
A New Monte Carlo Algorithm for Linear

Algebraic Systems Based on the “Walk on

Equations” Algorithm

Venelin Todorov∗†, Nikolay Ikonomov∗, Ivan Dimov†, Rayna Georgieva†

∗Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

Email: vtodorov@math.bas.bg, nikonomov@math.bas.bg
†Institute of Information and Communication Technologies

Bulgarian Academy of Sciences

25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

Email: venelin@parallel.bas.bg, ivdimov@bas.bg, rayna@parallel.bas.bg

Abstract—A new Monte Carlo algorithm for solving systems of
Linear Algebraic (LA) equations is presented and studied. The
algorithm is based on the “Walk on Equations” Monte Carlo
method recently developed by Ivan Dimov, Sylvain Maire and
Jean Michel Sellier [4]. The algorithm is optimized by choosing
the appropriate values for the relaxation parameters which leads
to dramatic reduction in time and lower relative errors for a
given number of iterations. Numerical tests are performed for
examples with matrices of different size and on a system coming
from a finite element approximation of a problem describing a
beam structure in constructive mechanics.

I. INTRODUCTION

M
ANY scientific and engineering applications are based

on the problems of solving systems of LA equations.

For some applications it is also important to compute directly

the inner product of a given vector and the solution vector

of a LA system. In Monte Carlo numerical algorithms we

construct a Markov process and prove that the mathematical

expectation of the process is equal to the unknown solution

of the problem [3]. Iterative Monte Carlo algorithms can be

defined as terminated Markov chains:

T = {αt0 → αt1 → αt2 . . . αtk}, (1)

where αtq , q = 1, . . . , i is one of the absorbing states. By A

and B we denote matrices of size n× n, i.e., A,B ∈ IRn×n.

We use the following presentation of matrices:

A = {aij}
n
i,j=1 = (a1, . . . , ai, . . . , an)

t
,

where ai = (ai1, . . . , ain), i = 1, . . . , n and the symbol t

means transposition. The following norms of vectors:

‖ b ‖=‖ b ‖1=
n∑

i=1

|bi|, ‖ ai ‖=‖ ai ‖1=
n∑

j=1

|aij |

The first author is supported by the Bulgarian National Science Fund under
Projects DN 12/5-2017 and DN 12/4-2017 and by the Bulgarian Academy of
Sciences through the Program for Career Development of Young Scientists,
Grant DFNP-17-88/28.07.2017.

and matrices

‖ A ‖1= max
j

n∑

i=1

|aij |, ‖ A ‖∞= max
i

n∑

j=1

|aij |

are used, where b ∈ R
n.

We consider a system of LA equations

Bx = f, (2)

where B = {bij}
n
i,j=1 ∈ IRn×n is a given matrix; f =

(f1, . . . , fn)
t ∈ IRn×1 and v = (v1, . . . , vn) ∈ IR1×n are

given vectors.

We deal with the matrix A = {aij}
n
ij=1, such that A =

I−DB, where D is a diagonal matrix D = diag(d1, . . . , dn)
and di =

γ
bii

, i = 1, . . . , n, and γ ∈ (0, 1] is a parameter that

can be used to accelerate the convergence. The system (2) can

be presented in the form of equation

x = Ax+ b, (3)

where b = Df . Let us suppose that the matrix B is diagonally

dominant. It easily follows that if B is a diagonally dominant

matrix, then the elements of the matrix A must satisfy the

following condition:
∑n

j=1 |aij | ≤ 1, i = 1, . . . , n.

A stationary linear iterative algorithm [3] can be used:

xk = Axk−1 + b, k = 1, 2, . . . (4)

and the solution x can be presented in a form of a Neumann

series

x =
∞∑

k=0

Akb = b+Ab+A2b+A3b+ . . . (5)

The stationary linear iterative Monte Carlo algorithm is

based on (5). As a result, the convergence of the Monte Carlo

algorithm depends on the truncation error of the series (4) [3].

We are interested to evaluate the linear form W (x) of the so-

lution x of the system (3), i.e., W (x) ≡ (w, x) =
∑n

i=1 wixi,

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 257–260

DOI: 10.15439/2018F121

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 257

where w ∈ IRn×1. We shall define a random variable X[w],
which expectation is equal to the above defined linear form,

i.e., EX[w] = W (x) using a discrete Markov process with a

finite set of states. Then the problem is to determine repeated

realizations of X[w] and of connecting them into a proper

statistical estimator of W (x).
Consider an initial density vector p = {pi}

n
i=1 ∈ IRn, such

that pi ≥ 0, i = 1, . . . , n and
∑n

i=1 pi = 1. Consider also

a transition density matrix P = {pij}
n
i,j=1 ∈ IRn×n, such

that pij ≥ 0, i, j = 1, . . . , n and
∑n

j=1 pij = 1, for any

i = 1, . . . , n.

We will be dealing with permissible densities [3] Pb and

PA. It follows easily that in such a way the random trajectories

constructed to solve the problems under consideration never

visit zero elements of the matrix. Such an approach decreases

the computational complexity of the algorithms [2]. It is also

very convenient when large sparse matrices are used.

II. PROBABILISTIC REPRESENTATION OF THE ALGORITHM

Consider a real linear system of the form x = Ax + b

where the matrix A of size n is such that the convergence

radius ̺(A) < 1, its coefficients aij are real numbers and

n∑

j=1

|aij | ≤ 1, ∀1 ≤ i ≤ n.

We now define a Markov chain Tk with n + 1 states

α1, . . . , αn, αn+1, such that

P (αk+1 = j|αk = i) = |aij |

if i 6= n+ 1 and

P (αk+1 = n+ 1|αk = n+ 1) = 1.

We also define a vector c such that c(i) = b(i) if 1 ≤ i ≤ n

and c(n + 1) = 0. Denote by τ = (α0, α1, . . . , αk, αn+1)
a random trajectory that starts at the initial state α0 < n +
1 and passes through (α1, . . . , αk) until the absorbing state

αk+1 = n + 1. The probability to follow the trajectory τ is

P (τ) = pα0
pα0α1

. . . pαk−1αk
pαk

. We use the MAO algorithm

(see [1], [5]) for the initial density vector p = {pα}
n
α=1 and

for the transition density matrix P = {pαβ}
n
α,β=1, as well.

The weights Qα are defined:

Qm = Qm−1
aαm−1,αm

pαm−1,αm

, m = 1, . . . , k, Q0 =
cα0

pα0

. (6)

The estimator Xα(τ) can be presented as Xα(τ) = cα +
Qk

aαkα

pαk

, α = 1, . . . n taken with a probability P (τ) =
pα0

pα0α1
, . . . pαk−1,kαk

pαk
.

For the convergence of the process we use that the random

variable Xα(τ) is an unbiased estimator of xα [4], i.e.

E{Xα(τ)} = xα. (7)

Consider the variance of the random variable Xα(τ) for

evaluation the linear form for the solution W (x). We use

the following notations: A = {|aij |}
n
i,j=1, ĉ = {c2i }

n+1
i=1 . The

special choice of the probability densities leads to the Markov

chain:

cα0
→ aα0α1

→ . . . → aαk−1αk
. (8)

For this finite chain we have that

Ak
c = cα0

k∏

s=1

aαs−1αs
, (9)

where c ∈ IRn×1 and c(i) = b(i) if 1 ≤ i ≤ n and c(n+1) =
0. The variance of the random variable Xk

α(τ) is defined as

[4]

Xk
α(τ) =

cα0

pα0

aα0α1

pα0α1

aα1α2

pα1α2

. . .
aαk−1αk

pαk−1αk

cαk

pαk

=
Ak

c cαk

P k(τ)
. (10)

The variance of the random variable Xk
α(τ) is very im-

portant for the quality of the algorithm. Smaller variance

V ar{Xk
α(τ)} leads to better convergence of the stochastic

algorithm. It is proven that [4]:

V ar{Xk
α(τ)} =

cα0

pα0
pα

(Āk
c ĉ)α − (Ak

c c)
2
α. (11)

III. AN IMPROVED MONTE CARLO ALGORITHM FOR LA

SYSTEMS

We use the Sequential Monte Carlo (SMC) method for

linear systems introduced by John Halton [6]. We introduce the

new improved Monte Carlo algorithm for the computation a

linear functional form W (x) of the solution of a linear system

with real coefficients. The matrices B and the right-hand side

f are normalized to accelerate the convergence rate of the

stochastic process. Special values of the relaxation parameter

γi = bii, i = 1, . . . , n, have been chosen, compared to the

constant γ ∈ (0, 1] in [4]. Numerical experiments show that it

leads to balancing of the iteration matrix A.

The initial equation is picked uniformly at random among

the n equations. After that for each state i we define the total

score S(i) and the total number of visits V (i) that are modified

as soon as state i is visited during a walk.

The following algorithm describes the above:

Now we give a description of the improved Monte Carlo al-

gorithm for computing all the components of the solution. We

compute scores for all the states (seen as new starting states)

that are visited during a given trajectory. The initialization and

preprocessing are the same as in the previous algorithm.

IV. NUMERICAL EXAMPLES AND RESULTS

In order to check the accuracy of a computed solution x̂,

we compute the residual r := Bx̂−f and “weighted residual”

[8]:

ρ :=
||r||

||B|| ||x̂||
. (12)

The number of SMC iteration is N and the computational time

t is measured in seconds. In the Tables and Figures below

we present the values of the weighted residual. We perform

a comparison with the refined iterative Monte Carlo (RIMC)

[3] and the original “walk on equations” (WE) method which

is completely described in [4]. For our method we use the

258 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

Algorithm 1 Computing one component xi0 of the solution

xi, i = 1, . . . n.

Require: Initialization with initial data: the matrix B, the

vector f , the constants γi = bii, i = 1, . . . , n, and the

number of random trajectories M .

Ensure: Preliminary calculations (preprocessing): compute

the matrix A using the parameter γ ∈ (0, 1]:

{aij}
n
i,j=1 =

{
1− bii when i = j

−bij when i 6= j .

Set S := 0.

for k=1 to M do

set m := i0
set S := S + f(m)
test = 0, sign = 1
update S := S + sign ∗ fm;

end for

return xi0 = S
M

.

Algorithm 2 Computing all components xi, i = 1, . . . n of

the solution.

Require: Initialization.

Ensure: Preprocessing.

Set S(i) := 0; V (i) := 0.

for k = 1 to M do

set m := rand(1 : n)
set test := 0; m1 := 0
V (m) := V (m) + 1; m1 = m1 + 1; l(m1) = m

for q = 1 to m1 do

S(l(q)) := S(l(q)) + fl(q)
end for

end for

return

for j = 1 to n do

V (j) := max{1, V (j)}

xj =
S(j)
V (j)

end for

notation improved “walk on equations” algorithm (IWE). We

have done numerical experiments with different matrices with

dimensions n = 7, 100, 5000, where the number of equations

in the linear system is n and B ∈ R
n×n. The number of

random trajectories for lower dimensions n = 7 is 10n. The

number of random trajectories for n = 100 is 5n and for

n = 5000 is n. A few sequential steps for the improved IWE

algorithm combined with SMC are necessary.

In the examples below we try to find the solution x defined

by the linear systems of algebraic equations Bx = f , where

the matrix B and the vector b are preliminary given.

Example 4.1: In the first example we deal with two solu-

tions x1 and x2 of Bx = f , where the matrix B and the

vectors b1 and b2 are given below. The matrix is:

B =

5 −1 −1 0 0 −1 −1
−1 5 −1 −1 0 0 −1
−1 −1 5 −1 −1 0 0
0 −1 −1 5 −1 −1 0
0 0 −1 −1 5 −1 −1

−1 0 0 −1 −1 5 −1
−1 −1 0 0 −1 −1 5

. (13)

The vectors f1 and f2 are:

f1 =

1
1
1
1
1
1
1

, f2 =

4
−2
−1
0

−1
−2
4

. (14)

The solutions are

x1 =

1
1
1
1
1
1
1

, x2 =

1
0
0
0
0
0
1

. (15)

Example 4.2: Let B is the matrix NOS4 from the Harwell-

Boeing Collection [7], and b ∈ R
100, bi = 1, i = 1, . . . , 100.

This particular matrix is taken from an application connected

to finite element approximation of a problem describing a

beam structure in constructive mechanics [7].

Example 4.3: Let B is a dense matrix 5000 × 5000 with

elements in [0,1], and f ∈ R
5000, fi = 1, i = 1, . . . , 5000.

TABLE I
WEIGHTED RESIDUAL FOR THE MATRIX B ∈ R

7×7 AND x1

N RIMC t WE t IWE t

2 2.28e-15 0.02 4.15e-02 0.11 1.00e-01 0.007

5 7.89e-16 0.07 1.39e-02 0.23 2.29e-03 0.026

10 8.07e-16 0.21 3.18e-06 0.68 1.24e-06 0.04

15 7.45e-16 0.35 3.94e-08 1.11 2.55e-10 0.1

20 6.66e-16 0.69 1.71e-10 2.53 7.78e-14 0.23

30 5.79e-16 1.14 8.12e-15 3.69 8.32e-17 0.49

TABLE II
WEIGHTED RESIDUAL FOR THE MATRIX B ∈ R

7×7 AND x2

N RIMC t WE t IWE t

2 1.54e-01 0.003 4.63e-01 0.11 8.21e-02 0.003

5 1.01e-01 0.01 9.93e-03 0.23 2.48e-03 0.008

10 3.55e-02 0.04 1.43e-06 0.68 1.42e-06 0.05

15 4.04e-02 0.08 6.17e-09 1.11 2.66e-10 0.09

20 5.00e-02 0.14 1.40e-09 2.53 6.56e-14 0.16

30 4.72e-02 0.24 1.53e-14 3.69 5.03e-17 0.29

VENELIN TODOROV ET AL.: A NEW MONTE CARLO ALGORITHM FOR LINEAR ALGEBRAIC SYSTEMS 259

TABLE III
WEIGHTED RESIDUAL FOR THE MATRIX NOS4 ∈ R

100×100 .

N RIMC t,s WE t,s IWE t,s

2 7.253e-02 0.05 4.178e-01 0.84 3.028e-03 0.08

5 5.449e-02 0.22 4.148e-01 2.37 3.071e-05 0.24

10 4.319e-02 0.56 5.943e-03 5.31 7.461e-08 0.61

15 3.520e-02 0.78 2.419e-06 9.1 1.217e-10 0.89

20 3.197e-02 1.11 3.336e-09 13.5 1.022e-13 1.13

30 1.835e-02 2.15 3.660e-12 18.6 1.109e-16 1.92

TABLE IV
WEIGHTED RESIDUAL FOR THE MATRIX B ∈ R

5000×5000 .

N RIMC t WE t IWE t

2 5.438e-03 10.05 4.304e-02 3.95 2.931e-02 0.15

5 3.875e-03 60.2 1.217e-01 13.3 1.816e-04 0.9

10 2.866e-03 130.5 2.301e-05 32.3 1.235e-07 2.4

15 2.367e-03 310.7 6.486e-09 67.8 1.833e-10 5.1

20 1.941e-03 811 3.205e-09 171.5 1.054e-14 11.1

30 1.701e-03 2135 1.126e-07 418.6 2.481e-16 25.2

Fig. 1. Weighted residual for the matrix B ∈ R
100×100.

Fig. 2. Weighted residual for the matrix B ∈ R
5000×5000.

It can be seen that for the 7 dimensional case the difference

in the accuracy between the WE and IWE for a given number

of iterations is 2-3 order for N > 15 – see Table I and Table

II. It is worth mentioning that refined iterative Monte Carlo

convergence is very slow except for the trivial solution x1

of Example 1. For the 100 dimensional case of the matrix

NOS4 IWE produces much better results than WE and it is

nearly 5-6 times faster – see Table III. The prior behavior of

the proposed MC algorithm does not depend on the matrix

density. The matrix NOS4 has only 5.9 average non-zeros per

row and per column. The advantages of the algorithm hold

for dense matrices. Also the difference in the accuracy for a

fixed number of iterations is 3-5 order – see Figure 1. For

larger dimensions the advantage of IWE over WE is even

more pronounced. For the last example after 30 iterations WE

has accuracy of 10−9 while IWE gives accuracy of 10−16 –

see Figure 2. Also the time for the IWE is 15 times better

than WE – see Table IV. The advantages of the proposed

MC algorithm can be observed especially for larger matrix

size. The special choice of relaxation parameters leads to the

balancing of the iteration matrix and the experiments show

that for larger dimensions the improvements leads to lower

relative errors for small number of SMC iterations for IWE.

V. CONCLUSION

A new improved Monte Carlo algorithm for solving linear

algebra problems is presented and studied. It is used for

evaluating all the components of the solution of real valued

systems. Due to the optimization techniques it gives superior

results to the standard “walk on equations” method and it is

established as one of the fastest and accurate Monte Carlo

algorithm for solving systems of LA equations.

REFERENCES

[1] Curtiss, J.H., Monte Carlo methods for the iteration of linear op-

erators, J. Math Phys., Vol. 32(4), 209–232, 1954, DOI: 10.1002/s-
apm1953321209.

[2] Dimov, I., Optimal Monte Carlo Algorithms, Proceedings IEEE John

Vincent Atanasoff 2006 International Symposium on Modern Computing,
October 2006, Sofia, Bulgaria, IEEE, Los Alamitos, California, 125–131,
2006, DOI: 10.1109/JVA.2006.37.

[3] Dimov, I., Monte Carlo Methods for Applied Scientists, New Jersey,
London, Singapore, World Scientific, 291p, 2008.

[4] Dimov, I.T., S. Maire, J.M. Sellier, A New Walk on Equa-
tions Monte Carlo Method for Linear Algebraic Problems, Ap-

plied Mathematical Modelling, Vol. 39(15), 4494–4510, 2015, DOI:
10.1016/j.apm.2014.12.018.

[5] Golub, G.H., Van Loon C.F., Matrix computations, Third Edition, Johns
Hopkins Univ. Press, Baltimore, 1996.

[6] Halton, J., Sequential Monte Carlo, Mathematical Proceedings of

the Cambridge Philosophical Society, Vol. 58(1), 57–78, 1962, DOI:
10.1017/S0305004100036227.

[7] NOS4: Lanczos with partial reorthogonalization. Finite
element approximation to a beam structure. http://math-
.nist.gov/MatrixMarket/data/Harwell-Boeing/lanpro/nos4.html

[8] Errors for Linear Systems: http://www.math.umd.edu/ pe-
tersd/466/linsysterrn.pdf

260 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

