HE application of the finite element method to the

problems of natural vibrations of structures results in a

generalized algebraic eigenvalue problem

T
0 MVΛKV , (1)

where K and M are the symmetric positive definite stiffness

and semidefinite mass sparse matrices, V = {v1, v2, … , vn }

– matrix of eigenvectors vi, located in V column-by-column,

Λ is a diagonal matrix of eigenvalues λ1, λ2, … , λn , λi = ωi
2,

ωi = 2πfi, i ∈ [1, n], ωi is a cyclic frequency in s-1 and fi is a

frequency in Hz. The dimension of the problem is N and the

number of required eigenpairs is n << N.

For large finite element design models the problem

dimension N reaches 200 000 – 6 000 000 equations and

more. The required number of eigenpairs {λi, vi}, i ∈ [1, n]

depends on the type of dynamic analysis and properties of

construction. Usually n = 20 – 100, but in the case of

seismic analysis it can be 1 000 – 3 000 and more. Some of

the constructions have a lot of local vibration modes in the

lower part of the spectrum. Such modes produce very small

contributions in a seismic response of the structure, but

create huge difficulties for eigenvalue solvers, because a

very large number of eigenpairs are required in such cases.

The block Lanczos method or block subspace iteration

method is used most often in contemporary FEA software.

But these powerful methods use the inverse iteration

procedure on each iteration step which requires the twice

This work was supported by IT company SCAD Soft
(www.scadsoft.com)

reading of the factorized stiffness matrix [10]. Most users

prefer to solve these problems on laptops and desktops,

which have the amount of RAM 8 – 16 GB. In the case of a

large dimensionality of the problem, the amount of core

memory is insufficient for storing a factorized stiffness

matrix, which is stored on the disk. Therefore, when

performing forward and backward substitutions at each

iteration, we need to read twice from the disk the amount of

data on the order of 6 – 20 or more GB. The above methods

work with the speed of a slow disk, not a fast processor, and

it takes many hours to solve the problem.

Therefore, it seems interesting to develop a method that

would solve the problem (1) in a core memory. Our choice

is based on the preconditioned conjugate gradient method

(PCG). It is known that for many problems of structural

mechanics, which are poorly conditioned for a number of

reasons [21], the conjugate gradient method demonstrates

unacceptably slow convergence. In order to correct the

situation, it is necessary to create efficient preconditioning

[2], [3], [5], [6], [8], [9], [13] – [15], [19], [20], [22]. Our

experience shows that a stable convergence of the

eigenvalue problem (1) is much more difficult to obtain than

when solving a system of linear algebraic equations

Kx=b , (2)

where x and b are respectively the unknown vector and the

right-hand part vector. Therefore, the successful solution of

the problem (1) usually requires more effective

preconditioning than when solving the problem (2). In

addition, in order to obtain the stable convergence in the

presence of multiple and close eigenvalues, it is required to

introduce the shift into preconditioning

(B−σM) z
i

k=r
i

k
, (3)

where B is a preconditioning operator without shift, σ is a

shift, zi
k – residual vector for a preconditioned problem and

k is an iteration step number. The preconditioned algebraic

eigenvalue problem is formulated as

B
σ

−1 (KV−MVΛ)=0 , (4)

Block Subspace Projection Preconditioned Conjugate Gradient
Method for Structural Modal Analysis

Sergiy Fialko
Tadeusz Kościuszko Cracow University of Technology

ul. Warszawska 24 St., 31-155 Kraków, Poland
Email: sergiy.fialko@gmail.com

Viktor Karpilovskyi
IT company SCAD Soft

ul. Osvity 3a, office 1, 2, Kiev, Ukraine
Email: kvs@scadsoft.com

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 497–506

DOI: 10.15439/2017F64

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 497

where Bσ = B – σM. The residual vector of an initial

problem (1) is:

k

i

k

i

k

i

k

i KxMxr  . (5)

Here subscript i denotes a mode number and xi
k, λi

k are the

approximations of the i-th eigenmode and eigenvalue on

iteration step k.

The article [5] presents PCG method with element-by-

element aggregation multilevel preconditioning [6] and

shift technique. This method does not use multithreading, it

was implemented in SCAD software in 2004 and enables to

extract a relatively small number of eigenpairs (5 – 30). A

parallel version of PCG method has been proposed in [9],

but acceleration with the increasing number of threads was

poor.

The local block PCG method (LOBPCG – [17], [18],

[25]) uses the following approximation:

 mi
m

j

k

j

k

j

m

j

k

j

k

j

k

i

m

j

k

j

k

j

m

j

k

j

k

j

m

j

k

j

k

j

k

i

,1,

11

1

111

1





























pzp

pxzx

 (6)

where pj
k is a conjugate direction vector and m is a

dimension of the block. The dimension of the block m ൒ n

and is constant until all required eigenpairs are extracted.

For the problems of structural mechanics, we found that as

soon as the first eigenpair begins to converge, the method

loses the computational stability (see section IV, A), because

for a converged eigenpair the residual vector ri
k in (5) tends

to zero, vector zi
k tends to zero too (3) and a zero column

appears in the projection matrix Qk = {Zk, Xk, Pk}, where

Zk = {z1, z2, …, zm}k, Xk = {x1, x2, …, xm}k and Pk = {p1,

p2, …, pm}k.

To ensure the computational stability of the method, we

keep a constant dimension of the block m < n, and as soon

as some vectors in the block converge, we immediately

remove them, store them as the final results and replace

them with the new start vectors. In addition, when the

columns in the projection matrix Qk become almost linearly

dependent, we orthogonalize all the vectors in the block

using the modified Gram-Schmidt method.

This article is a continuation of [10], and we focus our

attention on a block parallel sparse Cholesky incomplete

factorization method used for a fast creation of efficient

preconditioning, shift technique, allowing to improve the

computational stability of PCG method and other important

moments of the proposed approach.

II. BLOCK SUBSPACE PROJECTION PRECONDITIONED

CONJUGATE METHOD

The details of our approach have been presented in [10],

therefore here we briefly mention their general stages.

A. Initialization

To ensure a load balance between threads, we accept that

dimension of block m is multiple to the number of threads

np: m%np = 0. Usually, we accept m ∈ [16, 64]. There are

no strict recommendations, and the value of m depends on

the number of required eigenpairs and peculiarities of the

problem. We prepare the block of linearly independent start

vectors X0, set P0 = 0 and start the iteration process k = 0, 1,

… , until all required eigenpairs are extracted.

B. Computing of residual vectors

On the k iteration step we obtain the residual vectors

using (5) and replacing the subscript i by j ∈ [1, m]. The

approximations of eigenvalues are computed applying the

Rayleigh quotient

     .k

j

Tk

j

k

j

Tk

j

k

j
MxxKxx (7)

Using (3) (i → j), we receive the block of vectors Zk . The

procedures (5), (7) and (3) are produced in a parallel region

because for each mode j ∈ [1, m] we can run all

computations separately.

The check of convergence is performed. If ||rj
k||2 / λi

k <

tol, where tol is a required tolerance, convergence is

achieved, all approximations of eigenpairs in the block, {λj
k,

xj
k}, satisfying this condition, are stored as the final results.

The new start linearly independent vectors xj
k are generated

and put instead of the converged vectors. The

orthogonalization of these vectors against all converged

eigenvectors is performed. The conjugate direction vectors,

corresponding to new start vectors, are accepted as pj
k = 0.

The evaluation of approximations of eigenvalues (7) for the

new start vectors, residual vectors rj
k (5) and vectors zj

k (3)

are produced in a parallel region because it often turns out

that several vectors are converged. The new vectors zj
k, xj

k

and pj
k are located on positions of converged and removed

vectors in blocks Zk, Xk and Pk.

C. Projection of mass and stiffness matrices on the

subspace

The reduced matrix m = Qk
TMQk is prepared in a

parallel region. The developed algorithm bypasses zero

columns pj
k in the projection matrix Qk, if any appeared at

the previous step B. If Cholesky factorization of matrix m is

successful, we evaluate the reduced matrix k = Qk
TKQk in a

parallel region. Otherwise, the total reorthogonalization of

columns in the projection matrix Qk is applied to ensure the

linear independence of basis vectors. In comparison with

the previous version [10] we have parallelized this

algorithm (section V). After reorthogonalization procedure,

we recalculate the matrix m and prepare the matrix k in a

parallel region. After this, we solve the reduced

eigenproblem

0mqμkq , (8)

498 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

where q is a matrix of eigenvectors located column by

column, and μ is a diagonal matrix of eigenvalues. The

LAPACK procedures from Intel Math Kernel Library (Intel

MKL) [26] are applied. We omit a subscript k denoting the

iteration number.

D. Evaluation of basis vectors at the next iteration step

After solving (8), the eigenvectors in matrix q have been

sorted in the ascending order of eigenvalues. Then, we

compute:

pkzkkkk
qPqZPqQX   11

, , (9)

where q – the first m eigenvectors from q, qz and qp – the

blocks of subvectors from q , related to residual vectors and

conjugate direction vectors respectively.

E. Orthogonalization of basis vectors against all converged

eigenpairs.

We perform the orthogonalization of columns in

subblocks X and P against all converged modes in a parallel

region.

III. THE BLOCK PARALLEL INCOMPLETE CHOLESKY

FACTORIZATION

We found that a stable solution of the partial algebraic

generalized eigenvalue problem (1) by the PCG method

requires a more efficient preconditioned technique than the

solution of the linear algebraic equations with the same

stiffness matrix K. It means that in the case of the

incomplete Cholesky factorization approach we must accept

a much smaller drop parameter ȥ than when we solve the

linear equations. In the last case, we apply the incomplete

Cholesky factorization using a sparse matrix technique [8].

However, it turned out that in order to solve many large-

scale real-time problems of natural vibrations, the drop

parameter ȥ must be so small that the time of incomplete

factorization by this method becomes unacceptably large.

Therefore, there was an urgent need to develop a left-

looking two-level incomplete Cholesky solver “by value” for

multi-core SMP computers.

First of all, we prepare a nodal adjacency graph and

perform its reordering with the help of the METIS or MMD

reordering method [16]. Then, we assemble a stiffness

matrix, the lower triangular part of which is packed in a

compressed column format (CCF). It is source information

for the solver.

A. Analysis stage

Taking the nonzero structure of the stiffness matrix from

CCF, we prepare an equation adjacency graph and produce

a symbolic factorization procedure [4] to create a nonzero

structure of the completely factorized matrix, which is

accepted as an initial nonzero structure for the incomplete

factorization.

Then, we create an elimination tree and reorder the

sequence of elimination in accordance with moving along

the elimination tree from the leaves to the root. Such

reordering does not change the amount of fill-in, but puts

the columns of the matrix, processed consequently, in the

close memory addresses and slightly improves the work

with the caches of processors. The symbolic factorization

procedure runs again to correct the nonzero structure of the

factorized matrix for a changed sequence of elimination and

CCF for source matrix is repacked.

After this, we combine the neighbor vertexes of the

elimination tree in supernodes, where it is possible [12],

and create a structure of levels for the supernodal

elimination tree. It is well-known that the supernodal

elimination tree is poorly balanced to ensure a load balance

between processors. In order to balance the supernodal

elimination tree, we apply the algorithm 1 (Figure 1).

Fig. 1 Balancing of supernodal elimination tree

Algorithm 1. The task scheduling for the first

parallelization level.

level = 1;

root ← str_lev(level); put vertexes of level to root

L0 ← root; put root to L0

while(1)

{

 sum_weights ← 0;

 ∀v ∈ L0: weightv ← get_weight_subtree(v);

 Find: max_weight = max{weightv} and vmax_weight;

 L0 ← (L0\ vmax_weight);

 L0 ← all descendants of vmax_weight

 sort{L0};

 ∀v ∈ L0:

sum_weights[ip_min] ← get_weight_subtree(v);

stack[ip_min] ← v;

if((max{ sum_weights } – min{ sum_weights })/

SERGIY FIALKO, VIKTOR KARPILOVSKYI: BLOCK SUBSPACE PROJECTION PRECONDITIONED CONJUGATE GRADIENT METHOD 499

max{ sum_weights } < tol1) break;

}

Here we denote: str_lev is a structure of levels for

supernodal elimination tree and str_lev(level) returns all

vertexes belonging to level; get_weight_subtree(v) returns

the sum of weights for vertexes of all subtrees, outgoing

from vertex v; weight of vertex is equal to the number of

columns in the given supernode, L0 – “level zero”, sort{L0}

is a sorting of all vertexes belonging to L0 in the

descending order of their weights. All vertexes of

supernodal elimination tree, placed above L0, create a

second level of parallelization. Remaining vertexes

constitute the first level. Parameter ip_min means the thread

number which comprises a minimum sum of weights of all

supernodes, mapped onto this thread.

Algorithm 1 searches for a set of L0 until an imbalance

of weights for vertices of the first level is less than the

required tolerance tol1. The general operations include

finding a vertex with the maximum weight of subtrees

among all vertexes of L0 (∀v ∈ L0: weightv ←

get_weight_subtree(v); Find: max_weight = max{weightv}

and vmax_weight;), removing this vertex from L0 (L0 ← (L0\

vmax_weight);) and adding all descendants of removed vertex to

L0 (L0 ← all descendants of vmax_weight) (see Figure 1). A

similar algorithm but with cyclic mapping onto threads has

been used in [1]. We found that sorting vertexes in L0 in

the descending order of weights and mapping of the current

vertex from L0 to the thread which has a minimum sum of

weights, results in a better load balance than cyclic mapping

[11], [12].

After algorithm 1 is finished, we add the vertexes of all

subtrees to vertexes of L0, belonging to stack[ip], where ip ∈ [0, np-1] and ip is a current thread number. So, we

obtained the set of parallel tasks in stack[ip], ip ∈ [0, np-1]

for the first level of parallelism. Each vertex, added to any

stack[ip], ip ∈ [0, np-1], is marked.

Then, we run Algorithm 2 to prepare the parallel tasks

for the second level of parallelism.

Algorithm 2. The task scheduling for the second

parallelization level.

sum_weights ← 0; L1 ← 0;

while(until all vertexes are marked)

{

 loop ∀v ∈ L0: → vnext;

 if(vnext is unmarked)

{

 marks vnext;

 L1 ← vnext;

 weightv ← weight(vnext)

 queue[ip_min] ← vnext;

 sum_weights[ip_min] += weightv;

}

end of loop

L0 ← 0; L0 ← L1; L1 ← 0;

}

Loop while runs until all vertexes of supernodal

elimination tree are marked as added to the parallel tasks.

For each vertex belonging to L0 (loop ∀v ∈ L0), we obtain

its parent vertex vnext. If vnext is marked, pass to the next

vertex of L0. Otherwise, we mark vnext , add it to the set L1,

map onto thread ip_min (queue[ip_min] ← vnext), which has

a minimum sum of weights of mapped vertexes, and add the

weight of vnext to sum_weights[ip_min] += weightv. After

loop ∀v ∈ L0 is finished, we reset L0 and L1 to the next

iteration.

The parallel tasks of the second level of parallelism are

presented by queues queue[ip], ip ∈ [0, np-1]. After

Algorithms 1 and 2 have been run, all vertexes of the

supernodal elimination tree must be marked.

B. Numerical factorization stage

Algorithm 3 presents the numerical factorization stage.

Algorithm 3. The two-level left-looking numerical

factorization.

parallel region

{

 //the first level of parallelization

 while(stack[ip] is not empty)

{

 jb ← stack[ip] (stack[ip]\jb)

 alloc_block(jb);

 aggreg_block(jb);

 if(!update_block(jb))

 { push_front: stack[ip] ← jb; continue; }

 factor_block(jb);

}

//the second level of parallelization

while(queue[ip] is not empty)

{

 jb ← queue[ip] (queue[ip]\jb)

 alloc_block(jb);

 aggreg_block(jb);

if(!update_block(jb))

 { push_back: queue[ip] ← jb; continue; }

 factor_block(jb);

}

}

In a parallel region of the first parallelization level, we

run the loops while until the stack[ip], corresponding to the

500 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

thread ip ∈ [0, np-1], is empty. On each iteration, we

extract from stack[ip] the last element jb (the number of

block-column in the matrix, corresponding to the supernode

in the supernodal elimination tree), and remove it from

stack[ip] (stack[ip] \ jb).

Then, we allocate memory for sparse block-column jb,

calling the procedure allock_block(jb), assemble a block-

column jb (aggreg_block(jb)) and update it by columns

placed at left (update_block(jb)).

The procedure allock_block(jb) prepares the list of global

equation numbers for non-zero rows of block-column jb.

The nonzero rows of the block-column jb of the initial

stiffness matrix as well as the fill-in that appeared at the

previous steps of the incomplete factorization take part in

the creation of this list. Then we apply the parallel dynamic

allocation of memory, using a separate heap for each thread

and the Thread Local Storage technique [24].

The aggreg_block(jb) procedure puts the elements of the

initial stiffness matrix stored in CCF to the non-zero

structure of block-column jb.

The update_block(jb) procedure in the critical section

extracts from List[jb] the block-column number kb, kb ∈

List[jb], placed at left from the block-column jb and

updating it, removes kb from List[jb] and checks, whether

the block-column kb is currently factorized. If yes, the

update of block-column jb is performed using the dgemm

procedure from Intel MKL (see Figure 2):

Fig. 2 An update of the block-column jb by block-column kb, placed at

left. The black areas correspond to the updated elements of the block-

column jb.

T

kbjbkbibjbibjbib ,,,,
LLAA  , (10)

where ib belongs to the non-zero structure of the block-

column jb.

Otherwise (the block-column kb is not currently

factorized) the number kb puts to the end of List[jb], and the

next element of List[jb] is extracted. When all the block-

columns from the List[jb] have participated in the

correction of the block-column jb and List[jb] is empty, the

procedure update_block(jb) returns true. Otherwise, the

update_block(jb) returns false, and the given block-column

jb is pushed in stack[ip] and we have to wait until the

remaining threads factorize all the block-columns from

List[jb]. Such a technique is similar to [23].

The factor_block(jb) procedure produces a Cholesky

factorization of the diagonal block using the dpotrf

procedure from Intel MKL [26]:

T

jbjbjbjbjbjb ,,,
LLA  , (11)

and updates the off-diagonal part of the block-column jb,

applying the dtrsm procedure from Intel MKL [26]:

jbibjbibjbibjbjb ,,,,
LALL  , (12)

where a lower triangular matrix Ljb,jb has been obtained in

(11) and ib belongs to the nonzero structure of the block-

column jb.

After this, we run the drop_proc(jb) procedure, presented

by algorithm 4.

Algorithm 4. The drop procedure.

do iloc = 0, M – 1

{

 djj = ∑Hjj, j ∈ [Ns, Ne]

 si = ∑Hij
2

 dii = Bii

 if(si < ȥN djj dii)

 {

 reject_list ← iloc; s ← 0;

for(j= Ns; j൑ Ne; ++j)

{

 Hjj += |Hij|√(Hjj/dii);

s += |Hij|/√(Hjj/dii)

}

critical section

diag_add[i] = s;

end critical section

 }

}

Here M is the number of non-zero rows in the block-

column jb, iloc – the current local row number in block, Ns

– the global number of the first column in the block, Ne –

the global number of the last column in the block, djj is a

sum of diagonal elements in the block-column jb, si is a

sum of elements in the i-th row (i belongs to the nonzero

structure of the block-column jb), Hij is an element of the

factorized matrix, i and j are the global subscripts, Bii = Hii,

if the block-column comprising an element Hii has been

already factorized, and Bii = Aii – an element of the initial

SERGIY FIALKO, VIKTOR KARPILOVSKYI: BLOCK SUBSPACE PROJECTION PRECONDITIONED CONJUGATE GRADIENT METHOD 501

matrix otherwise. If the sum of squares of elements in the

row i is less than ȥN djj dii, we put i number to reject_list,

and correct the diagonal elements to ensure the positive

definiteness of the lower triangular part of the incomplete

factorization H. The value s corrects the diagonal element

Dii, which at the current time is not factorized. Such a

correction is accumulated in the array diag_add and will be

used later. Several threads can produce this correction

simultaneously, therefore we use a critical section.

After loop do is over, we remove from the nonzero

structure of the block-column jb the entire rows, stored in

reject_list, compress the block-column jb and reallocate the

memory in order to free up the amount of memory occupied

by the rejected rows of the block-column.

When stack[ip] is empty (see Algorithm 3), the thread ip

begins to run the second loop while from the second level of

parallelization. The nearest element of queue[ip] is

extracted and removed from the queue. If update_block(jb)

returns a false, jb is pushed at the end of queue[ip] and will

be processing later.

After the numeric factorization is finished, we start the

post-factorization drop procedure, which is similar to the

one, presented in Algorithm 4. The post-drop procedure

uses a post-drop parameter ȥ1 instead of the drop parameter

ȥ (0 ൑ ȥ ≤ ȥ1 < 1) and does not produce the correction of

the diagonal entries. This approach allows us to maintain a

low level of error accumulation if the value of the parameter

ȥ is small because every rejection in the incomplete

factorization process leads to the accumulation of errors [8].

And only after the factorization is completed, secondary

dropping is performed to reduce the amount of data in the

preconditioning and accelerate the procedure (3) without

considerable degradation of the quality of preconditioning.

In addition, if ȥ = 0 and ȥ1 > 0, the proposed method

produces the complete Cholesky factorization and then

makes a post-factorization dropping. For large poorly

conditioned problems, the application of this approach can

be very efficient if the capacity of the core memory allows

the allocation of the completely factorized matrix.

IV. SHIFT TECHNIQUE

It is widely known ([5], [7], [9] and others) that the

application of a properly selected shift accelerates the

convergence of methods based on the iteration by the

inverse matrix. In the PCG method, based on minimizing of

Rayleigh quotient, we introduce a shift into preconditioning

– see (3), (4). We do not evaluate Bσ directly and use the

iterative procedure [5], [9] when solving the system of

linear equations (3). Let us assume that
k

i
ẑ is an

approximation of the exact vector
k

i
z and q is a small

correction:

qzz  k

i

k

i
ˆ . (13)

Then, after substituting (13) in (3) we obtain:

  
termfirstthewithcomparingdroppedis

k

i

k

i

k

i MqzBrzMBq   ˆˆ .

(14)

Due to the assumption that q is a small correction, we

neglect σMq in comparison with other terms and accept
k

i

k

i rzB ˆ . In addition, the iterative procedure for the

solution of (3) is:

Algorithm 5. Iterative solution of (3)

doend

Ssdo

k

i

k

i

k

i

k

i

k

i

k

i

qzz

qzMBq

zrzB








ˆˆ
ˆ

,,,2,1

ˆˆ


Usually, 1 – 2 iterations are required. We start the natural

vibration problem analysis with σ = 0. The shift value is

corrected at the iteration step k, where the convergence of at

least one eigenpair is achieved, and new starting vectors are

added to the block, or when five iterations are performed,

on which no eigenpair has converged. The new value of

shift is taken as a current approximation of the eigenvalue
k

shifti _
 , where i_shift = (m – 1)/4 + 1 and m is the

dimension of the block.

V. THE ALGORITHM OF TOTAL REORTHOGONALIZATION

When the Cholesky factorization of the reduced mass

matrix m has failed (section II,C), we perform the total

reorthogonalization (Algorithm 6) of the columns in the

matrix Qk.

Algorithm 6. The parallel reorthogonalization of the

columns of the matrix Qk

Parallel loop for i =1, 3m

{

 qi = qi/√(qi
TMqi)

}

do i =2, 3m

 w ← Mqi

 Parallel loop for j = 1, i – 1

{

 βij = qj
T∙w

}

 Parallel loop for l = 1, N, schedule (static, chunk)

502 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

 {

 do j = 1, i – 1

 ql
i ← ql

i – βij ql
j

 end do

 }

 qi ← qi/√(qi
TMqi)

end do

In the first parallel loop, we perform the normalization of

all columns in the matrix Qk. Then, we apply the modified

Gram-Schmidt orthogonalization method (loop do i =2,

3m). The second parallel loop (Parallel loop for j = 1, i – 1)

calculates βij = qj
TMqi. Here it is very important to ensure

the coherence in caches of different processors, and we

make a padding of the array for βij to exceed the dimension

of the cache line – 64B. The third parallel loop (Parallel

loop for l = 1, N) covers all elements of vectors qi and qj. It

is very important to ensure the coherence in caches too, and

we accept a chunk size as the 16 words of double. The inner

loop do covers the number of vectors j. Finally, each

corrected vector qi should be normalized.

We underline that it is very important to ensure the

coherence in caches of different processors because

otherwise, we obtain a drastic degradation of performance

at least on the AMD Opteron 6276 processor, not protected

at the hardware level. The second column in Table III

demonstrates the efficiency of the proposed parallel

algorithm.

VI. NUMERICAL RESULTS

Let us consider examples taken from the collection of

SCAD Soft (http://www.scadsoft.com) — IT Company,

developer of the SCAD FEA software, one of the most

popular softwares used in the CIS countries for structural

analysis and design, certified according to the regional

standards.

We use the computer A with 16-core processor AMD

Opteron 6276, 2.3/3.2 GHz, 64 GB DDR3 RAM, OS

Windows Server 2008 R2 Enterprise SP1, 64 bit, and

computer B with 4-core processor Intel® Core™ i5 – 2500

CPU 3.30 GHz, 24 GB DDR3 RAM, OS Windows 7, 64 bit.

Computer A is a workstation and computer B – usual

desktop.

A. Problem 1

The uniform beam (Figure 3) is considered.

Fig. 3 The clamped beam

We accept: a = 2 m, E = 200 000 MPa, ρ = 7 600 kg/m3, A

= 0.001 m2, I = 0.0001 m4, where E is the Young’s

modulus, ρ – the material density, A – the cross-sectional

area and I – the moment of inertia. Three eigenpairs are

extracted (n = 3). The dimension of the problem N = 24 and

the dimension of the block m = 3. The preconditioning

parameters: reordering method is MMD (multiple minimum

degree), ȥ = 10-16, ȥ1 = 10-13, tol = 10-6 (section II.B).

Figure 4 presents the comparison of convergence for both:

the LOBPCG method [17], [18] and the proposed block

subspace projection PCG (BSPPCG) method. The minimal

error for the iterated approximations of eigenvectors in the

block is depicted on the vertical axis.

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

0 10 20 30 40 50 60

lo
g

(m
in

{|
|
r
i
|

|
2

 /
 λ i

})

Iterations

LOBPCG

BSPPCG

Fig. 4 The convergence of the LOBPCG and BSPPCG methods

The proposed BSPPCG method performs the control of the

linear independence of the basis vectors in the subspace

projection matrix Qk, decomposing the reduced mass matrix

m by the Cholesky method (section II.C). If the Cholesky

factorization of the m matrix has failed, the total

reorthogonalization of columns in the projection matrix Qk

ensures the linear independence of the basis vectors. As

soon as the first eigenpair begins to converge, the residual

vector ri
k corresponding to this pair tends to zero, since for

an exact solution this vector must be strictly zero. The

vector of the conjugate direction pi
k behaves similarly since

at the stationary point of the Rayleigh functional the

gradient vector is also zero and its direction is not defined.

Hence it follows that the convergence of eigenpairs leads to

a linear dependence between the columns of the projection

matrix Qk. Therefore, we remove the converged

eigenvectors from the block, replacing them with the new

start vectors, and restore the linear independence of the

columns of the matrix Qk, if necessary. As a result, we

obtain a fast and stable convergence for the BSPPCG

method, and the given example demonstrates it.

B. Problem 2

The design model of the multi-storey building, resting on

the soil, is shown in Figure 5. The number of equations is

2 989 476. Solid finite elements simulating the soil

SERGIY FIALKO, VIKTOR KARPILOVSKYI: BLOCK SUBSPACE PROJECTION PRECONDITIONED CONJUGATE GRADIENT METHOD 503

behavior contribute a relatively dense part in the sparse

stiffness matrix. The size of the completely factorized

stiffness matrix using the METIS reordering [16] is 36.53

GB. Therefore, this problem is very hard for a direct

solution. We accept the required number of eigenpairs n =

100, the dimension of the block m = 32. Parameters of

preconditioning are as follows: METIS reordering, ȥ = 10-

50, ȥ1 = 10-13. The required tolerance is tol = 10-3.

We compare the performance and speed up with an

increase of the number of threads of the proposed

incomplete block Cholesky solver with PARDISO from

Intel MKL 11.3 accepting a complete factorization mode (ȥ
= ȥ1 = 0) because in this mode the incomplete solver

processes the maximum amount of data.

Fig. 5 Multi-storey building, based on a prism of soil

Moreover, for a lot of large poorly conditioned problems

of structural and solid mechanics, we must take the

parameter ȥ as very small. Therefore, the mode of

incomplete solver in such a case will be close to the

complete factorization, which allows us on the scheduling

of load on the processors based on the non-zero structure of

the completely factorized matrix. If the problem admits a

relatively large value of the dropping parameter ȥ, the
duration of the incomplete factorization considerably

decreases and ceases to be critical in comparison with other

stages of the solution of the problem, and we apply in such a

situation the non-block version of the incomplete Cholesky

solver [8], which results in better properties of

preconditioning than the block Cholesky method due to

dropping of single elements in columns instead of the

rejection of the entire rows in the block-columns.

The Table I presents a comparison of the complete

factorization time and speed up, when the number of

threads increases, for the proposed block Cholesky solver

and PARDISO from Intel MKL 11.3. As it turned out, on

computer A with AMD Opteron processor the PARDISO

solver limits the number of threads to eight. The solver

proposed by us demonstrates a steady acceleration of up to

15 threads, and only when the number of threads is equal to

the number of processor cores, there is a slight decrease in

performance. As a result, we achieve on 15 threads a

slightly shorter total factorization time than PARDISO. In

general, both solvers show close results, and this fact allows

to conclude, that the developed incomplete block Cholesky

solver can be used successfully for the solution of real-life

large problems.

TABLE I

COMPARISON OF THE COMPLETE FACTORIZATION TIME AND SPEED UP.

PROBLEM 2, COMPUTER A.

Nos of

threads

Duration of

the block

Cholesky,

factorization s

Duration of

the

PARDISO,

factorization, s

Block

Cholesky,

Sp = T1/Tp

PARDISO,

Sp = T1/Tp

1 10 211 8 282 1 1

2 5 448 6 539 1.87 1.27

4 3 151 3 114 3.24 2.66

8 1 984 1 898 5.15 4.36

12 1 713 – 5.96 –

14 1 635 – 6.25 –

15 1 629 – 6.27 –

16 1 704 – 6.00 –

The sums of weights for each thread for both: first and

second parallelization levels (see section III.A) are

presented in Table II. We take a parameter tol1 = 0.05.

Even on 16 threads, the proposed scheduling algorithms

1 and 2 ensure an acceptable balance of computational load

between threads.

The duration of factorization using a conventional

incomplete Cholesky solver [8] on eight threads (in such

case this method demonstrates the best performance) is

42 638 s, and we believe that such a long time is

unacceptable.

Table III presents the duration of the main stages of

BSPPCG method. We use the following abbreviation: Reort.

time – time of the total reorthogonalization when the

columns of matrix Qk become almost linearly dependent;

Orth. against conv. modes – orthogonalization of columns

in the subblocks X and P against all converged modes (see

section II.E); Evaluation of residuals – see section II.B;

Subsp. project. – evaluation of the subspace projection

matrices m and k (section II.C); Prolong. – prolongation

procedure (section II.D). All these stages are parallelized.

Table IV shows the comparison of computing time

required for the extraction of 100 eigenpairs for different

methods. The BSPPCG method runs in the core memory,

requires 35.3 GB RAM and produces 61 iterations and 17

total reorthogonalization when ȥ = 10-50, ȥ1 = 10-13. When

504 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

we assign ȥ = 10-8, ȥ1 = 10-8, the amount of required RAM

is 16.4 GB, the ability of preconditioning of accelerating of

the convergence is worse than in the previous case, and 142

iterations and 50 total reorthogonalization is required.

TABLE II

THE DISTRIBUTION OF COMPUTATIONAL WORK AMONG THREADS.

PROBLEM 2, COMPUTER A.

Thread

number

First level of parallelization Second level of

parallelization

1 81 957 982 200 429 150

2 81 992 420 200 070 240

3 81 051 034 200 507 916

4 78 914 973 200 263 442

5 81 610 575 200 230 611

6 81 862 179 200 518 532

7 81 724 138 200 079 318

8 81 287 287 199 915 628

9 79 117 086 200 671 820

10 79 027 153 200 172 374

11 80 780 854 201 390 756

12 81 153 035 200 164 913

13 82 434 985 200 463 860

14 79 223 228 200 221 723

15 81 595 566 200 978 565

16 83 031 954 201 070 606

TABLE III

COMPUTING TIME OF SEVERAL PHASES VIA A NUMBER OF THREADS.

PROBLEM 2, COMPUTER A.

np Reort

time,

s

Orth.

against

conv

modes, s

Evalua-

tion of

residuals,

s

Subsp.

project.

s

Pro-

long.,

s

Total,

s
Snp

1 5241 6420 40039 8515 319 62711 1

2 2384 3197 21861 5303 183 34323 1.82

4 1628 2298 12039 3621 122 20814 3.01

8 1068 2315 9031 2809 104 16390 3.82

16 620 2183 8229 2415 103 14552 4.31

The block Lanczos method with the spectral

transformations (SBLANC, [7]) runs in two modes. When

the entire amount of the core memory is accessible (100 %

RAM), solver PARFES [11], [12] – one from the fastest

sparse direct solvers for multicore computers on today –

works in a core mode, and the lower triangular factorized

matrix L, having the size 36.53 GB, is located in RAM.

Therefore, the forward and back substitutions, performed at

each step of the Lanczos method, run extremely fast. In this

case, we obtain practically the same durations for both

methods.

When we allow using only 50% of RAM for the Lanczos

method, PARFES runs in the out of core mode (OOC), and

the matrix L is written block-by-block on disk. The forward

and back substitutions run very slowly, and the solution

time for the Lanczos method increases more than two times.

TABLE IV

COMPARISON OF COMPUTATION TIME FOR DIFFERENT METHODS.

PROBLEM 2, COMPUTER A.

Method Total time, s

BSPPCG (core mode, ψ = 10-50, ψ1 = 10-13) 14 552

BSPPCG (core mode, ψ = 10-8, ψ1 = 10-8) 16 334

SBLANC (100% RAM) 14 096

SBLANC (50% RAM) 34 660

C. Problem 3.

Figure 6 presents the design model of the multi-storey

building, having quite a different topology and construction

than the previous problem.

Fig. 6 Multi-storey building, having three towers

The dimension of the problem is N = 4 262 958

equations, number of required eigenpairs – n = 100,

dimension of the block m = 32. The parameters of

preconditioning are: ȥ = 0, ȥ1 = 10-13, tol = 10-3. We use a

usual desktop – computer B.

This problem is very hard for stable convergence due to

the presence of a large number of almost multiple

frequencies, produced by similar towers, resting on the

same stylobate, and we were forced to apply a shift

technique. Table V shows that the given approach proved to

be stable when the shift correction procedure (algorithm 5)

performs at least two iterations.

As a result, we obtain about the same time of solving the

problem by both methods: BSPPCG and SBLANC, but

BSPPCG method works in RAM, and when Lanczos

method is applied, PARFES uses the out of core (OOC)

mode.

SERGIY FIALKO, VIKTOR KARPILOVSKYI: BLOCK SUBSPACE PROJECTION PRECONDITIONED CONJUGATE GRADIENT METHOD 505

TABLE V

COMPARISON OF COMPUTATION TIME FOR DIFFERENT METHODS.

PROBLEM 3, COMPUTER B.

Method Number of
shift’s
corrections,
S

Number of
iterations

Number of
total

reorthogona-
lization

Total
time, s

BSPPCG 0 Lock of convergence after 42 eigenpairs
are converged

BSPPCG 1 Lock of convergence after 53 eigenpairs
are converged

BSPPCG 2 70 19 16 901
SBLANC — — — 16 568

VII. CONCLUSION

The proposed BSPPCG method can compete with the
block Lanczos method widely used in FEA software on
shared memory multi-core computers. The presented
approach, based on the PCG method, uses the block
incomplete Cholesky factorization approach which allows to
keep a very small value of the rejection parameter ψ and
produces a lower triangular matrix H, B = HHT, which
possesses a high ability to accelerate the convergence. The
use of the iteration technique in a block of fixed dimension,
the shift technique and the parallel algorithm for the total re-
orthogonalization, when a linear dependence between the
columns of the projection matrix Qk was detected, ensure the
high computational stability of the proposed approach.

ACKNOWLEDGMENT

This work was supported by SCAD Soft IT company.

REFERENCES

[1] P. R. Amestoy, I. S. Duff, J-Y. L'Excellent, “Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers,” Comput. Meth. Appl.
Mech. Eng., 184, pp. 501–520, 2000, https://doi.org/10.1016/S0045-
7825(99)00242-X.

[2] V. E. Bulgakov, M. E. Belyi and K. M. Mathisen, “Multilevel aggre-
gation method for solving large-scale generalized eigenvalue problems
in structural dynamics,” Int. J. Numer. Methods Eng., vol. 40. pp. 453
– 471, 1997, http://DOI: 10.1002/(SICI)1097-
0207(19970215)40:33.0.CO;2-2.

[3] Y. T. Feng and D. R. J. Owen, “Conjugate gradient methods for solv-
ing the smallest eigenpair of large symmetric eigenvalue problems,”
Int. J. Numer. Methods Eng., vol. 39. pp. 2209 – 2229, 1996,
http://DOI: 10.1002/(SICI)1097-0207(19960715)39:13<2209::AID-
NME951>3.0.CO;2-R.

[4] A. George, J. W. H. Liu, Computer solution of sparse positive definite
systems. New Jersey : Prentice-Hall, Inc. Englewood Cliffs, 1981.

[5] S. Yu. Fialko, “Natural vibrations of complex bodies,” Int. Applied
Mechanics, vol. 40, no. 1, pp. 83 – 90, 2004, http://DOI:
10.1023/B:INAM.0000023814.13805.34.

[6] S. Fialko, “Aggregation Multilevel Iterative Solver for Analysis of
Large-Scale Finite Element Problems of Structural Mechanics: Linear
Statics and Natural Vibrations”, in PPAM 2001, R. Wyrzykowski et
al. (Eds.), LNCS 2328, Springer-Verlag Berlin Heidelberg, 2002, pp.
663–670, http://DOI: 10.1007/1-4020-5370-3_41.

[7] S. Yu. Fialko, E. Z. Kriksunov and V. S. Karpilovskyy, “A block
Lanczos method with spectral transformations for natural vibrations
and seismic analysis of large structures in SCAD software,” in Proc.
CMM-2003 – Computer Methods in Mechanics, Gliwice, Poland,
2003, pp. 129 —130.

[8] S. Yu. Fialko, “Iterative methods for solving large-scale problems of
structural mechanics using multi-core computers,” Archives of Civil
and Mechanical Engineering, vol. 14, pp. 190 – 203, 2014, http://
doi:10.1016/j.acme.2013.05.009.

[9] S. Yu. Fialko, F. Żegleń, “Block Preconditioned Conjugate Gradient
Method for Extraction of Natural Vibration Frequencies in Structural
Analysis”, Proceedings of the FedCSIS. Łódż, 2015. IEEE Xplore
Digital Library, pp. 655 – 662. DOI: 10.15439/2015F87. URL:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=7321505&tag=1 .

[10] S. Yu. Fialko, F. Żegleń, “Block subspace projection PCG method for
solution of natural vibration problem in structural analysis.”, Proceed-
ings of the Federated Conference on Computer Science and Informa-
tion Systems pp. 669–672. DOI: 10.15439/2016F88. URL:
http://annals-csis.org/Volume_8/pliks/88.pdf .

[11] S. Yu. Fialko, “PARFES: A method for solving finite element linear
equations on multi-core computers,” Advances in Engineering soft-
ware, vol. 40, no. 12, pp. 1256-1265, 2010, http:// doi:10.1016/j.ad-
vengsoft.2010.09.002.

[12] S. Yu. Fialko, “Parallel direct solver for solving systems of linear
equations resulting from finite element method on multi-core desk-
tops and workstations”, Computers and Mathematics with Applica-
tions 70, pp. 2968–2987, 2015 doi:10.1016/j.camwa.2015.10.009

[13] G. Gambolati, G. Pini and F. Sartoretto, “An improved iterative opti-
mization technique for the leftmost eigenpairs of large symmetric ma-
trices,“ J. Comp. Phys., no 74, pp. 41 – 60, 1988, http://doi:
10.1016/0021-9991(88)90067-8.

[14] C. K. Gan, P. D. Haynes and M. C. Payne, “Preconditioned conjugate
gradient method for sparse generalized eigenvalue problem in elec-
tronic structure calculations,” Computer Physics Communications, vol
134, nr. 1, pp. 33 – 40, 2001, http://DOI: 10.1016/S0010-
4655(00)00188-0.

[15] V. Hernbadez, J. E. Roman, A. Tomas and V. Vidal, “A survey a soft-
ware for sparse eigenvalue problems,” Universitat Politecnica De Va-
lencia, SLEPs technical report STR-6, 2009.

[16] G. Karypis and V. Kumar, “METIS: Unstructured Graph Partitioning
and Sparse Matrix Ordering System,”. Technical report, Department
of Computer Science, University of Minnesota, Minneapolis, 1995.

[17] A. V. Knyazev and K. Neymayr, “Efficient solution of symmetric ei-
genvalue problem using multigrid preconditioners in the locally opti-
mal block conjugate gradient method,” Electronic Transactions on
Numerical Analysis, vol. 15, pp. 38 – 55, 2003. URL: https://eudm-
l.org/doc/123270.

[18] A. V. Knyazev, M. E. Argentati, I. Lashuk, E.E. Ovtchinnikov, “Block
Locally Optimal Preconditioned Eigenvalue Solvers (BLOPEX) in
HYPRE and PETSC”. URL: http://arxiv.org/pdf/0705.2626.pdf.

[19] R. B. Morgan, “Preconditioning eigenvalues and some comparison of
solvers,” Journal of computational and applied mathematics, vol. 123,
pp. 101 – 115, 2000, http://doi: 10.1016/S0377-0427(00)00395-2.

[20] M. Papadrakakis, “Solution of partial eigenproblem by iterative meth-
ods,” Int. J. Num. Meth Eng., vol. 20. pp. 2283—2301, 1984,
http://DOI: 10.1002/nme.1620201209.

[21] A. V. Perelmuter, S. Yu. Fialko, “Problems of computational mechan-
ics relate to finite-element analysis of structural constructions,” Inter-
national Journal for Computational Civil and Structural Engineering,
vol. 1, no 2, 2005, pp. 72 – 86.

[22] Y. Saad, Numerical methods for large eigenvalue problems, Revised
edition, Classics in applied mathematics. SIAM, 2011, http://dx.-
doi.org/10.1137/1.9781611970739.

[23] O. Schenk, K. Gartner, “Two-level dynamic scheduling in PARDISO:
Improved scalability on shared memory multiprocessing systems,”
Parallel Computing, 28, pp. 187–197, 2002,
https://doi.org/10.1016/S0167-8191(01)00135-1.

[24] Thread Local Storage. URL: https://msdn.microsoft.com/en-
us/library/windows/desktop/ms686749(v=vs.85).aspx (Last access:
18.04.2017).

[25] S. Tomov, J. Langou, A. Canning, Lin-Wang Wang, J. Dongarra,
“Conjugate-gradient eigenvalue solver in computing electronic prop-
erties of nanostructure architecture,” Int. J. Computational Science and
Engineering, vol. 2, nr. 3-4, pp. 205 – 212, 2006.
https://doi.org/10.1504/IJCSE.2006.012774.

[26] doclib/iss/2013/mkl/mklman/index.htm (Last access: 16.04.2015).

506 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

