Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 15

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems

Graph-based quantitative description of networks' slices isolation

, , ,

DOI: http://dx.doi.org/10.15439/2018F322

Citation: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 15, pages 369379 ()

Full text

Abstract. 5G networks are expected to be a set of slices which are virtual subnets designed for specific applications. A crucial requirement for providing proper functioning of the network and its security is proper isolation of slices. The aim of this paper is to propose a new method of determination of the isolation level of a slice. We propose a Graph-based model of the sliced network, which has a layered structure. In each layer, the appropriate network elements have their own isolation level. The lowest layer of the Graph-based model represents virtual network elements with isolation traits used for calculating their isolation level. Climbing to the top of the stack of layers one can calculate, successively, isolation level for a network's physical element, a link, subnetworks and, the End-to-End slice's isolation level. We present numerical examples, where suitable traits are specified and the isolation level in each layer is calculated.

References

  1. L. Peterson, T. Anderson, D. Culler, and T. Roscoe, "A blueprint for introducing disruptive technology into the Internet," ACM SIGCOMM Computer Communication Review, vol.33, iss.1, pp.59-64, 2003, https://doi.org/10.1145/774763.774772.
  2. C. Chapman, S. Ward, "Description of Network Slicing Concept", NGMN Alliance, January, 2016, https://www.ngmn.org/publications/all-downloads/article/description-of-network-slicing-concept.html.
  3. A. Nakao, P. Du, Y. Kiriha, F. Granelli, A. A. Gebremariam, T. Taleb, and M. Bagaa, "End-to-end Network Slicing for 5G Mobile Networks," Journal of Information Processing, vol.25, pp.153-163, Feb. 2017, https://doi.org/10.2197/ipsjjip.25.153.
  4. Nokia "Dynamic end-to-end network slicing for 5G," (White Paper), 2016.
  5. T. Shimojo, Y. Takano, A. Khan, S. Kaptchouang, M. Tamura, and S. Iwashina, "Future mobile core network for efficient service operation," in Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), London, 2015, pp.1-6, https://doi.org/10.1109/NETSOFT. 2015.7116190.
  6. U. Herzog, A. Georgakopoulos, I.-P. Belikaidis, M. Fitch, K. Briggs, S. Diaz, O. Carrasco, K. Moessner, B. Miscopein, S. Mumtaz, and P. Demestichas, "Quality of service provision and capacity expansion through extended-DSA for 5G," Transaction of Emerging Telecommunications Technologies, vol.27, iss.9, pp.1250-1261, September 2016, https://doi.org/10.1002/ett.3061.
  7. Z. Kotulski, T. Nowak, M. Sepczuk, M. Tunia, R. Artych, K. Bocianiak, T. Osko, J.-P. Wary, "On end-to-end approach for slice isolation in 5G networks. Fundamental challenges", Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, in: M. Ganzha, L. Maciaszek, M. Paprzycki (Eds). ACSIS, vol.11, pp.783-792, 2017, https://doi.org/10.15439/2017F228.
  8. Z. Kotulski, T. Nowak, M. Sepczuk, M. Tunia, R. Artych, K. Bocianiak, T. Osko, J.-P. Wary, "Towards constructive approach to end-to-end slice isolation in 5G networks", EURASIP Journal of Information Security, vol. 2018:2, pp.1-16, 2018, https://doi.org/10.1186/s13635-018-0072-0.
  9. D. Schlosser, M. Hoffmann, T. Hoçfeld, M. Jarschel, A. Kirstaedter, W. Kellerer, S. Kohler, "COMCON: Use Cases for Virtual Future Networks", in: T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp.584-586, 2011, https://doi.org/10.1007/978-3-642-17851-1_48.
  10. J. White, G. Jourjon, T. Rakatoarivelo, M. Ott, "Measurement Architectures for Network Experiments with Disconnected Mobile Nodes", in: T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp.315-330, 2011, https://doi.org/10.1007/978-3-642-17851-1_26.
  11. A.-Ch. Anadiotis, A. Apostolaras, D. Syrivelis, T. Korakis, L. Tassiulas, L. Rodriguez, I. Seskar, M. Ott, "Towards Maximizing Wireless Testbed Utilization Using Spectrum Slicing", in: T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp.299-314, 2011, https://doi.org/10.1007/978-3-642-17851-1_25.
  12. G. Bhanage, I. Seskar, D. Raychaudhuri, "A Service Oriented Experimentation Framework for Virtualized WiMAX Systems", in: T. Korakis et al. (Eds.): TridentCom 2011, LNICST 90, pp.152-161, 2012, https://doi.org/10.1007/978-3-642-29273-6_12.
  13. G. Bhanage, I. Seskar, Y. Zhang, D. Raychaudhuri, S. Jain, "Experimental Evaluation of OpenVZ from a Testbed Deployment Perspective", in: T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp.103-112, 2011, https://doi.org/10.1007/978-3-642-17851-1_7.
  14. S. Soltesz, H. Potzl, M.E. Fiuczynski, A. Bavier, L. Peterson, "Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors", Proceeding of EuroSys’07 Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems, pp.275-287, 2007. https://doi.org/10.1145/1272996.1273025.
  15. C. Zhao, Y. Wu, Z. Ren, W. Shi, Y. Ren, J. Wan, "Quantifying the Isolation Characteristics in Container Environments". in: X. Shi et al. (Eds.): Network and Parallel Computing. NPC 2017. Lecture Notes in Computer Science, vol.10578, Springer, https://doi.org/10.1007/978-3-319-68210-5_17.
  16. Sh. Ma, J. Jiang, B. Li, B. Li, "Maximizing Container-based Network Isolation in Parallel Computing Clusters", IEEE 24th International Conference on Network Protocols (ICNP), 2016, https://doi.org/10.1109/ICNP.2016.7784434.
  17. M. Chen, A. Nakao, "Feather-Weight Network Namespace Isolation Based on User-Specific Addressing and Routing in Commodity OS", in: T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp.53-68, 2011, https://doi.org/10.1007/978-3-642-17851-1_4.
  18. P. Du, M. Chen, A. Nakao, "Port-Space Isolation for Multiplexing a Single IP Address through Open vSwitch", in: T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp.113-122, 2011, https://doi.org/10.1007/978-3-642-17851-1_8.
  19. P. Du, M. Chen, A. Nakao, "OFIAS: A Platform for Exploring In-Network Processing", in: T. Korakis et al. (Eds.): TridentCom 2011, LNICST 90, pp.142-151, 2012, https://doi.org/10.1007/978-3-642-29273-6_11.
  20. Sh. Ma, B. Wang, X. Zhang, T. Li, "An Evolving Architecture for Network Virtualization", in: V.C.M. Leung et al. (Eds.): Trident-Com 2014, LNICST 137, pp.379-386, 2014. , https://doi.org/10.1007/978-3-319-13326-3_36.
  21. CONFINE Project, Community Networks Testbed for the Future Internet, http://confine-project.eu/
  22. S. Gutz, A. Story, C. Schlesinger, N. Foster, "Splendid Isolation: A Slice Abstraction for Software-Defined Networks", HotSDN’12, August 13, 2012, Helsinki, Finland, https://doi.org/10.1145/2342441.2342458.
  23. Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C. Ferreto, Timoteo Lange, Cesar A. F. De Rose, "Performance Evaluation of Container-based Virtualization for High Performance Computing Environments", 21st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2013, https://doi.org/10.1109/PDP.2013.41.
  24. "Isolation Benchmark Suite", 2012. [Online]. Available: http://web2.clarkson.edu/class/cs644/isolation.
  25. J.N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton, M. McCabe, J. Owens, "Quantifying the Performance Isolation Properties of Virtualization Systems", ExpCS’07, 13-14 June, 2007, San Diego, CA, https://doi.org/10.1145/1281700.1281706.
  26. D. Sattar, A. Matrawy, "Optimal Slice Allocation in 5G Core Networks", https://arxiv.org/abs/1802.04655 [cs.NI], 2018.
  27. Z. Kotulski, T. Nowak, M. Sepczuk, M. Tunia, "5G networks: types of isolation and their parameters in RAN and CN slices", submitted.
  28. P. P Korovkin, Inequalities. Moscow : Mir Publishers, 1975.
  29. IEEE. IEEE Standard for Floating-Point - IEEE Std 754-2008. 2008.