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Beranových 130, 199 05, Praha, Czech Republic

Abstract—The presented study analyses 563 representative
benchmark sparse matrices with respect to their partitioning
into uniformly-sized blocks. The aim is to minimize memory
footprints of matrices. Different block sizes and different ways
of storing blocks in memory are considered and statistically eval-
uated. Memory footprints of partitioned matrices are additionally
compared with lower bounds and the CSR storage format. The
average measured memory savings against CSR in case of single
and double precision are 42.3 and 28.7 percents, respectively.
The corresponding worst-case savings are 25.5 and 17.1 percents.
Moreover, memory footprints of partitioned matrices were in
average 5 times closer to their lower bounds than CSR. Based
on the obtained results, we provide generic suggestions for
efficient partitioning and storage of sparse matrices in a computer
memory.

I. INTRODUCTION

The way how sparse matrices are stored in a computer

memory may have a significant impact on the required memory

space, i.e., on the matrix memory footprints. Reduction of

matrix memory footprints may positively influence related

computations and executions of corresponding programs. For

example:

• Lower matrix memory footprints yield faster processing

of matrices by I/O subsystems, e.g., when checkpointing-

restart resilience methods are applied within high perfor-

mance computing (HPC) applications [1], [2].

• Lower matrix memory footprints may increase the effi-

ciency and performance of sparse matrix computations

if these are bounded by memory bandwidth. This is,

e.g., often the case of sparse matrix vector multiplication

(SpMV)1.

• Lower matrix memory footprints allow larger matrices to

fit in the available amount of memory, which, therefore,

allows to solve computational problems to higher extent

or with higher accuracy.

This work was supported by the Czech Science Foundation under grant
no. 16-16772S and by Czech Technical University in Prague under grant
SGS17/215/OHK3/3T/18.

1Memory bandwidth is not the only bound for SpMV performance; there
are others as well [3]. However, in cases where the memory bandwidth is the
main bottleneck, by reducing memory footprints of matrices one can reduce
the overall timings of SpMV applications such as iterative solvers.

One way of reducing memory footprints of sparse matrices

is their partitioning into blocks (which also promotes spatial

locality during computations). Much has been written about

block processing of sparse matrices, frequently in the context

of memory-bounded character of SpMV [4]–[26]. In this arti-

cle, we address the problem of minimizing memory footprints

of sparse matrices by their partitioning into uniformly-sized

blocks. Its solution raises two essential questions: How to

choose a suitable block size? And, how to store resulting

nonzero blocks in a computer memory? These questions form

a multi-dimensional optimization problem that needs to be

solved prior to the partitioning itself. We refer to both these

problems—optimization and partitioning—as (block) prepro-

cessing.

The above introduced optimization problem raises another

question: How to specify the optimization space, i.e., the space

of tested configurations? Intuitively, the larger the optimization

space is, the lower matrix memory footprint can be found,

however, at a price of longer preprocessing runtime. To

amortize block processing of a sparse matrix, the optimization

space thus need to be chosen wisely in a form of a trade-off:

we want it to be small enough to ensure its fast exploration

but also large enough to contain the optimal or nearly-optimal

configuration generally for any sparse matrix.

We present a study that analyses memory footprints of 563

representative sparse matrices from the University of Florida

Sparse Matrix Collection (UFSMC) [27] with respect to their

partitioning into uniformly sized blocks. These matrices arose

from a large variety of applications of multiple problem

types and thus have highly diverse structural and numerical

properties. Our goal is to minimize memory footprints of

matrices and we consider an optimization space that consists

of different block sizes and different ways of storing blocks

in memory. Based on the obtained results, we finally provide

suggestions for both efficient and effective block preprocessing

of sparse matrices in general.

II. METHODOLOGY

In Section I, we referred to the matrix memory footprint

as to the amount of memory space required to store a given

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 513–521

DOI: 10.15439/2017F70

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 513



matrix in a computer memory. More precisely, we can define

it as a number of bits (or bytes) which is needed to store the

values of nonzero elements of a given matrix together with the

information about their structure, i.e., their row and column

positions.

A. Sparse Matrix Storage Formats

The ways how sparse matrices are stored in a computer

memory are generally called sparse matrix storage formats;

we call them formats only if the context is clear. Matrix

memory footprint is thus a function of a given matrix and

format (memory footprints for the same matrix but distinct

formats may differ considerably).

In case of partitioned sparse matrices, their nonzero blocks

represent individual submatrices that can be treated separately.

In practice, well-proven formats used for nonzero blocks of

sparse matrices are:

• The coordinate (COO) format, which stores values of

block nonzero elements together with their row and

column indices [7], [17], [21].

• The compressed sparse row (CSR) format, which stores

values and column indices of lexicographically ordered

block nonzero elements together with the information

about which values / column indices belongs to which

block row [17], [19]–[21].

• The bitmap format, which stores values of block nonzero

elements in some prescribed order and encodes their row

and column indices in a bit array [8], [15], [17].

• The dense format, which stores values of both nonzero

and zero block elements in a dense array (row and column

indices of nonzero elements are thus effectively deter-

mined by positions of their values within this array) [13],

[14], [17], [28].

B. Blocking Storage Schemes

Considering these formats, we have 6 options how to store

nonzero blocks of a sparse matrix in memory:

1) store all the blocks in the COO format,

2) store all the blocks in the CSR format,

3) store all the blocks in the bitmap format,

4) store all the blocks in the dense format,

5) store all the blocks in a format that minimizes the

memory footprint of a given matrix (we refer to this

option as min-fixed),

6) store each block in a format that minimizes the contri-

bution of this block to the memory footprint of a given

matrix (we refer to this option as adaptive).

We call these options blocking storage schemes, or shortly

schemes only. Since the first 4 schemes prescribe a fixed

format for all the blocks, we call them fixed-format schemes.

For the min-fixed and adaptive schemes, we consider for-

mats for nonzero blocks to be chosen from COO, CSR,

bitmap, and dense. In case of the min-fixed scheme, the matrix

memory footprint thus contains 2 additional bits for storing the

information about the format used for all the nonzero blocks.

In case of the adaptive scheme, the matrix memory footprint

contains 2 additional bits for each nonzero block to store the

information about its format.

C. Block Sizes

To evaluate memory footprints of a given matrix for dif-

ferent schemes and some particular tested block size, we

need information about numbers of nonzero elements of all

nonzero blocks [17]. In the end, this information must be

obtained for each distinct block size from the optimization

space, which represents the most demanding part of the whole

optimization process [29]. The block preprocessing runtime

is thus approximately proportional to the number of distinct

tested block sizes. Consequently, the lower is their count, the

higher are the chances that the partitioning will be profitable

at all.

Generally, there is O(m× n) ways how to choose a block

size for an m×n matrix, but for fast block preprocessing, we

need to consider only few of them.2 One possible approach is

to consider only block sizes

2k × 2ℓ, where 1 ≤ k ≤ K and 1 ≤ ℓ ≤ L, (1)

which reduces the number of tested block sizes to K × L.

Such a choice, among others, results in substantially faster

preprocessing in general [29]. Within the presented study, we

consider block sizes (1) and set K = L = 8. The choice of

these upper bounds stemmed from our auxiliary experiments

which showed that space-optimal block sizes have mostly less

than 64 rows/columns. Taking into account block sizes with up

to 256 rows/columns should cover even the remaining corner

cases.

D. Optimization Space

In the summary, our optimization space is initially defined

by S6 × B64, where S6 denotes a set of selected blocking

storage schemes:

S6 =
{

COO,CSR, bitmap, dense,min-fixed, adaptive
}

and B64 denotes a set of selected block sizes:

B64 =
{

2k × 2ℓ : 1 ≤ k, ℓ ≤ 8
}

.

E. Additional Considerations

When measuring matrix memory footprints, we need to

decide how to represent information about nonzero blocks and

how to represent indices. In the presented study, we assume

that:

1) nonzero blocks are stored in memory in the lexicograph-

ical order;

2) block column index for each nonzero block is stored

explicitly;

3) the number of nonzero blocks for each block row is

stored;

2In addition to multiplication and Cartesian product, we also use the
multiplication sign “×” to specify matrix/block sizes. In such cases, m× n

does not denote multiplication, but a matrix/block size of height m and width
n (i.e., having m rows ans n columns).
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TABLE I: Counts of tested matrices falling under particular

problem types (referred to as “kinds” in the UFSMC).

Problem Matrices

2D/3D 36
acoustics 4
chemical process simulation 25
circuit simulationi 41
computational fluid dynamics 47
computer graphics/vision 8
counter-example 2
duplicate model reduction 5
economic 24
eigenvalue/model reduction 2
electromagnetics 11
frequency-domain circuit sim. 4
least squares 7
linear programming 51
materials 15
model reduction 11
optimization 66
power network 35
semiconductor device 16
statistical/mathematical 1
structural 82
theoretical/quantum chemistry 42
thermal 11
weighted graph 17

4) a minimum possible number of bits, i.e., ⌈log2 n⌉ bits,

is used to store an index related to n entities (such an

approach is in the literature sometimes referred to as

index compression).

F. Benchmark Matrices

Sparse matrices are often divided into two main

categories—high performance computing (HPC) matrices and

graph matrices. Efficient processing of graph matrices is

generally governed by special rules that are different from

those being effective for HPC matrices [9], [30], [31] (e.g.,

higher matrix memory footprints in some cases lead to higher

performance of computations and graph matrices are also

typically not suitable for simple block processing mainly due

to emergence of hypersparse blocks [8], [9]). Within this work,

we focused mainly (but not exclusively) on HPC matrices.

Namely, we considered all real matrices from the UFSMC that

contained more than 105 nonzero elements and had a unique

structure of nonzero elements. This way, we obtained 563

sparse matrices arising from different application problems

(see Table I) and thus having different structural (and numeri-

cal) properties; we denote these matrices by A1, . . . , A563. Of

these matrices, 281 were square symmetric and the remaining

282 were either rectangular or square unsymmetric.

G. Matrix Memory Footprint

For symmetric matrices, we always assume storage only of

their single triangular parts in memory, which is a common

practice. Referring to the number of nonzero elements of a

matrix, we thus generally need to distinguish between the

number of all nonzero elements and the number of elements

that are assumed to be stored in a computer memory. While

measuring memory footprints of sparse matrices, we take into

account the latter one.

According to the text above, a matrix memory footprint for

a sparse matrix Ak partitioned into uniformly-sized blocks is

a function of the following parameters:

1) sparse matrix Ak,

2) block storage scheme s ∈ S6,

3) block size h× w ∈ B64,

4) number of bits b required to store a value of a single

matrix nonzero element.

We denote this function by MMF⊞(Ak, s, w×h, b). We further

assume storing values of matrix nonzero elements in either

single or double precision IEEE floating-point format [32],

which implies b = 32 or b = 64, respectively, in case of

real matrices. We refer to such a floating-point precision as

precision only.

We say that a matrix memory footprint for a given matrix A
and a given precision determined by b is optimal (with respect

to our work) if it equals

min
{

MMF⊞(A, s, h× w, b) : s ∈ S6, h× w ∈ B64

}

.

We call the corresponding blocking storage scheme and block

size optimal as well.

Let S ⊆ S6 and B ⊆ B64. S ×B thus define a subspace of

the optimization space S6 × B64. Let

∆b
S,B(k) =

(

min
{

MMF⊞(Ak, s, h× w, b) : s ∈ S, h× w ∈ B
}

/

min
{

MMF⊞(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}

− 1
)

× 100.

This function expresses of how much percent is the minimal

memory footprint of Ak from S × B higher (worse) than its

optimal memory footprint. To assess the subspace S × B, we

define the following parametrized set

Ub
S,B =

{

∆b
S,B(k) : 1 ≤ k ≤ 563

}

.

The minimum, mean (average; µ), and maximum of Ub
S,B then

reflect the best, average, and worst cases, respectively, for S×
B across the tested matrices.

If S or B consists of a single element only, we omit the

curly braces in the subscript of U for the sake of readability;

e.g., we write Ub
s,B64

and Ub
S6,h×w instead of Ub

{s},B64
and

Ub
S6,{h×w}.

III. RESULTS AND DISCUSSION

A. Blocking Storage Schemes

First, we assessed blocking storage schemes. Table II shows

for how many tested matrices were individual schemes opti-

mal. The adaptive scheme clearly dominates this evaluation

metric; it was optimal for 464 tested matrices, which corre-

sponds to 82.4% of their total count. Note that the min-fixed

scheme was never optimal; this is due to the necessity to store

additional information about the format used for blocks (if

DANIEL LANGR, IVAN ŠIMEČEK: ON MEMORY FOOTPRINTS OF PARTITIONED SPARSE MATRICES 515



0

10

20

30

40

50

60

70

Ϯ×
Ϯ

Ϯ×
ϰ

Ϯ×
8

Ϯ×
ϭϲ

Ϯ×
ϯϮ

Ϯ×
ϲϰ

Ϯ×
ϭϮ

8
Ϯ×
Ϯϱ

ϲ
ϰ×

Ϯ
ϰ×

ϰ
ϰ×

8
ϰ×

ϭϲ
ϰ×

ϯϮ
ϰ×

ϲϰ
ϰ×

ϭϮ
8

ϰ×
Ϯϱ

ϲ
8×

Ϯ
8×

ϰ
8×

8
8×

ϭϲ
8×

ϯϮ
8×

ϲϰ
8×
ϭϮ

8
8×

Ϯϱ
ϲ

ϭϲ
×Ϯ

ϭϲ
×ϰ

ϭϲ
×8

ϭϲ
×ϭ

ϲ
ϭϲ

×ϯ
Ϯ

ϭϲ
×ϲ

ϰ
ϭϲ

×ϭ
Ϯ8

ϭϲ
×Ϯ

ϱϲ
ϯϮ

×Ϯ
ϯϮ

×ϰ
ϯϮ

×8
ϯϮ

×ϭ
ϲ

ϯϮ
×ϯ

Ϯ
ϯϮ

×ϲ
ϰ

ϯϮ
×ϭ

Ϯ8
ϯϮ

×Ϯ
ϱϲ

ϲϰ
×Ϯ

ϲϰ
×ϰ

ϲϰ
×8

ϲϰ
×ϭ

ϲ
ϲϰ

×ϯ
Ϯ

ϲϰ
×ϲ

ϰ
ϲϰ

×ϭ
Ϯ8

ϲϰ
×Ϯ

ϱϲ
ϭϮ

8×
Ϯ

ϭϮ
8×

ϰ
ϭϮ

8×
8

ϭϮ
8×

ϭϲ
ϭϮ

8×
ϯϮ

ϭϮ
8×

ϲϰ
ϭϮ

8×
ϭϮ

8
ϭϮ

8×
Ϯϱ

ϲ
Ϯϱ

ϲ×
Ϯ

Ϯϱ
ϲ×

ϰ
Ϯϱ

ϲ×
8

Ϯϱ
ϲ×

ϭϲ
Ϯϱ

ϲ×
ϯϮ

Ϯϱ
ϲ×

ϲϰ
Ϯϱ

ϲ×
ϭϮ

8
Ϯϱ

ϲ×
Ϯϱ

ϲ

N
u

m
b

e
r 

o
f 

m
a

tr
ic

e
s

Optimal block size

Fig. 1: Numbers of tested matrices for which are block sizes optimal, measured for double precision; block size 8 × 8 was

optimal for 257 matrices.

TABLE II: Counts of tested matrices for which are blocking

storage schemes optimal; the numbers are the same for both

single and double precision.

Scheme Matrices

COO 58
CSR 0
bitmap 36
dense 5
min-fixed 0
adaptive 464

we ignored the additional 2 bits required by this scheme, it

would be optimal for 58 + 36 + 5 = 99 matrices). However,

the numbers in Table II reflect only best cases, i.e., matrices

that were most suitable for particular schemes. To find out

how much were particular schemes better than the others in

average and for their worst-case (most unsuitable) matrices,

we need complete statistics of Ub
s,B64

; these are presented in

Table III and lead to the following observations:

• No fixed-format scheme minimized matrix memory foot-

prints in comparison with the others. Bitmap was the best

in average, however, it was inferior to both COO and CSR

in worst cases.

• Dense provided extremely high matrix memory footprints

in average and worst cases. Due to the explicit storage

of zero elements, this scheme is suitable only for kinds

of matrices that contain highly dense blocks; obviously,

there were only few such matrices in our tested suite

(recall that the dense scheme was optimal for 5 matrices

according to Table II).

• The lowest memory footprints were provided by the min-

fixed and adaptive schemes; their numbers are consider-

ably lower in comparison with the fixed-format schemes.

B. Block Sizes

Similarly as blocking storage schemes, we assessed block

sizes. Fig. 1 shows for how many tested matrices were

individual block sizes optimal in case of double precision

measurements; for single precision, the results differed only

for 2 matrices. We may observe that some block sizes were

especially favourable. The 8 × 8 block size was optimal for

257 matrices, which corresponds to 45.6% of their total count.

Together with 4 × 4 and 16 × 16, these 3 block sizes were

optimal for 65.2% of tested matrices. However, again, the

numbers from Fig. 1 reflect only best cases. To find out

how much were particular block sizes better than the others

in average and for their worst-cases matrices, we present

the average and maximum values of Ub
S6,h×w in Table IV

and Table V for single and double precision, respectively.

According to these results, some blocks sizes—especially

8×8—provided alone average matrix memory footprints close

to their optimal values. However, there was not a single block

size that would yield the same outcome for all the tested

matrices; the maxima were for all the block sizes relatively

high.

Let us remind that one of our goals is a possible reduction

of the number of block sizes in the optimization test space.

The question thus is whether there is some subset B ⊂ B64

that would, at the same time:

1) significantly reduce the number of block sizes (|B|),
2) provide matrix memory footprints close to their optimal

values for most of the tested matrices (average of Ub
S6,B

close to zero),

3) provide low matrix memory footprints for all the tested

matrices (low maximum of Ub
S6,B

).

Natural candidates for such a subset would be the first n
block sizes from Table IV and Table V; let us denote them by

C64
n and C32

n , respectively. Fig. 2 evaluates these subsets as a

function of n. We may notice that

C64

9 = C32

9 =
{

h× w : h,w ∈ {4, 8, 16}
}

,

C64

16 = C32

16 =
{

h× w : h,w ∈ {4, 8, 16, 32}
}

;

seemingly, block sizes from these subsets are especially suit-

able for sparse matrices in general.

Despite that, neither these first 9 nor 16 block sizes reduced

the maximal matrix memory footprints too much according to
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TABLE III: Minimum, average and maximum values of Ub
s,B64

(in percents).

Single precision (b = 32) Double precision (b = 64)

Scheme (s) Minimum Average Maximum Minimum Average Maximum

COO 0.00 4.78 15.27 0.00 2.52 7.67

CSR 0.73 6.84 19.13 0.41 3.74 11.05

bitmap 0.00 3.13 22.01 0.00 1.75 12.38

dense 0.00 84.61 217.04 0.00 92.40 249.02

min-fixed 0.00 1.19 5.41 0.00 0.64 2.94

adaptive 0.00 0.10 2.24 0.00 0.05 1.30

TABLE IV: Average and maximum values of U32

S6,h×w (in percents), sorted by average.
.

Rank h× w Avg. Max.

1 8×8 1.23 18.36

2 8×16 2.14 19.35

3 16×8 2.26 21.41

4 4×8 2.32 17.31

5 8×4 2.38 19.52

6 16×16 2.56 21.82

7 4×4 2.92 21.94

8 4×16 2.99 16.51

9 16×4 3.23 20.44

10 8×32 3.65 21.26

Rank h× w Avg. Max.

11 16×32 4.03 23.75

12 32×8 4.13 23.97

13 4×32 4.36 18.71

14 32×16 4.53 24.45

15 32×4 4.87 23.60

16 32×32 5.20 26.50

17 2×8 5.59 21.15

18 8×64 5.61 23.57

19 8×2 5.66 26.39

20 2×16 5.84 22.84

Rank h× w Avg. Max.

21 16×64 5.89 26.15

22 4×2 6.06 28.77

23 2×4 6.15 23.07

24 16×2 6.25 29.98

25 4×64 6.26 21.53

26 64×8 6.56 25.83

. . . . . . . . . . . .
62 256×2 14.44 37.33

63 256×128 14.61 38.32

64 256×256 14.65 35.42

TABLE V: Average and maximum values of U64

S6,h×w (in percents), sorted by average.
.

Rank h× w Avg. Max.

1 8×8 0.69 11.07

2 8×16 1.18 11.67

3 16×8 1.25 12.91

4 4×8 1.30 9.74

5 8×4 1.33 10.98

6 16×16 1.40 13.16

7 4×4 1.63 12.34

8 4×16 1.66 9.96

9 16×4 1.79 12.32

10 8×32 1.99 11.97

Rank h× w Avg. Max.

11 16×32 2.19 12.84

12 32×8 2.26 14.45

13 4×32 2.40 10.56

14 32×16 2.47 14.04

15 32×4 2.68 14.23

16 32×32 2.82 14.18

17 8×64 3.05 12.62

18 2×8 3.11 12.08

19 8×2 3.14 14.02

20 16×64 3.19 14.00

Rank h× w Avg. Max.

21 2×16 3.25 13.04

22 4×2 3.34 15.74

23 2×4 3.40 12.84

24 4×64 3.42 11.38

25 16×2 3.47 15.93

26 64×8 3.57 15.30

. . . . . . . . . . . .
62 256×2 7.88 21.59

63 256×128 7.92 19.56

64 256×256 7.93 18.96

Fig. 2. However, we may observe that there are some block

sizes where these maxima significantly dropped. Based on the

analysis of the statistics of Ub
S6,Cb

n
, we propose the following

reduced sets of block sizes:

B8 =
{

2k × 2k : 1 ≤ k ≤ 8
}

,

B14 = B8 ∪
{

2k × 2ℓ : 2 ≤ k, ℓ ≤ 4
}

,

B20 = B8 ∪
{

2k × 2ℓ : 2 ≤ k, ℓ ≤ 5
}

.

B8 thus consists of all square block sizes from B64. B14 and

B20 equal B8 plus rectangular block sizes from C32
9 (C64

9 ) and

C32
16 (C64

16 ), respectively.

C. Optimization Subspace

Table III revealed that to minimize memory footprints of

(all) the tested matrices, we had to use either the min-fixed

or the adaptive blocking storage scheme. To reduce the block

preprocessing overhead, we now proposed several reduced sets

of block sizes. Let us now assess these options together. We

measured the statistics of Ub
s,Bj

for all the combinations of s ∈
{min-fixed, adaptive} and j ∈ {64, 20, 14, 8}; the results are

presented in Table VI. The average matrix memory footprints

were in all cases close to their optimal values. Moreover, the

reduced sets Bj required much less block sizes than Cb
n to

achieve the same maxima. For instance:

1) B14 in combination with the min-fixed scheme required

only 14 block sizes to achieve the same maxima as Cb
43 in

combination with all the schemes. This would effectively

reduce the number of block sizes in the optimization

space by a factor of about 3, which would proportionally

reduce the preprocessing overhead in practice.

2) B20 in combination with the adaptive scheme required

only 20 block sizes to achieve the same maxima Cb
50 in

combination with all the schemes. This would effectively

reduce the number of block sizes by a factor of 2.5.

D. Memory Savings Against CSR32

Likely the most widely-used storage format for sparse ma-

trices in practice is CSR, which is supported by vast majority

of software tools and libraries that work with sparse matrices.

To distinguish between CSR used for blocks of partitioned

matrices and CSR used for whole (not-partitioned) matrices,

we call the latter CSR32, since it is typically implemented

with 32-bit indices. Researchers frequently demonstrate the
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n
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TABLE VI: Average and maximum values of Ub
s,Bj

(in percents) for j ∈ {64, 20, 14, 8}.

(a) Single precision (b = 32)

s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 1.19 5.41 0.10 2.24

B20 1.32 6.23 0.22 4.21

B14 1.35 6.89 0.28 6.81

B8 1.51 10.06 0.51 11.07

(b) Double precision (b = 64)

s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 0.64 2.94 0.05 1.30

B20 0.71 3.52 0.12 2.37

B14 0.73 3.77 0.16 3.83

B8 0.81 5.34 0.28 5.88

superiority of their algorithms and data structures (formats)

by comparison with CSR32, which have become de facto an

etalon in sparse-matrix research.

Comparison of memory footprints of sparse matrices

partitioned into blocks and the same matrices stored in

CSR32 allows us to assess our blocking approach. Let

MMFCSR32(A, b) denote a memory footprint of a matrix A
stored in memory in CSR32 with respect to a precision given

by b. The function

Λb(k) =
(

1−

min
{

MMF⊞(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}

/

MMFCSR32(Ak, b)
)

× 100

then expresses how much memory in percents we would

save if we stored the tested matrix Ak in its optimal block-

ing configuration instead of in CSR32. We measured these

memory savings for all the tested matrices and processed

them statistically; the results are presented by Table VII. The

obtained numbers arguments strongly in favour of partition-

ing of sparse matrices in general. Even in worst cases, our

TABLE VII: Statistics of Λb(k), i.e., memory savings of

optimal blocking configurations against CSR32 in percents,

across the tested matrices.

Statistics Single precision Double precision

Minimum 25.46 17.08

Average 42.29 28.67

Maximum 50.21 35.86

blocking approach reduced the memory footprints of matrices

of 25.46% and 17.08% for single and double precision, re-

spectively. In average, the savings were 42.29% and 28.67%,

which significantly reduces the amount of data that needs

to be transferred between memory and processors during

computations.

E. Memory Footprints Compared with Lower Bounds

Section III-D showed how much memory space we would

save if we stored sparse matrices in optimal blocking config-

urations instead of in CSR32. The last object of our concern

within this study was of how much are the memory footprints
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of the tested matrices higher than their potential minima, i.e.,

their lower bounds.

We further do not consider compression of the values of

matrix nonzero elements, since it is generally worth applying

only for special kinds of matrices where nonzero elements

contain few unique numbers. To store nnz nonzero elements

of a matrix A in memory with respect to a precision given

by b, we thus need nnz × b bits to store their values and

some additional space to store the information about their

structure. The lower bound for the latter for any particular

structure of nonzero elements is 1 bit, since it is sufficient

for distinguishing whether or not a matrix has that particular

structure. For instance, we can use this bit to indicate whether

a matrix is tridiagonal. If it is, the bit would be set and we can

store the values of nonzero elements in a dense array; their row

and column indices can then be derived from the positions of

values in this array. Such an approach can be generally applied

for any particular structure of matrix nonzero elements.

In practice, we would likely store in memory also some

additional information about a matrix, such as its dimensions

or its number of nonzero elements. However, for large matrices

such as those from our tested suite, this additional data

require a negligible amount of memory, therefore we define

a lower bound for a matrix memory footprint simply as

MMFlb(A, b) = nnz × b.
Let

Γb
⊞
(k) =

(

min
{

MMF⊞(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}

/

MMFlb(Ak, b)− 1
)

× 100

and

Γb
CSR32(k) =

(

MMFCSR32(Ak, b)

MMFlb(Ak, b)
− 1

)

× 100.

Γb
⊞
(k) thus expresses of how much percents is the memory

footprint of Ak stored in an optimal blocking way higher

than its lower bound. For comparison purposes, we define

also a corresponding metric for the CSR32 format denoted

by Γb
CSR32

(k).
The measured statistics of Γb

⊞
(k) and Γb

CSR32
(k) for the

tested matrices are shown in Table VIII. Memory footprints

of partitioned sparse matrices were obviously much closer to

the lower bounds than memory footprints of matrices stored in

CSR32; namely, 5 times closer in average and 2 times in worst

cases. Moreover, in best cases, partitioned matrices almost

reached their lower-bound memory footprints. For instance, in

double precision, 7, 26, and 120 matrices out of 563 provided

memory footprints up to 1, 2, and 5 percents above their lower

bounds, respectively.

IV. CONCLUSIONS

Within this study, we analyzed memory footprints of 563

representative sparse matrices with respect to their partitioning

into uniformly sized blocks. We considered different block

sizes and different ways of storing blocks in a computer mem-

ory. The obtained results led us to the following conclusions:

TABLE VIII: Statistics of Γb
⊞
(k) and Γb

CSR32
(k) (in percents)

for the tested matrices.

Single precision Double precision

Statistics Blk.-opt. CSR32 Blk.-opt. CSR32

Minimum 0.63 100.02 0.31 50.01

Average 21.85 111.03 10.93 55.51

Maximum 71.31 152.39 35.66 76.19

1) Partitioning of sparse matrices substantially reduces

memory footprints of sparse matrices when compared

to the most-commonly used storage format CSR32. The

average observed memory savings in case of single

and double precision were 42.3 and 28.7 percents of

memory space, respectively. The corresponding worst-

case savings were 25.5 and 17.1 percents.

2) Partitioning of sparse matrices provides memory foot-

prints much closer to their lower bounds than CSR32.

In average, the measured memory footprints for optimal

blocking configurations were of only 21.9 and 10.9

percents higher than the lower bounds, while the cor-

responding memory footprints for CSR32 were higher

of 111.0 and 55.5 percents. Moreover, the memory

footprints of matrices most suitable for block processing

approach the lower bounds; the amount of memory

required for storing information about the structure of

nonzero elements of such matrices is relatively negligi-

ble.

3) For minimization of memory footprints of partitioned

sparse matrices in general, we cannot consider only a

single format for storing blocks. Instead, we need to

choose a format according to the structure of matrix

nonzero elements either for all its blocks collectively

(min-fixed scheme) or for each block separately (adap-

tive scheme). The latter approach mostly yields lower

memory footprints.

4) For minimization of memory footprints of partitioned

sparse matrices in general, we cannot consider only a

single block size. However, we can substantially reduce

the set of block sizes in the optimization space and

still obtain memory footprints close to their optima.

In average, the measured memory footprints for the

proposed reduced sets of block sizes B20, B14, and

B8 and the min-fixed/adaptive schemes were at most

of only 1.51 percents higher than the optimal values.

Even considering square blocks only is thus generally

sufficient for minimization of memory footprints of

sparse matrices. However, there exist matrices for which

the corresponding metrics are significantly higher and

are inversely proportional to the number of tested block

sizes. One should thus be aware of whether or not his/her

matrices fall into this category and if yes, he/she might

consider using larger sets of block sizes.

Our findings are encouraging since they show that memory

footprints of partitioned sparse matrices can be substantially
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reduced even when a relatively small block preprocessing

optimization space is considered. Whether or not will such

a reduction pay off in practice depends first of all on the ob-

jective one wants to achieve. A big challenge is to improve the

performance of memory-bounded sparse matrix operations due

to the reduction of memory footprints of matrices. Within our

future work, we plan to face this problem at least partially—

we will focus on the development of scalable efficient block

preprocessing and SpMV algorithms for the min-fixed and

adaptive blocking storage schemes, and we will evaluate them

experimentally on mainstream HPC architectures.

ACKNOWLEDGEMENTS

The authors acknowledge support from P. Tvrdı́k from

the Czech Technical University in Prague, P. Vrchota from
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