Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 15

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems

Supporting gastroesophageal reflux disease diagnostics by using wavelet analysis in esophageal pH-metry

, ,

DOI: http://dx.doi.org/10.15439/2018F36

Citation: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 15, pages 287294 ()

Full text

Abstract. This paper presents a new approach to computer supported esophageal pH-metry measurement analysis per- formed in order to diagnose gastroesophageal reflux disease. In this approach wavelet analysis was used to analyse the esophageal pH-metry course. The research was performed on three groups of pH-metry courses: whole 24-hour pH-metry course, sleep only pH-metry course and 20 minutes after the end of a meal pH- metry course. After performing a 128 level decomposition of the pH-metry course, the Wx was defined as a parameter of extreme differential. This parameter was used to distinguish patients esophageal ph-metry results and on that basis classify patients as healthy or sick. Using this method the a sensitivity of 77\% was achieved.

References

  1. G. Redlarski, P. M. Tojza, Computer Supported Analysis of the Human Body Surface Area, International Journal of Innovative Computing, Information and Control, vol. 9, no. 5, 2012
  2. T.Yamada, Podrecznik Gastroenterologii, Czelej, Lublin, 2016
  3. R. Tutuian, M.F. Vela, E. Hill, I. Mainie, A. Agrawal, D. Castell, Characteristics of Symptomatic Reflux Episodes on Acid Suppressive Therapy, Am. J. Gastroenterol., vol. 103, no. 5, 2008, pp. 1090:1096, http://dx.doi.org/10.1111/j.1572-0241.2008.01791.x
  4. I. Segal, C.S. Pitchumoni, J.Sung, Gastroenterology and hepatology manual: a clinicians guide to a global phenomenon, "McGraw Hill, 2011
  5. T.Yamada, Postepy w Gastroenterologii, Czelej, Lublin, 2006
  6. P.M. Tojza, J. Jaworski, D. Gradolewski, G. Redlarski, Mechatronics, Ideas for Industrial Applications (chapter: Platform Supporting the Esophageal Impedance Analysis), Springer International Publishing, 2015
  7. P.M. Tojza, D. Gradolewski, G. Redlarski, An Application Supporting Gastroesophageal Multichannel Intraluminal Impedance-pH Analysis, SCITEPRESS - Sci. Technol., 2014
  8. G. Redlarski, P.M. Tojza, Computer application supporting upper gastrointensinal tract disease diagnosis based on pH-metry analysis, Pomiary Autom. Kontrola, vol. 59, no. 3, 2013, pp. 193:195
  9. A. Krogulska, K. Wasowska-Krolikowska, Refluks zoladkowo-przełykowy a refluks krtaniowo-gardlowy - znaczenie w laryngologii, Otolaryngologia, vol. 8, no. 2, 2009, pp.42-52
  10. G. Porro, Gastroenterologia i hepatologia, Czelej, Lublin, 2003
  11. T. Yamada, Textbook of Gastroenterology, Blackwell Publishing, 2009
  12. D. Sifrim, F. Fornari, Esophageal impedance-pH monitoring, Dig. Liver Dis, vol. 40, 2008, pp. 161:166
  13. P. J. Kahrilas, Will impedence testing rewrite the book on GERD?, Gastroenterolog, vol. 120, no. 7, 2001, pp. 1862:1864, http://dx.doi.org/10.1053/gast.2001.25290
  14. A. Lazarescu, D. Sifrim, Ambulatory Monitoring of GERD: Current Technology, Gastroenterol. Clin. North Am., vol. 37, no. 4, 2008, pp. 793:805, http://dx.doi.org/10.1016/j.gtc.2008.09.006
  15. J. M. Pritchett, M. Aslam, J. C. Slaughter, R. M. Ness, C. G. Garrett, M. F. Vaezi, Efficacy of Esophageal Impedance/pH Monitoring in Patients With Refractory Gastroesophageal Reflux Disease, on and off Therapy, Clin. Gastroenterol. Hepatol., vol. 7, no. 7, 2009, pp. 742:748, http://dx.doi.org/10.1016/j.cgh.2009.02.022
  16. S. S. Shay, S. Bomeli, J. E. Richter, Reflux event (RE) clearing: Multichannel intraluminal impedance (MII) compared to pH probe and manometry in fasting severe GERD patients, Gastroenterology, vol. 120, no. 5, 2001, pp. A431, http://dx.doi.org/10.1016/S0016-5085(08)82138-5
  17. D. Sifrim, R. Holloway, J. Silny, Z. Xin, J. Tack, A. Lerut, J. Janssens, Acid, nonacid, and gas reflux in patients with gastroesophageal reflux disease during ambulatory 24-hour pHimpedance recordings, Gastroen- terology, vol. 120, no. 7, 2001, pp. 1588:1598
  18. H. L. Smith, G. W. Hollins, I. W. Booth, Epigastric impedance recording for measuring gastric emptying in children: how useful is it?, J. Pediatr. Gastroenterol. Nutr., vol. 17, no. 2, 1993, pp. 201:206
  19. R. Tutuian, D. O. Castell, Use of multichannel intraluminal impedance (MII) in evaluating patients with esophageal diseases. Part III: Combined MII and pH (MII-pH), Pract. Gastroenterol., vol. 27, no. 3, 2003, pp.19- 28
  20. J. T. Bialasiewicz, Falki i aproksymacje, Wydawnictwo Naukowo-Techniczne, Warszawa, 2000
  21. D. M. W. Powers, Evaluation: From Precision, recall and F-measure to ROC, informendess, markedness and correlation, J. Mach. Learn. Technol, vol. 2, no. 1, 2011, pp. 37-63
  22. M. Tokmakci, Analysis of the electrogastrogram using discrete wavelet transform and statistical methods to detect gastric dysrhythmia, J. Med. Syst., vol. 31, no. 4, 2007, pp. 295:302, http://dx.doi.org/10.1007/s10916-007-9069-9
  23. S. Sharma, G. Kumar, Wavelet analysis based feature extraction for pattern classification from Single channel acquired EMG signal, Elixir Control Engg., vol. 50, no. 8, 2012, pp. 10320:10324
  24. S. Kara, F. Dirgenali, A system to diagnose atherosclerosis via wavelet transforms, principal component analysis and artificial neural networks, Expert Syst. Appl., vol. 32, no. 2, 2007, pp. 632:640, http://dx.doi.org/10.1016/j.eswa.2006.01.043
  25. L. Brechet, M. F. Lucas, C. Doncarli, D. Farina, Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection, IEEE Trans. Biomed.Eng, vol. 54, no. 12, 2007, pp. 2186:2192, http://dx.doi.org/10.1109/TBME.2007.896596
  26. C. Gordan, R. Reiz, ECG signals processing using Wavelets, IEEE, proceedings of the fifth IASTED, vol. 1, 2005,
  27. A. Pasieczna, J. Korczak, Classification Algorithms in Sleep Detection - A Comparative Study, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 113-120 (2016), DOI: dx.doi.org/10.15439/2016F187
  28. A. Bujnowski, J. Ruminski, M. Kaczmarek, K. Czuszynski, P. Przystup, Cardiovascular data analysis using electronic wearable eyeglasses - preliminary study, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 1409-1412 (2016), DOI: dx.doi.org/10.15439/2016F512
  29. F. Babic, A. Jancus, K. Melisova, Customized Web-based System for Elderly People Using Elements of Artificial Intelligence, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 277-280 (2016), http://dx.doi.org/dx.doi.org/10.15439/2016F165
  30. B. Metelmann, C. Metelmann, Medical Simulation Center as a Model for Testing M-Health Concepts in Prehospital Emergency Medicine, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 1423-1426 (2016), dx.doi.org/10.15439/2016F540.
  31. M. Komenda, M. Karolyi, A. Pokorna, M. Vita, V. Kriz, Automatic Key- word Extraction from Medical and Healthcare Curriculum, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 8, pages 287-290 (2016), http://dx.doi.org/dx.doi.org/10.15439/2016F156