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Abstract—The aim of this study is to propose an efficient and
fast framework for recognition of Kanji characters working in
a real-time during their writing. Previous research on online
recognition of handwritten characters used a large dataset
containing samples of characters written by many writers. Our
study presents a solution that achieves fine results, using a small
dataset containing a single sample for each Kanji character from
only one writer. The proposed system analyses and classifies the
stroke types appearing in a Kanji and then recognises it. For
this purpose, we utilise a Convolutional Neural Network and a
hierarchical dictionary containing Kanji definitions. Moreover,
we compare the histograms of Kanjis to solve the problem of
distinguishing character having the same number of strokes
of the same type, but arranged in a different position in
relation to each other. The proposed framework was validated
experimentally on online handwritten Kanjis by beginners and
advanced learners. Achieved accuracy up to 89% indicates that
it may be a valuable solution for learning Kanji by beginners.

I. INTRODUCTION

K
ANJI, along with the syllabic kana - hiragana and

katakana, belong to the Japanese writing system. They

are adopted logographic Chinese characters and literally mean

“Han characters” (漢字). The number of Kanji characters

is vast and amounts to over 500,000 [1]. However, in order

to understand Japanese newspapers and books, it is usually

enough to know 2,136 of jouyou kanji from the official list

of Kanji determined by the Ministry of Education of Japan

in 2010.

A large number of Kanji characters and a complex structure

could require a lot of time to learn them. One of the solutions

that may help the students in that may be an intelligent

application. Its main idea is that it analyses online Kanji

characters when a student is writing them stroke by stroke.

The analysis relies on checking the correctness of the drawn

characters or suggesting their meaning. To make this possible,

such a system has to recognize the handwritten Kanjis online.

There are several approaches to this issue. Early solutions

for online recognition of handwritten Kanji presented in [2]

emphasize the similarity of the sequence of pen movements

to the problem of speech recognition. Due to this similarity,

they utilised a Hidden Markov Model (HMM) for a sub-

stroke of Kanji and built a hierarchical dictionary defining

the characters’ structure. For further improvement of the

recognition accuracy, [3] used pen pressure to propose writer-

independent handwriting recognition. The further studies of

[4], [5] have expanded this solution, taking into account the

relative position of the strokes in Kanji. Study of [6] also is

based on HMM recognition for structured character pattern

representation.

We have to underline that the approaches mentioned above

deal very well with the issue of Kanji recognition. However,

some improvements may be required to gain better efficiency,

especially when considering a solution that is able to work in

real-time. One of the above approaches refers to a hierarchical

dictionary containing definitions of Kanji characters. Creating

such a dictionary required manual preparation of rules that

could contain errors, and it was a time-consuming task.

Further work on its construction could include automatic

generation of rules that would be helpful in adding new defini-

tions to the dictionary. Current research assumes that strokes

in Kanji characters are drawn in the correct order, considering

that the errors could occur while writing a character. Thus,

new studies should include this problem to develop algorithms

that are less sensitive to strokes order.

Having in mind these two problems, namely (i) the def-

inition dictionary of Kanji characters and (ii) sensitivity of

algorithms to strokes order, we propose a neural framework

for online recognition of handwritten Kanji characters. More

specifically, the main objectives of this study are as follows:

1) To propose a framework for online recognition of hand-

written Kanji characters utilising convolutional neural

networks, which are currently one of the state-of-the-

art approaches in image recognition.

2) To automatically generate a dictionary containing def-

inition of Kanji characters, which simple construction

allows to easily supplement it with new definitions and

its further development.

3) To assess the effectiveness of proposed solutions by

experiments carried out using own implementation of

the framework.

The novelty of our research is based on the implementation

of a framework that allows to suggest Kanji characters in

real time. The user can draw a character from the first stroke

to the last and the system returns a sorted list of proposed

Kanji characters after each line drawn. The results returned

by the system are sorted by a measure of similarity between

the character being drawn and the characters contained in

the Kanji dictionary. This makes it possible to find the target

character even before finishing the drawing of all the strokes.

The remainder of this paper is as follows. Section II

introduces the problem to solve and presents the proposed

framework for Kanji recognition. Next, Section III validates
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the framework performance with illustrative examples. Fi-

nally, the findings are concluded, and references are provided.

II. KANJI RECOGNITION FRAMEWORK

In this section, we define the problem of online recognition

of handwritten Kanji characters, and we propose and describe

the framework that solves the indicated issue.

A. Problem definition

Let us assume that a single Kanji character, K consists of

n strokes:

K = {s1, ..., si, ..., sn}. (1)

Information about the number of strokes which compose a

character is not sufficient to recognise the Kanji correctly.

For a given stroke si, it is required to specify its type st,

order so in which it appears in the sign K, and its position

sp in relation to other strokes:

si = (st, so, sp) (2)

The examples illustrating the described problem are the signs

犬 (dog) and 太 (fat) . Each of them consists of four lines.

There are many more signs that are built by using the same

number of strokes. Additional information about the strokes

type is also not sufficient to indicate correctly the character.

Although they have the same number of dashes, and they are

of the same type written in the same order, the last short

slashing line is in a different position in each of these Kanjis.

Therefore, information about the placement of each stroke in

a character is an issue that must be considered.

The task is to recognise the character, K during writing its

strokes si, i = 1, ..., n, including their parameters st, so, sp.

B. Framework overview

The simplified construction of our framework that tries to

solve the above task is presented in Figure 1.

Figure 1. Overview of the framework for online recognition handwritten
Kanji characters.

In the first step, after receiving the first handwritten stroke,

the system saves it to a PNG file and tries to classify it to a

proper type. The classification of the stroke type is done by

a convolutional neural network. Having classified the stroke

type, the system searches the Kanji definitions dictionary. This

dictionary covers definitions of all Kanjis from our dataset.

The result of that is a list of all Kanjis that start with the

previously classified type. Since the list of such possible

characters is extensive, in the next step, the system tries to sort

them by the most likely ones. For this purpose, we compare

the histograms of Kanjis’ images returned by the dictionary

with the image containing the handwritten strokes. Based on

these comparisons, the list of Kanjis is sorted by the most

similar to the drawn character. When the next stroke appears,

the whole process is repeated from the beginning as described

above by keeping the order of drawing lines. Finally, a sorted

list of the proposed Kanji characters is returned.

Detailed implementation of individual modules are pre-

sented in the following subchapters.

C. Classification method

We utilise a Convolutional Neural Network (CNN) to

classify Kanji strokes. The CNN contains several layers

processing signals feed-forward. In the input layer (INPUT ),

neurons are arranged in three dimensions (width, height,

depth) to process pictures. They are transferred through the

set of hidden layers which are of three types, namely: (i) a

convolutional layer (CONV ), (ii) a pooling layer (POOL),

and (iii) a fully-connected layer (FC) with an ReLU acti-

vation function. These layers produce class scores z. The

architecture of the networks can be simplified as follows:

INPUT → (CONV ∗N → POOL) ∗M →
FC ∗K → softmax

, (3)

where the asterisk, ∗ indicates repetition N, M, K times

respectively. In the final layer, softmax the vector of class

scores, z returned from the last fully-connected layer are

integrated using the following softmax function:

σ(z)j =
ezj

∑K

k=1
ezk

. (4)

D. Kanji dictionary

The Kanji dictionary is constructed from the definitions

of 7,365 Kanjis appearing in the dataset of files describing

the characters. We extract all strokes from each file that

maintain information about the appearance order of strokes.

The dictionary is based on a tree structure, in which the

number of trees is determined by the number of stroke types.

The first stroke in the character determines the selection of

trees to which its definition will be saved. Each subsequent

stroke forms the next node in this tree. Only unique stroke

types can exist at the same depth of the tree. An example of

Kanji definitions is presented in Figure 2.

E. Histogram comparison

The list of suggested Kanjis returned by the dictionary may

be extensive. Moreover, they are not sorted according to the

similarity to the character under examination. To solve this

problem, we decided to use the comparison of histograms as

the similarity measure of images.
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A histogram is the graphical representation of the tonal

distribution in a digital image. To compare two histograms

(H1,H2), we choose Chi-Square as a distance measure

d(H1, H2) which evaluates how well both histograms match:

d(H1, H2) =
∑

I

(H1(I))−H2(I))
2

H1(I)
(5)

The smaller the distance between histograms is, the more

similar they are. By calculating the distance between the

image containing drawn lines and the images representing

Kanjis returned by the list, we can sort the Kanji list according

to their similarity to the tested image.

Figure 2. An example of Kanji definitions stored in the dictionary. The
straight vertical stroke at the top is the root of a tree. Each subsequent stroke
is added to the dictionary as a new node. If a stroke duplicates on a given
depth of the tree, it is not added again to the tree.

III. EXPERIMENTS

In this section, we (i) characterise the dataset for ex-

periments, (ii) evaluate various configurations of the CNN

network classifying the stroke types, and (iii) test online

recognition of Kanjis written out by two groups of testers.

A. Dataset

The experiments are based on the KanjiVG database, which

contains descriptions of Kanji, hiragana, and katakana. In

this study, we use only Kanji, namely the version, kanjivg-

r20160426 containing 7,365 characters. Each of them is

described as an SVG file, which is a universal format of

two-dimensional vector graphics. Essential information in this

database is the order of strokes from which a particular

Kanji character is constructed. Each stroke type is labelled

by an identifier. Figure 3 shows 26 stroke types available the

database, and samples size for each type. Unfortunately, the

distribution of strokes over their types is unequal.

B. Parameters of the Convolutional Neural Network

To select an optimal classifier of Kanji strokes, we decided

to test three configurations of a CNN. They are based on the

architectures proposed by [7], [8] and our pre-experiments.

Table I depicts the architectures in detail, namely CNN1,

CNN2, and CNN3. Each of them contains several convo-

lutional layers followed by an activation layer and a max-

pooling layer. Next, there are up to three fully-connected

layers in which the final result is calculated by a softmax

classifier.
Table I

CONFIGURATIONS OF CNN WHICH WHERE EVALUATED. EACH COLUMN

CORRESPONDS TO A LAYER OF THE NETWORK, E.G. CONV3-32 STANDS

FOR THE CONVOLUTIONAL LAYER WITH KERNEL 3X3 AND 32 FILTERS,
FC-1024 STANDS FOR THE FULLY CONNECTED LAYER WITH SIZE 1024.

CNN1 CNN2 CNN3

input (108 x 108 gray-scale image)

conv3-32 conv3-64 conv3-64

maxpool maxpool maxpool

conv3-64 conv3-128 conv3-128

maxpool

maxpool maxpool
conv3-192 conv3-192
maxpool maxpool

conv3-256 conv3-256

maxpool
maxpool

conv3-512
maxpool

FC-256 FC-1024

FC-n classes

softmax

An input layer holds the raw normalised pixel values of an

image with the the size of 108x108 pixels with one colour

channel. All convolution layers compute by using the kernel

with the size of 3x3 with the stride equal to 1. The number

of filters varies from 32 to 512. All max-pooling layers

utilise kernels with the size of 2x2 with the stride of two

downsamples. The fully-connected layers are the size of 256

or 1024 outputs. However, the last fully-connected layer has

the same number of outputs as the number of classes. It is

followed by the softmax classifier. Each of fully-connected

and convolution layers contains a ReLU non-linear layer with

a dropout equal to 0.5 [9].

All the networks were trained by using the Adam optimiser

with the parameters equal to β1 = 0.9, β2 = 0.999 , ǫ=

10−8 and the learning rate equal to 10−4 [10]. The weights

were initialised by the Glorot uniform initializer, which is also

called the Xavier uniform initializer [11]. The size of mini-

batch of 16 was performed. For training, we use 80 of all

samples in dataset, 20% for validation at each epoch, and an

untrained 20% of examples were used for testing. The models

were implemented by using the Keres interface.

C. Stroke classification

The first set of experiments involved the selection of an

optimal model for Kanji strokes classification to their types.

The results of experiments are covered in Table II, which

includes typical classification quality indicators such as by

accuracy, precision, recall, and F1-score.
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Figure 3. Kanji stroke types available in the KanjiVG database, and distribution of stroke examples over the stroke types.

We implemented and tested three network architecture

configurations, namely CNN1, CNN2, and CNN3, which

are described in Subsection III-B. We also used a callback

function for monitoring the training process. It works as

follows: if the loss function does not improve in two epochs,

the process is interrupted, and the algorithm does not execute

the next epoch. The results of these experiments are covered

in the section, "Configuration selection" in Table II. A simple

construction of the Kanji character strokes suggested starting

from a simple architecture of the convolution neural network

(CNN1). However, we decided to increase the number of

network parameters by adding more layers, in order to see

if this would improve the classification results. Subsequent

attempts to deepen the network (CNN2, CNN3) did not bring

any improvement. Moreover, the additional complexity of the

network configuration adversely affected the network learning

time. Comparing the obtained results, we decided to use the

CNN1 network in the succeeding experiments.

Initially, the only element of data preprocessing was nor-

malisation to the range of (0,1). Additionally, we utilised a

ZCA (Zero Components Analysis) whitening transformation

of the input images. It is a linear algebra operation that

reduces redundancies in the matrix of pixel images. The

operation is intended to better highlight structures and features

in images for the learning algorithm. However, in our case,

the improvements were insignificant (see the results in the

section, "Additional ZCA whitening transformation" in Table

II). Thus, we decided to skip this technique not to increase

the complexity of the algorithm.

Due to the relatively small number of samples in the case

of some types of strokes, e.g. S0, S4, S10, S23, we tried

to extend the dataset by more samples. Unfortunately, the

image augmentation techniques may not produce the expected

results. This is due to the characteristic construction of Kanji

characters, in which even a slight rotation of the image

could change a stroke type. A good example highlighting this

problem is the case of S11 and S12. Turning the stroke S11 in

too high angle to the left can cause it to become too similar to

the stroke S12. A similar case appears in the pair of strokes S0

and S1. These concerns have been confirmed in the research.

Setting the rotation range parameter to 20 degrees degraded

the results compared to the original dataset (see the results in

the section, "Sensitivity to rotation" in Table II).

Looking at the shape of 26 classes, we noticed that several

pairs of strokes are very similar in regard to each other.

We combined the most similar stroke types by reducing the

number of classes from 26 to 12. Table III presents the

stroke types that we decided to merge into new classes. This

approach allowed to achieve the best results in comparison

to all previous experiments (see the results in the section,

"Classes reduction" in Table II).

Table II
RESULTS OF THE EXPERIMENTS INVOLVING THE SELECTION OF AN

OPTIMAL MODEL FOR KANJI STROKES CLASSIFICATION TO THEIR TYPES.
Archite-

cture
Image

augmentation
Accu-
racy

Preci-
sion

Re-
call

F1-
score

Configuration selection

CNN1 - normalization 96,14 96,14 96,14 96,11

CNN2 - normalization 95,79 96,23 95,25 95.72

CNN3 - normalization 94,91 95,34 94,55 94.93

Additional ZCA whitening transformation

CNN1 - normalization
- ZCA whitening

95,97 95,96 95,98 95.93

Sensitivity to rotation

CNN1 - normalization
- range rotation

93,24 94,00 92,31 93.12

Classes reduction

CNN1 - normalization
- 12 classes

96,89 96,92 96,89 96,89

Table III
LISTING OF THE NEW MERGED CLASSES.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

S0
S12
S17

S1
S14
S25

S2 S3
S18

S4
S8
S23

S5
S6
S16

S7 S9
S10

S11
S15

S13
S19
S20

S21
S22

S24

D. Kanji recognition

The second set of experiments involved Kanji characters

recognition in real-time during their writing by an individual.

In order to perform these tests, we have created a simple web

interface. It contains a space, in which a user can draw Kanji

by using a mouse cursor. The real-time tests involved two

groups of individuals, namely (i) ten people who have never

studied Japanese before, (ii) one expert familiar with Japanese
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language and Japanese calligraphy. Each tester had to draw

100 randomly selected Kanji characters. Prior to that, each

non-expert individual had performed a small tutorial, which

instructed how to write ten Kanjis.

During the tests, especially with non-expert group, we

encountered two problems. The first issue resulted from

unfamiliarity of Kanji structure by testers. Some individuals

were not able to notice differences between some strokes,

because they were so similar in regard to the others. The

second issue was of technical nature. Our tests were carried

out on a laptop with a mouse device. Testers complained about

the shape of the mouse device, because it was too small and

uncomfortable to use. It affected the quality of drawn lines.

Users could not draw in the way that they wanted to. We

were suggested that it would be more convenient to do tests

on a tablet with a pen device.

It has to be noted that we assumed that a target Kanji was

correctly identified if the following conditions had been met:

1) The target character had to appear in the first five

characters proposed by the system.

2) A tester had only two attempts to draw the mark; any

subsequent attempts were not taken into account.

In spite of the problems mentioned above, we managed

to obtain the following results. 79% of the drawn Kanji

characters by the non-experts were correctly recognised by

the system. For the expert’s drawings, the system recognised

correctly 89% of characters. The detailed results showing the

number of correctly recognised Kanjis are in Table IV.

Table IV
THE NUMBER OF CORRECTLY RECOGNISED KANJIS IN RESPECT TO A

POSITION ON WHICH THEY WERE PROPOSED BY THE SYSTEM (IT

PROPOSES FIVE THE MOST LIKELY KANJI CHARACTERS).

Group of testers
Position

Sum
1st 2nd 3rd 4th 5th

Non-experts 43 18 7 5 6 79%

Expert 78 9 1 1 0 89%

In both groups, the correctly recognised character was, in

most cases, in the first position of the suggested Kanjis. In

only one case for the non-expert group, the correctly identified

Kanji was farther than the fifth position. In other cases, the

type of stroke was incorrectly classified so that the Kanji

could not be recognised. The most frequent mistakes occurred

between lines S0 and S1 and S9 and S1. An imprecisely

drawn line caused an incorrect classification. Due to this,

searching of a dictionary with the definitions of Kanji did

not bring the expected result. Another encountered prob-

lem, which also affected the results, consisted of incorrectly

marked strokes in the KanjiVG database. We had found that

some of the characters in our sets for testers had a stroke

marked as S8, when it should be marked as S1.

IV. CONCLUSIONS

In the study, we presented and implemented a complete

framework that recognises Kanji characters in a real-time,

based on successively drawn strokes. In comparison to the

previous works, our solution did not assume writing charac-

ters in cursive. For this reason, the comparison of prior results

with those achieved by us is not entirely reliable. However,

we were able to find out that even the characters written by

a group that has never before had contact with the Japanese

writing system can be correctly recognised by the system.

Another advantage of our solution is the uncomplicated con-

struction of the system, as well as an automatically generated

dictionary definition of Kanji, which can be easily expanded

with new meanings. The problems encountered during the

tests included the incorrect classification of strokes, which

in the training set were present in a small amount. In order

to improve the quality of CNN classification, it would be

necessary to expand the collection in the least numerous

classes. One of the limitations mentioned in earlier studies

was the problem of writing strokes in the wrong order. This

will be the subject of our further research.
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