

Abstract— The aim of the paper is to identify the problems

and solutions of the software design in Scrum project as well as

to analyze the effectiveness of the solutions. Through a series of

workshops with 4 experts from IT industry and academia we

have identified 52 problems and 99 unique solutions. In this

paper we present a list of 10 common problems and 5 solutions

for each problem selected by the number of sources. The

effectiveness of the solutions to the given problems was

evaluated in an opinion survey by 39 respondents with

experience both in software design and in the Scrum

framework. This evaluation provided for our initial

recommendations on the choice of solutions to particular

problems.

I. INTRODUCTION

oftware design is one of the key elements of software

engineering [1], [2]. Systematic approach to

architecture, code structure, data processing, and other

aspects is required for many types of systems based on their

size, complexity, distribution, and quality factors e.g. safety,

security [3], [4]. Development practices such as pair

programming, continuous integration, test driven

development [5], [6], design patterns, refactoring [7] or

clean code principles [6], [8] provide solutions to many

problems, but their application in practice is challenged by

the development methodology, technology, team, customer

and many more.

Scrum defines only the roles, artifacts and events of the

development process on a general level and leaves the room

for specific decisions and actions to the Scrum Team [9].

This includes the design, programming and testing of

software, where the Scrum Team should be multifunctional

to cover all the competencies necessary to deliver the

product [10] and include the role of a software architect if

necessary [11]. Additionally, Scrum promotes working

product increment after each sprint leaving little time for

detailed approach to architecture and design [6], [10]. It is

recommended to design as little and as late as possible to

avoid negating the design by changing requirements [12],

 This work was supported by DS Funds of ETI Faculty, Gdansk

University of Technology.

[13], [14]. This approach results in increasing technical debt

which is related to the low quality of design and code [12]. It

is also not possible to apply in case of complex systems and

scaled Scrum [15].

Some of the recent research studied the relationship

between the architecture-centric design and the agile

development, but the authors focused either on the eXtreme

Programming framework [16] or the agile projects in general

[17]. This shows that the integration of the software design

principles and the Scrum framework is not straightforward

and calls for a detailed inquiry.

Our research goal was to analyze the problems and

solutions of software design in Scrum projects. To achieve

this goal, 3 research questions were formulated: (RQ1) What

are the problems with software design in the Scrum projects?

(RQ2) What are the solutions to the software design

problems in the Scrum projects? (RQ3) Which solutions to

the problems with software design can be recommended to

the Scrum projects?

The contribution of this paper is the identification of the

problems and solutions of software design in Scrum projects

as well as some initial recommendations of the effective

solutions to the most common problems.

The paper is organized as follows. Section II describes the

research method, the workshops with experts and the online

survey. Section III presents the list of the top problems and

their solutions as well as the evaluation of these solutions

together with some recommendations. Section IV discusses

threats to the validity of this research followed by the

conclusions in Section V.

II. RESEARCH METHOD

Our research method comprised two techniques: the

workshops with experts to identify the problems and their

solutions, and the online survey to evaluate the perceived

effectiveness of the solutions to particular problems.

The workshop was designed as a structured multi-phase

brainstorming session with the following steps:

1. introduction to the workshop, explanation of the goals

and the scope,

2. individual identification of problems,

S

Problems and Solutions of Software Design in Scrum Projects

Jakub Miler
Gdansk University of Technology

Faculty of Electronics, Telecommunications

and Informatics

11/12 Narutowicza St., 80-233, Gdansk, Poland

Email: jakub.miler@eti.pg.edu.pl

Kamil Kajdy
IHS Global sp. z o.o.

163 Marynarki Polskiej St.,

80-868, Gdansk, Poland

Email: kamil.kajdy@gmail.com

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 975–978

DOI: 10.15439/2018F151

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 975

3. discussion of the problems identified in step 2,

aggregation of duplicate problems,

4. individual identification of the solutions to the problems

resulting from step 3 (a solution may solve more than

one problem),

5. discussion of the solutions identified in step 4,

aggregation of duplicate solutions.

The workshop involved a domain expert and one of the

researchers (K. Kajdy) as a moderator. The scope focused on

the specific aspects of the Scrum agile framework:

development in short iterations, changing requirements, self-

organized teams, and little documentation. Additionally, the

aspects of software design were restricted to the following:

component integration, architecture, design patterns, NoSQL

or relational databases, user interfaces, modularization, and

refactoring.

We have carried out workshops with 4 experts with at

least 2 years of experience in both software design and the

Scrum framework. The experts played the roles of

developers and/or Scrum Masters. Each workshop resulted in

a distinct list of problems and solutions to these problems.

Finally, a compiled list of problems and their solutions was

built from the results of all 4 workshops. The merging was

based on keyword analysis.

We have selected 10 problems and 5 solutions to each of

these problems for the evaluation survey (50 solutions in

total) to limit the size of the survey and increase the rate of

feedback. The problems and solutions were selected

primarily based on the total number of indications in the

source workshops.

The effectiveness of each solution in relation to a given

problem was assessed in a Likert-type 5 level scale of 1 to 5,

where 1 meant “a solution is totally ineffective to the

problem” and 5 meant “a solution is very effective to the

problem” with an escape answer “I don’t know”. We have
also asked about the respondents’ experience in software

design and in the Scrum framework. Although Likert-type

scale is ordinal, in the data analysis we have treated it as

numerical with assigned values of 1 to 5. The evaluation of

each solution’s effectiveness was calculated as a weighted
average, where weights represented the respondents’
experience: 0.1 – under 1 year; 0.3 – 1-2 years; 0.6 – 2-3

years; 0.85 – 3-5 years; 1 – above 5 years.

III. RESULTS

The identification workshops were carried out in May and

June 2017. On average, the experts identified 25.75

problems, 31 unique solutions and 75.75 total solutions per

workshop. In total, they have identified 52 problems, 99

unique solutions and 231 total solutions to all problems. The

detailed results of the workshops as well as the full list of

merged problems and solutions are available in [18].

The evaluation survey was carried out in August and

September 2017 with Google Forms. It was promoted among

the IT practitioners via e-mail and social media. In total, 39

respondents took part in the survey. 22 respondents (56%)

had at least 2 years of experience with software design and

20 respondents (51%) had at least 2 years of experience with

Scrum.

Table I and Table II present the identified problems and

their evaluated solutions. The columns are as follows:

identifier, problem/solution name, evaluation with a

weighted average and weighted standard deviation in

parentheses, survey sample size (N), and number of

indications in the workshops (n). The problems are ordered

by the number of indications (n) and the solutions for each

problem are ordered by their evaluation (avg.).

Most of the top evaluated solutions reached a score close

to 4 or more than 4. Problem P2 is the exception with a top

evaluated solution of 3.49. This indicates the need for further

research on its better solutions. Problems P3, P4, P5, P7, P8,

and P10 can be assigned a clear leading solution with top

score of more than 4. Additionally, more than one solution

for problems P7 and P8 have reached the score of 4. The top

scoring solutions for problems P1, P6, and P9 have an

evaluation of slightly below 4, but the top solutions are still

significantly ahead of the rest except for the problem P6,

where 4 top solutions are enclosed within the range of 0.1.

As for the lowest scoring solutions, it can be observed that

the solutions S1 and S36 are evaluated as least effective for

all problems they were assigned to (S1 to problems P1, P7,

P9, and P10; S36 to problems P5 and P6) with sample size

of more than 30. They were, however the top solutions in the

identification phase resulting from 4 and 3 sources

respectively. The experts’ belief in their effectiveness has
been significantly challenged by the survey. It may indicate

that these solutions strongly depend on factors specific to

business environments (e.g. personnel, culture, type of

products), which can be further studied in future research.

It should be noted that some of the solutions can be hard

to apply in a strictly agile environment. Formal review of

projects (S4) can go beyond the visibility and transparency

principles of Scrum and Agile Manifesto leading to an overly

monitored and manually managed team. Task estimation and

accounting recommendations such as S25 or S31 can also

hamper the customer-developer trust Agile is based on. S34

refers to the role of a project manager, which is outside of

the Scrum framework and calls for a project management

methodology on top of Scrum. This can be considered a non-

agile practice.

Some solutions are also technology or architecture

dependent e.g. NoSQL databases (S24), API versioning

(S52) or microservices (S61), which also limits their

application. It may not be beneficial or possible at all to

implement such solutions in particular systems.

The proposed list of problems and their evaluated

solutions has mostly educational use by Scrum developers,

Scrum Masters and coaches. The application of a solution in

a particular project shall always be discussed and accepted

within the Scrum Team.

976 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

TABLE I.

PROBLEMS P1-P5 AND THEIR EVALUATED SOLUTIONS

Id Name Avg. N n

P1 Team work assessed mainly with of code increments and
new functionalities

8

S3 Promoting quality and designing in the
organization and to the client

3.88
(1.35)

34 2

S2 Avoiding creating fast and large increments
at the expense of design and quality of code

3.53
(1.34)

36 2

S4 Formal review of projects 3.20
(1.39)

32 2

S5 An organization's policy that only part of the
time is devoted to working with the code

3.18
(1.10)

34 2

S1 Professional Scrum Master teaching team
communication and promoting issues of
architecture and design at the meetings

3.12
(1.38)

33 4

P2 Problems with expanding and modifying the production
database in the client's environment

6

S17 Automation of creating data models from
code

3.49
(1.45)

32 1

S24 NoSQL databases 3.05
(1.49)

18 1

S21 Designing the database changes one sprint
earlier or at the very beginning of the sprint

2.96
(1.19)

31 1

S20 Small database design at the beginning (the
less data collected, the less data to update)

2.78
(1.48)

30 1

S16 Making modifications to the database once
every few sprints

2.61
(1.22)

30 3

P3 Recognizing refactoring as an increment by the client,
despite the client's resistance

5

S28 Doing refactoring partially in each sprint,
not all in one sprint

4.04
(1.21)

38 1

S29 Using the refactoring automation tools 3.87
(1.02)

29 1

S25 Including the refactoring costs in the price of
an expensive task

3.77
(1.08)

33 5

S27 Educating the client and obtaining approval
for corrective and maintenance actions

3.50
(1.12)

36 2

S26 Introduction of stabilization sprints for code
maintenance

3.36
(1.30)

33 2

P4 Improperly defined tasks that hamper planning and
design

5

S30 Grooming before planning - examining and
presenting details of a given User Story

4.09
(0.77)

33 3

S31 Overestimating tasks to leave time for
"unpredictable"

3.89
(1.06)

36 1

S32 A business analyst present on the planning
and available to the team

3.73
(1.09)

33 1

S34 Project Manager that accurately defines the
tasks

3.71
(1.01)

36 1

S35 Behavior Driven Development - Gherkin
language

3.07
(1.10)

17 1

P5 Difficulties with introducing new functionalities due to
architectural errors

5

S42 Separation of views, data and business logic 4.50
(0.64)

35 1

S38 Applying the initial conceptual and design
phase before the actual implementation

3.97
(0.88)

36 2

S39 A team using design patterns, standards,
diagrams

3.90
(1.01)

33 2

S37 Making the client aware of the time needed
for the design and that it will pay back

3.82
(1.18)

35 2

S36 Preparation of prototypes and preliminary
design in "sprint 0"

3.33
(1.14)

35 3

TABLE II.

PROBLEMS P6-P10 AND THEIR EVALUATED SOLUTIONS

Id Name Avg. N n

P6 Problems resulting from the selection of project
technology in advance, before the implementation

3

S38 Applying the initial conceptual and design
phase before the actual implementation

3.98
(0.95)

35 2

S48 Careful selection of technologies - proven
technologies for large projects, experiments
with fast Proof of Concepts

3.94
(1.08)

36 1

S44 Checking the technologies available on the
market as part of the task of the increment

3.91
(1.02)

34 2

S37 Making the client aware of the time needed
for the design and that it will be pay back

3.88
(0.98)

35 2

S36 Preparation of prototypes and preliminary
design in "sprint 0"

3.30
(1.07)

36 3

P7 Problems with developing a uniform communication
interfaces between modules

3

S52 API versioning 4.37
(0.76)

32 1

S39 A team using design patterns, standards,
diagrams

4.10
(0.95)

31 2

S3 Promoting quality and designing in the
organization and to the client

3.90
(0.90)

32 2

S51 The design created 1 sprint earlier or at the
very beginning of the sprint

3.37
(1.15)

33 1

S1 Professional Scrum Master teaching team
communication and promoting issues of
architecture and design at the meetings

2.90
(1.18)

31 4

P8 Problems with technological debt and poor quality due
to rush in implementation

3

S54 Applying SOLID practices and adhering to
the rules of clean code

4.37
(0.77)

33 1

S56 Multiphase code reviews 4.15
(0.89)

35 1

S28 Doing refactoring partially in each sprint,
not all in one sprint

4.04
(1.18)

37 1

S27 Educating the client and obtaining approval
for corrective and maintenance actions

3.85
(1.01)

36 2

S26 Introduction of stabilization sprints for code
maintenance

3.75
(1.29)

35 2

P9 Difficulties with breaking down tasks into smaller tasks 3

S60 Transferring detailed design problems to
separate meetings of selected people

3.94
(0.86)

36 1

S25 Including the refactoring costs in the price
of an expensive task

3.58
(1.19)

30 5

S61 Application architecture based on
microservices

3.38
(1.06)

29 1

S39 A team using design patterns, standards,
diagrams

3.34
(0.97)

34 2

S1 Professional Scrum Master teaching team
communication and promoting issues of
architecture and design at the meetings

2.94
(1.20)

32 4

P10 Mutual blocking of implementation tasks 3

S30 Grooming before planning - examining and
presenting details of a given User Story

4.16
(0.85)

35 3

S50 Informal conversations and arrangements
(helping to avoid blocking tasks)

3.83
(1.05)

37 1

S39 A team using design patterns, standards,
diagrams

3.71
(0.84)

32 2

S62 Assigning tightly related tasks to one
developer

3.61
(0.95)

37 1

S1 Professional Scrum Master teaching team
communication and promoting issues of
architecture and design at the meetings

2.93
(1.24)

34 4

JAKUB MILER, KAMIL KAJDY: PROBLEMS AND SOLUTIONS OF SOFTWARE DESIGN IN SCRUM PROJECTS 977

IV. VALIDITY THREATS

A. Threats to construct and internal validity

We have controlled the workshop moderator’s bias and

his impact on experts with the structure of the workshop,

which included the steps of individual identification (steps 2

and 4). Only then were the identified problems and solutions

discussed and merged. The moderator was open to further

expert’s explanations.

The incorrect interpretation of the output from experts

was controlled by writing down the output on the post-it

notes and then discussing it to clearly understand the experts

intentions. The moderator preserved all post-it notes after

the workshop and built the resulting list of problems and

solutions directly after the workshop referring to the notes

and his fresh memory. For details on the workshop design

see section II of the paper.

The interview experts represent the above average

experience of our sample. Only 7 of 39 survey respondents

had more experience, which puts the interview experts in the

top quartile of the survey sample. What is the most

important, the interview experts were able to identify large

number of problems and solutions from their experience.

Our weight system is arbitrary at the moment, but it was

designed to represent the assumed learning curve of

software design and the Scrum framework based on the

university syllabus and the authors’ work experiences. We

plan to study the learning curve of the Scrum framework in

the future.

B. Threats to external validity

The number of experts was limited to 4 due to several

factors. First, the set of data collected after 4 workshops was

very satisfactory and we agreed on finishing this phase of

research at this stage. Second, we required our experts to

have experience both in software design and in the Scrum

framework, which significantly limited the available sample.

We have involved experts from various business

environments: academia, technological start-up, small

company, and large multinational corporation. The number

of respondents was also limited due to the specific set of

competencies required for the survey.

Our sample is not statistically random, but the experts and

respondents were identified and contacted with various

channels such as personal contacts, business contacts, social

media, and recommendations from identified experts. This

provided for a reasonably diverse group of practitioners.

We have based our research on data from experts and

respondents working in the Polish market. This forms the

natural limitation to our current results.

V. CONCLUSION

We have carried out 4 workshops with IT practitioners

and identified 52 unique problems and 99 unique solutions.

We believe that these results form a valuable answer to the

research questions RQ1 and RQ2. Due to the limitations of

this paper, we have presented only the 10 most commonly

indicated problems as well as 5 solutions per problem

selected for the survey.

We have acquired some evaluation of the effectiveness of

the solutions to the 10 selected problems. We could point

out some of the highly evaluated solutions as our initial

recommendations as well as indicate the lowest evaluated

solutions as risky. It should be considered, however, that the

evaluations are based on the opinion poll only. This

provides only a preliminary answer to the research question

RQ3. Further and more detailed verification of the solutions’

effectiveness in practice requires careful observation of a

number of projects and can be done in future research.

ACKNOWLEDGMENT

The authors thank all the experts and respondents who

took part in the identification workshops and the survey.

REFERENCES

[1] I. Somerville, Software Engineering, 10th edition, Pearson, 2015

[2] R. S. Pressman, Software Engineering: A Practitioner's Approach, 8th

Edition, McGraw-Hill Education, 2014

[3] J. Valacich, J. George, Modern Systems Analysis and Design, 8th

edition, Pearson, 2016

[4] L. Maciaszek, Requirements Analysis and Systems Design, 3rd

edition, Pearson Education Canada, 2007

[5] K. Beck, C. Andres, Extreme Programming Explained: Embrace

Change, 2nd edition, Addison-Wesley, 2004

[6] M. Lacey, The Scrum Field Guide: Practical Advice for Your First

Year, Addison-Wesley Professional, 2012

[7] R. C. Martin, Agile Software Development, Principles, Patterns, and

Practices, Pearson, 2002

[8] R. C. Martin, Clean Code: A Handbook of Agile Software

Craftsmanship, Prentice Hall, 2008

[9] K. Schwaber, Agile Project Management with Scrum, Microsoft Press,

2004

[10] K. Schwaber, J. Sutherland, The Scrum Guide. Rules of the Game,

Scrum.org, 2017

[11] M. Cohn, Succeeding with Agile: Software Development Using Scrum,

Addison-Wesley, 2010

[12] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular

Agile Process, Addison-Wesley Professional, 2012

[13] J. Rasmusson, The Agile Samurai: How Agile Masters Deliver Great

Software, Pragmatic Bookshelf, 2010

[14] J. Sutherland, J. J. Sutherland, Scrum: The Art of Doing Twice the

Work in Half the Time, Currency, 2014

[15] J. Diaz, J. Garbajosa, J. Perez, A. Yague, Bridging User Stories and

Software Architecture: A Tailored Scrum for Agile Architecting, Agile

Software Architecture: Aligning Agile Processes and Software

Architectures, M. Ali Babar, A. W. Brown, I. Mistrik (eds.), Morgan

Kaufmann, 2013

[16] R. L. Nord and J. E. Tomayko, "Software architecture-centric methods

and agile development", IEEE Software, vol. 23, no. 2, pp. 47-53,

2006, DOI: 10.1109/MS.2006.54

[17] C. R. Prause and Z. Durdik, "Architectural design and documentation:

Waste in agile development?", 2012 International Conference on

Software and System Process (ICSSP), Zurich, 2012, pp. 130-134.

DOI: 10.1109/ICSSP.2012.6225956

[18] K. Kajdy, Analysis of software design in Scrum projects, MSc Thesis,

supervisor J. Miler, Gdansk University of Technology, Poland, 2017

(in Polish)

978 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

