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Abstract—In text mining, document clustering describes the
efforts to assign unstructured documents to clusters, which in
turn usually refer to topics. Clustering is widely used in science
for data retrieval and organisation. In this paper we present a
new graph theoretical approach to document clustering and its
application on a real-world data set. We will show that the well-
known graph partition to stable sets or cliques can be generalized
to pseudostable sets or pseudocliques. This allows to make a soft
clustering as well as a hard clustering. We will present an integer
linear programming and a greedy approach for this NP-complete
problem and discuss some results on random instances and some
real world data for different similarity measures.

I. INTRODUCTION

D
OCUMENT Clustering is usually not perceived as a
graph problem. But following [1] we would like to

split the process in two steps. At first we need to define
a similarity measure appropriate to the data domain. Then
the technical clustering process can be done using a graph
theoretical approach. Jain et al. also suggested a last step called
"assessment of output" and we will show that this can also be
solved using graph theory and building the graph visualization
proposed in this paper.

We will now define the problem. For technical terms we
refer to [2]. The Cluster Hypotheses is essential: “Documents
in the same cluster behave similarly with respect to relevance
to information needs.” We are not trying to do K-Clustering,
where we have a given number of K clusters. Thus we define
the document clustering as follows:

Given a similarity function for the Document Space D as
sim : D × D → R

+ and an ǫ ∈ R
+. We search for a

minimal number of clusters, so that every two documents x, y
in one cluster have sim(x, y) ≥ ǫ. We will use this approach
as definition II.1.

A hard clustering defines, that every document belongs to
only one cluster, whereas soft clustering allows documents
to be belong to one or more clusters, even with a distinct
probability. We will introduce a novel new graph structure
that can also handle soft clustering.

A lot of research to the topic of document clustering in
the last years focused on methods and heuristics. The authors
of [3] for example try to cluster documents from MEDLINE
by using evolutionary algorithms, whereas [4] use machine
learning approaches. Only few authors like [5] use graph-based
approaches. Some authors, like [6] cover related problems like

clustering in the context of search queries, whereas [7] work
on the field of hierarchical clusterings.

This paper tries to use a novel reformulation of document
clustering as a graph partition problem to get new insights to
the problem itself. We hope that this leads to new heuristics
and a deeper understanding of the problem. Thus, after consid-
ering some preliminaries we will introduce pseudostable sets
and pseudocliques which are deeply related to graph coloring
and stable sets. We will reformulate soft document clustering
as a graph problem, where we seek a minimal partition in
pseudeostable sets. After introducing a greedy and integer
linear programming approach we will make a proof of concept
on some real world data.

II. PRELIMINARIES

A. Document Clustering

Using a Graph Partition for Clustering has been widely
discussed in literature. Schaeffer points out that “the field
of graph clustering has grown quite popular and the number
of published proposals for clustering algorithms as well as
reported applications is high” [8]. Usually directed or weighted
graphs are subject of research. But we would like to point out
that for problem complexity reasons it is suitable to focus on
simple graphs. The work reported in [9] explains that a graph
partition in cliques or stable sets is most common.

But we could also imagine – and find in literature –
approaches that discuss somehow defined subgraphs or other
partitions. As [8] points out unfortunately, “no single definition
of a cluster in graphs is universally accepted, and the variants
used the in literature are numerous”. We will start with this
definition:

Definition II.1. (Hard Document Clustering) Given a set of

documents D = {d1, ..., dN} and a similarity measure sim :
D × D → R

+ as well as a bound ǫ ∈ R
+. We search for a

minimal number of clusters, so that for every two documents

x, y sharing the same cluster sim(x, y) ≥ ǫ holds.

We would like to suggest a slightly different approach to
cover both hard as well as soft clustering. A graph partition
into stable sets or cliques can be generalized to be universal
in such a way that it can handle hard clustering as well as soft
clustering.

We argue that a simple graph for a representation of
documents for the purpose of document clustering is not a
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limitation. The graph does not need to be directed, since for
two documents di, dj always sim(di, dj) = sim(dj , di). Since
every clustering algorithm needs to decide, if two documents
are in one cluster there is no need to assign a weight to the
edge. If a previous measurement algorithm decides that two
documents cannot be in the same cluster, the value should be
set that way that there is an edge.

B. Graph Theory

Given a Graph G = (V,E) with nodes or vertices in a set
V and a set of edges E. Two nodes u, v ∈ V are adjacent,
if an edge (u, v) ∈ E exists. The graph coloring problem is
to assign a color to each node so that every two nodes that
are adjacent have a different color. The minimal number of
colors needed to color a graph is called chromatic number
and denoted with χ(G).

This problem has many applications and has been studied
extensively. It is on most graphs NP-complete, see [10].

For every feasible coloring of G all nodes sharing the same
color imply a stable set in G. S is a stable set in G if (u, v) /∈
E ∀u, v ∈ S. Thus we have a partition of G in stable sets.

But it is also possible to use a set covering approach, where
the set of vertices has to be covered by a minimum number
of stable sets, see [11]. This is very useful in the context of
linear programming. As Hansen et al. mentioned this approach
involves an exponential number of variables which makes the
problem complex. Many optimization problems on graphs can
be formulated as set covering problems.

III. PSEUDOSTABLE SETS AND PSEUDOCLIQUES

We will now discuss novel graph structures. Pseudostable
sets were first introduced in [12] as a graph partition problem
in the context of the Train Marshalling Problem covering the
rearrangement of cars of an incoming train in a hump yard.
They are still under research in several contexts. In this paper
we will apply pseudostable sets in a total new context and also
introduce pseudocliques and the corresponding graph covering
problem. Thus the whole approach presented in this paper is
novel.

We now consider a simple Graph G = (V,E) with a
subgraph B ⊂ G of so called blue nodes and edges. B can
be chosen absolutely arbitrary. For example it is also possible
that B = ∅ or B = G.

A. A set covering approach

At first we need to define two different subsets of the graph
G to create a set covering:

Definition III.1. (Pseudostable Tuple) T ⊂ G is a pseu-
dostable Tuple, if it is the union of two stable sets D1 and

D2 and a path p such that

T = D1 ∪ p ∪D2

The intersection of D1 and p as well as p and D2 consists

of one node. The set p is pairwise disjunct and consists of

three nodes and two edges in B. That means, pj ⊂ B(G),

|V (pj)| = 3 and pj is connected and circle-free. T can also

be stable if D1 is stable and p = D2 = ∅. Then the value of

T is ζ(T ) = 1, otherwise ζ(T ) = 2.

It is also possible to allow more than one path between D1

and D2, see figure 1 for an illustration.

Definition III.2. (Multiple pseudostable Tuple) M ⊂ G is a

Multiple pseudostable Tuple, if it is the union of two stable

sets D1 and D2 and paths p1, ..., pi such that

M = D1 ∪ p1 ∪ ... ∪ pi ∪D2

The intersection of D1 and pj as well as pj and D2 (j ∈
{1, ..., i} consists of one node. The sets pi are pairwise disjunct

and consist of three nodes and two edges in B. That means,

pj ⊂ B(G), |V (pj)| = 3 and pj connected and circle-free.

T can also be stable if D1 is stable and i = 0 and D2 = ∅.
Then the value of T is ζ(M) = 1, otherwise ζ(M) = 2.

Since we usually have more than one M or T we will use
indices to denote them. In the following, Mi or Ti are an
arbitrary chosen M or T . We denote for Mi or Ti both stable
sets with Di

1 or Di
2.

It is possible that Di
2 = ∅, but it is always Di

1 6= ∅. We
define that Pf(T ) or Pf(M) is the union of all paths in T
or M . Pf(Ti) = ∅ or Pf(Mi) = ∅ if, and only if Di

2 = ∅.
Every pseudostable Tuple is a multiple pseudostable Tuple.
We usually search for a minimal set cover S of G with S =
{T1, ..., Tn} or S = {M1, ...,Mn}. We define the weight w
as

w(S) =

n
∑

i=1

ζ(Si) +

n
∑

i=1

∑

j∈{1,...,n}\{i}

wi,j (EQ)

wi,j =

{

−1 Mi ∩ Sj = Di
1 = Dj

2

0 otherwise

The first condition ensures that two stable sets D in two
different tuples which are identical are not weighted two times.
All other cases can be ignored. This weight holds for multiple
pseudostable tuples as well as pseudostable tuples. With a
weight we can define a minimization problem.

For a given Graph G = (V,E) with a blue subgraph B ⊂ G
we define T = {T1, ..., Tn} as the subset of all pseudostable
tuples in G with B.

With P(T ) we denote all inner nodes of paths within T ,
which means

P(Ti) = Ti \ {D
i
1 ∪Di

2}

Or, it is also possible to define it according to Pf(Ti) as
Pf(Ti) \ {D

i
1 ∪Di

2} which is the same.
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Fig. 1: A pseudostable tuple Ti in (a) and a multiple pseudostable tuple Mi in (b). Both sets D1 and D2 are stable and some
blue paths of length 3 exist between both. The sets P(Ti) and P(Mi) consist of all blue nodes which are neither in D1 nor
in D2.

The Definition of the optimization problem can now be
written as:

minimize
n
∑

i=1

tiζ(Ti)+
n
∑

i=1

ti
n
∑

j=1

tjwi,j

subject to
∑

T∈T:v∈Pf(T )

ti= 1, ∀v ∈ V

∑

T∈T:v∈T

ti ≥ 1, ∀v ∈ V

ti ∈ {0, 1}

(IP1)

The variable ti indicates, if set Ti is chosen for this set
covering. The minimization term refers to the weight given in
equation EQ. The next line ensures that every node v ∈ V is
assigned to exactly one node within a path of a pseudostable
tuple. The last condition ensures that every node v ∈ V is
covered by at least one set.

If we want to allow intersections between inner nodes of
paths p we can simply skip the second condition. Thus our
minimization problem is as follows:

minimize
n
∑

i=1

tiζ(Ti)+
n
∑

i=1

ti
n
∑

j=1

tjwi,j

subject to
∑

T∈T:v∈T

ti ≥ 1, ∀v ∈ V

ti ∈ {0, 1}

(IP2)

Both IP1 and IP2 hold for pseudostable tuples T as well as
multiple pseudostable tuples M .

A set covering of a graph G = (V,E) with a subset B ⊂ G
of blue nodes and edges with a set of T or M also induces
the Graph of this set covering. In this graph every stable set
D within the covering of G induces a node and every path an
edge:

Definition III.3. (Graph of a set covering) Given a set

covering S = {S1, ..., Sn} of a graph G = (V,E) with a

subset B ⊂ G of blue nodes and edges with pseudostable

tuples T1, ..., Tn or multiple pseudostable tupels M1, ...,Mn.

Then we define GS = (V,E) as the Graph of the set covering

with

V = {D ⊂ S1, ..., Sn}

E = {(Di
1, D

i
2) i ∈ {1, ..., n} if Di

2 6= ∅}

Now we can define the minimization problem as follows.
We will continue using the naming introduced in [12].

Definition III.4. (minPS) We search for a minimal set cover-

ing S of the graph G = (V,E) with a subset B ⊂ G of blue

nodes and edges with pseudostable tuples T according to IP1

where Gs is acyclic and δ(v) ∈ {0, 1, 2} for all v ∈ V (GS).

Definition III.5. (minMPS) We search for a minimal set

covering S of the graph G = (V,E) with a subset B ⊂ G
of blue nodes and edges with multiple pseudostable tuples M
according to IP1 where Gs is acyclic and δ(v) ∈ {0, 1, 2} for

all v ∈ V (GS).

We denote minPS’ and minMPS’ as the corresponding min-
imization problem according to IP2. minPS-a and minMPS-a
are the corresponding minimization problems without restric-
tions on the graph GS . This means

Definition III.6. (minPS’-a) We search for a minimal set

covering S of the graph G = (V,E) with a subset B ⊂ G of

blue nodes and edges with pseudostable tuples T according

to IP2.

Definition III.7. (minMPS’-a) We search for a minimal set

covering S of the graph G = (V,E) with a subset B ⊂ G
of blue nodes and edges with multiple pseudostable tuples M
according to IP2.

Now we have a definition as set covering problem. This is
also useful to proof the NP-completeness of this problem. Now
we will make a definition using a graph partition approach.

B. A graph partition approach

The formulation of minPS or minMPS as graph partition
problem is very clear and concrete but it gets unhandy when
handling the variants minMPS-a or minMPS’. But since we
need to proof that our new approach using set covering is
equivalent to the work described in [12], we will introduce
the graph partition approach.

Given a simple Graph G = (V,E) and a subgraph B ⊂ G
of blue edges and nodes. We name a subset of G with i ∈ N

+

as Pi ⊂ G. See figure 2 for an illustration of the following
definitions.
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D1 D2 Dm

p1,1 p2,1

pm−1,1

p3,1

D3

p1,2
p2,2

p2,3

Fig. 2: Example partition D1, p1,1, p1,2, D2, , p2,1, p2,2, p2,3, ..., pm−1, Dm in multiple pseudostable sets.

Definition III.8. Pi is called a pseudostable set if and only if

Pi = Di is stable or there exist stable sets Di
j so that Pi is

partitioned in

Di
1, p

i
1, D

i
2, p

i
2, D

i
3, ..., p

i
mi−1, D

i
mi

with mi ≥ 2. The intersection of following stable sets Dj and

sets pj+1 as well as pj and Dj+1 consist only of one node.

The sets pj are pairwise disjunct and consist of three nodes

and two edges in B. That means, pj ⊂ B(G), |V (pj)| = 3
and pj connected and circle-free. The value of this set Pi is

mi.

Now again we have some nodes that are not in stable sets,
but in pseudostable sets. This means, we allow documents
to lie in between clusters. To allow more than one node in
between stable sets, we define multiple pseudostable sets:

Definition III.9. Pi is called a multiple pseudostable set if

and only if Pi = Di is stable or there exist stable sets Di
j so

that Pi is partitioned in

Di
1, p

i
1,1, ..., p

i
1,n1

, Di
2, p

i
2,1, ..., p

i
2,n2

,

Di
3, ..., p

i
mi−1,1, ..., p

i
mi−1,nmi−1

, Di
mi

with mi ≥ 2. The intersection of following stable sets Dj and

sets pj+1 as well as pj and Dj+1,n consists only of one node.

The sets pj,n are pairwise disjunct and consist of three nodes

and two edges in B. That means, pj ⊂ B(G), |V (pj)| = 3
and pj is connected and circle-free. The value of this set Pi

is mi.

Without loss of generality it is of course possible to store
the possible paths in a list and not as a subset of the graph G.
Both formulations are equivalent and searching for a minimum
set covering of G will provide a minimum graph partition. We
will show exemplarily the following lemma. All other proofs
can be done the same way.

Lemma III.10. Every set covering S of a graph G = (V,E)
with a subgraph B ⊂ G of blue edges and notes with

multiple pseudostable tuples according to definition III.5 is

equivalent to a graph partition of G in multiple pseudostable

sets according to definition III.9.

Proof. "⇒" Given a minimal set covering S of the graph G =
(V,E) with a subset B ⊂ G of blue nodes and edges with
multiple pseudostable tuples M according to IP1 where Gs is
acyclic and δ(v) ∈ {0, 1, 2} for all v ∈ V (GS).

Since GS is acyclic we can handle each connected compo-
nent Z ⊂ GS . This either has only one node and is thus
equivalent to a stable set Di. We then create a stable set
D′i. Or it has at least two nodes v1 and vj with δ(v) = 1.
Then we consider each stable set in sequence v1 till vj .
Analogously we create stable sets (Di

1, D
i
2) i ∈ {1, ..., n}

if Di
2 6= ∅. This means D′1

1 , D
′1
2 , D

′2
1 , ..., D

′j
1 , D

′j
2 . But every

time D′i
2 = D′i+2

1 holds, since otherwise no edge would be
possible in GS . We adjust all paths according to that, see figure
3.

GS

G

...

...

Fig. 3: Illustration of G and GS according to the proof of
lemma III.10.

Every intersection of stable sets D′i and D′j is either empty
or we adjust all nodes according to definition III.9. Since
equation IP1 holds, this is true for all paths. All other nodes
can be arbitrarily assigned to one stable set that covers this
node. If we eliminate one stable set, this set covering was not
minimal.

"⇐" Since every graph partition is a graph covering we
have to show that every pseudostable set according to lemma
III.9 fulfils the definition III.5. It is obvious that two following
stable sets in a pseudostable set are a pseudostable tupel. Each
pseudostable set is a connected component of GS . The value
of this connected component is the same as in equation EQ.
We can do this successively for every pseudostable set in the
graph partition. Thus every partition holds the conditions for
III.5.

We will now introduce pseudocliques and show that they
will solve the same problem on the complementary graph.

C. Pseudocliques

It is also possible to define the problem on the complement
graph G. This graph is defined by G = (V,E) with G =
(V,E′) where e ∈ E′ ⇔ e 6∈ E. Since B ⊂ G now all blue
edges are not in G any more and B 6⊂ G.

Definition III.11. Qi is a Pseudoclique if and only if Qi = Ci

is a clique or there exist stable sets Ci
j so that Qi is partitioned

in
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Ci
1, p

i
1, C

i
2, p

i
2, C

i
3, ..., p

i
mi−1, C

i
mi

with the same conditions as mentioned above. For multiple
Pseudoclique this condition holds with several paths pij,k
between the stable sets.

A minimal Partition of G = (V,E) and a subgraph B ⊂ G
in multiple pseudostable sets (minMPS) has a value of ζ(G). A
minimal Partition of G with B 6⊂ G in multiple Pseudocliques
(minMPC) has the value ζ(G). We can conclude that both
approaches are polynomial equivalent:

Lemma III.12. Every minimal partition of a Graph G =
(V,E) with a subgraph B ⊂ G in multiple pseudostable sets

with value ζ(G) implies a partition of G with B 6⊂ G in

multiple Pseuoclique with the value ζ(G) and vice versa. This

implies

ζ(G) = ζ(G)

Both approaches can be converted in polynomial time and
have the same solutions and complexity. This is why we first
focus on pseudostable sets and try to get some improvements
by considering the problem on the complementary graph.

IV. A NEW CLUSTERING APPROACH WITH PSEUDOSTABLE

SETS

We will now create a Graph G = (V,E). Every document in
our document set is one node n ∈ V . We would like to follow
[8] and restrict our similarity measure on [0, 1], “where one
corresponds to a ’full’ edge, intermediate values to ’partial’
edges, and zero to there being no edge between two vertices.”
Now we can define a limit and define edges between nodes if
they are not similar enough.

Given a set of documents D = {d1, ..., dN}, a similarity
measure

sim : D ×D → R
+

and an ǫ ∈ R
+. The function is limited to [0, 1]. If not, we

normalize it as sim′ : D ×D → [0, 1] as

sim′(x, y) =
sim(x, y)

max sim(x, y)

Our graph G is now defined as

G = (V,E) V = D

E = {(di, dj) | sim(di, dj) ≤ ǫ}

Edges between documents exist only if they are less similar
than ǫ. A graph coloring approach would now create a graph
partition into stable sets. This would result in a hard clustering.
To achieve a soft clustering we can define another bound ι with
0 < ι < ǫ and another set of edges B = (V,E′) with

E′ = {(di, dj) | ι ≤ sim(di, dj) ≤ ǫ}

We can see that B ⊂ G. We have two kinds of edges, those
edges e ⊂ G but not in B. We call them black. These refer
to documents which are not similar. But those edges e ⊂ B

called blue refer to documents that are also not similar, but
less not similar then those edges not in B. If we set ι = ǫ
then B = ∅ and we have a hard clustering. If B 6= ∅ we have
a soft clustering if we use the following defintion:

Definition IV.1. (PS-Document Clustering) Given a graph G
with B ⊂ G according to the definition above. A solution

of minMPS’-a gives a Document Clustering in multiple pseu-

dostable sets with ζ(G) Cluster and Documents that are in

between those clusters D.

Before continuing, we will create the weighted Graph of the
clustering. This definition is highly related to definition III.3.
Every node refers to a document cluster and every edge refers
to the number of paths between both clusters.

Definition IV.2. The weighted Graph of the Clustering is a

Graph Gc = (Vc, Ec) with

Vc = {D
i
j ∈ Pi}, d(D

i
j) = |D

i
j |

Ec = {(D
i
j , D

i
k), d(D

i
j , D

i
k) > 0}

The weight d(Di
j , D

i
k) can be defined in multiple ways. The

easiest way is to sum all paths between both stable sets:

ds(D
i
j , D

i
k) = |P |with

P = {p | p ∩Di
j 6= ∅ and p ∩Di

k 6= ∅}

but more intuitive is the following weight:

d(Di
j , D

i
k) =

∑

p

|N(v) ∩Di
j |+ |N(v) ∩Di

k|

|Di
j |+ |D

i
k|

/|p|

∀p = (u, v, w)with p ∩Di
j 6= ∅ and p ∩Di

k 6= ∅

This weight counts all inner nodes v within a path p =
(u, v, w) the number of neighbours in one of the stable sets.
We can use this as a measure for the similarity of this node
with the given stable set. If there is no edge from u to one
node in the set, it might also be assigned to that stable set.
Each such edge decreases this possibility. We normalize with
the number of paths and thus have a value in between [0, 1].

Example IV.3. Given three documents with some similarity,

see figure 4. We set ι = 2, 5 and ǫ = 5. Now we have a graph

with blue nodes and two blue edges. One edge is black. If we

partition into pseudostable sets, we find two clusters with one

document and one document in between both. The weighted

graph of this clustering is also shown in figure 4. Every cluster

is associated with a node in Gc.

If we precisely use the Definition of pseudostable sets given
by graph partition approach, this Graph needs to be acyclic.
But we will follow the definition given in the first chapter
and just notice that the definition by set covering approach
is more clear. This Graph is important for visualization and
assessment.
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Fig. 4: Figure explaining the example IV.3. It illustrates the documents D with their similarity, the resulting Graph G, its
partition into pseudostable sets D1, D2 and the weighted graph GC of that clustering.

V. NEW APPROACHES

The main problem is that minMPS’-a is NP-complete.
First of all, we will describe an Integer Linear Programming
approach for calculating optimal solutions. Afterwards, we
will discuss our Greedy-Approach for solving minMPS’-a. We
want to show a small example on how all approaches solve
the problem. Afterwards we will discuss some real-world data
and the output.

A. Integer Linear Program

Given a graph G = (V,E) with a subset B ⊂ G of blue
nodes and edges. T is the list of all paths with length three
within B.

yk denotes the variable, which indicates that a color k is
used. Is yk = 0 color k will not be used. xi,k indicates, if a
node i ∈ G is colored with color k. Color k = 0 will be used
for those nodes which are in a path p.

[minMPS’-a-IP] min
n
∑

k=1

yk

n
∑

k=1

xi,k = 1 ∀i = 0, ..., n

(1)

xi,k − yk ≤ 0 ∀i = 0, ..., n, ∀k = 1, ..., n
(2)

xi,k + xj,k ≤ 1 (i, j) ∈ E(G), ∀k = 1, ..., n
(3)

xi,0 ≤ 0 ∀i 6∈ B(G)
(4)

xi,k ≥ 0 (5)

yk ≤ 1 (6)

xi,k + xj,k + xv,0 − 2 ≤ 0 (i, v, j) ∈ T, ∀k = 1, ..., n
(7)

xi,0 + xj,0 + xv,0 ≤ 1 (i, v, j) ∈ T, ∀k = 1, ..., n
(8)

xi,k, yk ∈ Z

Condition 1 ensures that every node has a color or color
k = 0. For each node i and every color k xi,k − yk ≤ 0 is
necessary. Is node i not in color k, inequality 2 holds. But if

it is in color k, yk = 1 and thus the inequality holds. Two
connected nodes i, j must not share the same color k > 0.
Thus xi,k + xj,k ≤ 1, see condition 3. Condition 4 ensures
that no node which is not within B can be assigned to color
k = 0. The last conditions ensure that if a node v is within
color k = 0 all within B connected nodes to v have a different
color.

In practise we can only apply minMPS’-a-IP to small
instances because of the exponential runtime.

B. Greedy-Approach

Given a graph G = (V,E) with a subset B ⊂ G of blue
nodes and edges. We run on a (not necessary minimal) graph
coloring f : V → F with F ⊂ N and implement a greedy
algorithm that puts every possible path in between two stable
sets. Since we do not have perfect graphs for documents
clustering we need to use heuristics to get an approximate
graph coloring. Alternatively we can use the complement
graph G and use a partition into cliques which results in a
coloring of G.

We will iteratively try to eliminate stable sets D given by
the graph coloring heuristic and thus use the properties and
characterizations of pseudostable sets:

• For each color i we consider node u in it:

– Is this node not an endpoint of a path p (which ist
stored in ende) check if there exist two nodes v, w ∈
G which are connected by blue nodes with u and are
in different color classes.

– Is this true, remove u from i and create a new path
p = [v, u, w].

See algorithm 1 for pseudo code. We can not give an approx-
imation guarantee and we will show that this heuristic does
usually not provide an optimal solution.

We have used the following heuristics to start the graph
coloring:

• Coloring using the greedy independent sets (GIS) ap-
proach with a runtime in O(mn), see [13].

• Coloring using the SLF-Approach with a linear runtime
O((m+ n) log n) (see [13] and [14]).

• Clique Partition on G using the TSENG clique-
partitioning algorithm described in [15] with a worst case
runtime O(n3).

We assume to get a better solution by the third approach for
instances where we have a huge amount of edges and it might
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Algorithm 1 GREEDY-DC

Require: Graph G with a coloring f and a list T =
(t1, ..., ttC ) of all paths.

Ensure: Partition P of G in MPS’-a
1: Sort all color classes f1, ..., f|F | increasingly by size
2: for each color class fi in F do

3: Ti ← all t ∈ T with a middle node in fi
4: for each ti = (a, b, c) in Ti do

5: if f(a) 6= f(c) and ende(b) = false then

6: ende(a)← true
7: ende(c)← true
8: f(b) = 0
9: end if

10: end for

11: end for

12: return P , where f denotes the stable sets and f0 all
paths.

be less complex to solve the clique partition problem on the
complement graph.

We will generate some random instances using the model
of Gilbert, see [16]. This creates a simple undirected graph
G = (V,E) with (n(n − 1))/2 possible edges as a model
G (n, p). Edges will be added with probability 0 < p < 1.

Erdös and Rényi designed a similar approach G (n,m), were
all Graphs with exactly n nodes and 0 < m < (n(n − 1))/2
edges are equal probable, see [17].

Both algorithms have a quadratic runtime. For small p
Batagel and Brandes described a linear time approach with
a runtime in O(n + m), where m is the number of created
edges, see [18].

We will chose p = 0.75 and a second probability p′ = 0.2
which decides if edges are colored blue. This refers to the
instances we have seen on real world data.

We will show the results for different random instances with
15 nodes in figure 5 and with 100 nodes in figure 6. We have
also added the results of the integer linear program for small
instances.

As we can see in both figures, the clique approach gives
the worst partition into stable sets for large instances but the
greedy approach eliminates most stable sets. SLF gives in
general better results than GIS and also has a better runtime.

VI. DOCUMENT CLUSTERING ON MEDLINE

We apply this new approach to perform document clus-
tering over some subsets of MEDLINE data. MEDLINE
(Medical Literature Analysis and Retrieval System Online) is
a bibliographic database maintained by the National Center
for Biotechnology Information and covers a large number
of scientific publications from medicine, psychology, and
the health system. For the clustering use case, we study
MEDLINE abstracts and associated metadata that are pro-
cessed by ProMiner, a named entity recognition system ([19]),
and indexed by the semantic information retrieval platform
SCAIView ([20]). SCAIView also offers an API that allows

programmatic access to the data. Currently, we only use meta
information like title, journal, publishing year and the MeSH
terms for our experiments.

We extract subset D of MEDLINE documents from
SCAIView. Every document on MEDLINE should have a list
M of keywords, so called MeSH terms. We may use them
to calculate the Tanimoto similarity, also known as Jaccard
similarity

sim(a, b) =
|Ma ∩Mb|

|Ma ∪Mb|
∀a, b ∈ D

with sim : M×M → [0, 1]. This first approach is not suitable
for all applications as we will show in the next section. This
is why we postulate a distance model based on the vector of
weighted words using NLP techniques.

We then build a graph G according to the bounds ǫ and ι.
Following this, we create the directed graph of that partition by
applying the Greedy approach. We also store further metadata
like years and journals in nodes and edges.

We will now describe the result of one input set given
by [21] and discussed by [22]. In both publications the
first dataset consisted of 1660 documents obtained from two
different queries ‘escherichia AND pili’ and ‘cerevisiae AND
cdc*’. Both returned the same number of 830 documents.
We had a similar result with 1628 documents trying to
reproduce this query with data till 2001. This dataset covers
two different topics, whereas the second dataset is related to
the developmental axes of Drosophila. We will now discuss
several outputs of our new approach.

Consequently, we have n = 1628 nodes (documents).
The number of edges e and blue edges b depend on the
different values of ι and ǫ and the priorly used approach for
similarity. We will discuss the following three measures: First
an approach using a distance model dV based on the vector
of weighted words using NLP techniques for the abstracts.
In addition a distance according to the journal, which is
dJ(x, y) = {0, 1}. Thus we have

d1(x, y) =
dV (x, y) + dJ(x, y)

2

The second approach is the usage of d2 = dV . The third
approach uses only the Tanimoto similarity on MeSH terms
described above, thus d3 = sim.

We wanted to compare our results with those given by [21]
and [22]. We will show that the comparability of clusterings
with previous studies is highly dependent on the choice of
this distance measurement. Every clustering produces unique
details with the same heuristic running in the background.
Thus it is not totally clear to connect clusters to topics. But
first of all we want to proof our new approach and reproduce
the results of both [21] and [22] which we will discuss for
every distance measure.

Distance measure d1: The results of our clustering ap-
proach with distance measure d1 are shown in figure 7 and
table I. We got 13 clusters (Cluster 0 to 12) with documents
between 5 (Cluster 11) and 359 (Cluster 8) documents.

JENS DÖRPINGHAUS ET AL.: DOCUMENT CLUSTERING USING A GRAPH COVERING WITH PSEUDOSTABLE SETS 335



0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

Run

D
oc

um
en

t
C

lu
st

er
s

SLF-Color GIS-Color Clique IP
MPS-SLF MPS-GIS MPS-Clique

Fig. 5: Results for random instances with n = 15 nodes.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

Run

D
oc

um
en

t
C

lu
st

er
s

SLF-Color GIS-Color Clique
MPS-SLF MPS-GIS MPS-Clique

Fig. 6: Results for random instances with a node count n = 100

Fig. 7: The partition of the first dataset with distance d1. The
numbers identify the clusters. The size of a node is related
to the number of documents included. The edges and their
widths and color describe their weight. A darker blue edge
has a greater weight.

Our clustering heuristic is able to produce clusterings of
variable detail by choosing different values for ι and ǫ. We
have chosen values that visualize the benefit of the new graph
theoretical approach. Referring to figure 7 it is easy to see
that the first cluster is given by cluster 8. It has only weak
dependencies and relations to other clusters as can be seen
by the edges in the graph. Clusters 0, 9, 10, 11 are highly
dependent and thus form the second cluster agglomeration.
The MeSH terms that describe these clusters can be found in
table I. We can see a similar result to [22]: the terms of both
clusters describe the general concepts that are relevant to both
search queries. So our approach produces similar results with
this distance measure.

Those clusters which are in between the two main clusters
share topics with both. For example cluster 7 is related to
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Fig. 8: The partition of the first dataset with the distance
d2. This picture shows the weighted graph of the clustering.
The color of the nodes indicate a high rate of documents
from the respective queries (red: ‘escherichia AND pili’; green
‘cerevisiae AND cdc*’).

Fig. 9: The partition of the first dataset with the distance
d3. This picture shows the weighted graph of the clustering.
The color of the nodes indicate a high rate of documents
from the respective queries (red: ‘escherichia AND pili’; green
‘cerevisiae AND cdc*’).

Terms
Global Cluster 1 Global Cluster 2
Cluster [ 8 ] Cluster [ 0, 9, 10, 11]

Escherichia coli Saccharomyces cerevisiae
Fimbriae, Bacterial Saccharomyces cerevisiae

Prot.
Fimbriae Proteins Fungal Proteins
Bacterial Adhesion Mutation
Plasmids Cyclins
Fimbriae, Bacterial CDC28 Protein Kinase, S

cerevisiae
Amino Acid Sequence
Cell Cycle Proteins

TABLE I: The MeSH terms describing a selected set of global
topic clusters which consist of highly related clusters for
distance d1.

’Molecular Sequence Data’ and ’Escherichia coli’. The benefit
of our new graph theoretical approach is that we can visualize
how much these clusters have in common and how dependent
they are. We can also identify clusters that consist of different
small clusters, but are highly connected.

Distance measure d2: The results of our clustering ap-

proach with distance d2 are shown in figure 8. The weighted
graph of that clustering is now different. We got 14 clusters
(Cluster 0 to 13) with documents between 2 and 5 as well as
157 and 158 documents. We now have no isolated clusters.

In this clustering it is not easy to evaluate the different
topics given through the search query by evaluating the edges
within the weighted graph of the clustering. Thus we have
colored the graph according to the rate of documents from
each query. We would expect "clean" clusters, which means
the clusters should have a high fraction of documents from
only one query. We see a lot of relatively clean clusters, for
example 1 or 5, 2, 7 and 3. But those are not highly connected.
The documents in between are mostly related to clusters which
are not clearly assigned to one of both search queries. Thus
we could not clearly reproduce the results from [22] with this
distance measure.

Distance measure d3: The results of our clustering ap-
proach with distance d3 are shown in figure 9. We now have
one strongly connected set of clusters. It is no longer possible
to separate any of the topic clusters induced by the search
query. Thus again we have colored the graph according to
the fraction of documents from each query. We would expect
“pure” clusters, which means the clusters should have a high
fraction of documents from only one query. We get more pure
clusters than with d1 and d2 but they are small. Most of the
purest clusters are isolated and do not share documents with
other clusters. Thus the result observed with d2 gets clearer.
Only those clusters which cannot be clearly assigned to one
of the search queries have edges within the weighted graph of
the clustering.

Since all MeSH terms are weighted equally, those terms
which are not significant but shared by many of documents, are
scored higher, for example ’Animals’ or ’Microscopy’. And as
a result, most documents have these terms in common. This
explains the high connectivity of the resulting graph. Thus we
could again not clearly reproduce the results from [22] with
this distance measure.

VII. CONCLUSION AND FUTURE WORK

We have shown a novel approach for document clustering
considering hard clustering as well as soft clustering. We
defined pseudostable sets and used the minMPS’-a approach
to perform document clustering on a real-world example. We
have introduced a integer linear programming and a greedy
approach that gave valuable output on random instances as
well as real-world data. This paper underlines that pseu-
dostable sets have a broad application and can also be used to
generalize other problems like document clustering. Since the
problem is NP-complete, we could only produce and evaluate
approximate solutions. Further research has to be done on
evaluating the error given by the heuristics. Is it possible to
find restrictions on G and B so that a solution in polynomial
time is possible?

Because large graphs also increase the processing complex-
ity, we identify the handling of such big data as an additional
challenge. In the same course, it might be a good idea to
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focus also on novel strategies to implement an online algorithm
version of the greedy approach, which could significantly
improve the scalability.

We compared three simple similarity measures using textual
data given by the abstract as well as keywords. We have
shown that the clustering process itself is only valuable when
choosing the right similarity measure. Although we have
proven that the hard clustering and soft clustering approach
using pseudostable or stable sets is valid, we might need to
evaluate more similarity measures. Thus further research has
to be done on similarity measures. We are planning to improve
document management with this novel clustering approach and
do more empirical evaluation by using test sets.
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