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Abstract—Future smart grid control demands delegation of lia-
bilities to distributed, rather small energy resources in contrast to
today’s traditional large control power units. Distributed energy
scheduling constitutes a complex task for optimization algorithms
regarding the underlying high-dimensional, multimodal and non-
linear problem structure. For predictive scheduling with high
penetration of renewable energy resources, agent-based appro-
aches using classifier-based decoders for modeling individual
flexibilities have shown good performance. On the other hand,
such decoder-based methods are currently designed for single
entities and not able to cope with ensembles of energy resources.
Aggregating training sets sampled from individually modeled
energy units results in folded distributions with unfavorable
properties for training a decoder. Nevertheless, this happens
to be a quite frequent use case, e. g. when a hotel, a small
business, a school or similar with an ensemble of co-generation,
heat pump, solar power, and controllable consumers wants
to take part in decentralized predictive scheduling. Recently,
an extension to an established agent approach for scheduling
individual single energy units has been proposed that is based
on second level optimization. The agents’ decision routine may
be enhanced by a covariance matrix adaption evolution strategy
that is hybridized with decoders. In this way, locally managed
ensembles of energy units can be included. The applicability
has already been demonstrated, but the effects of ensemble
composition are so far unknown. Here, we give an widened view
on the underlying power level distribution problem and extend
the results by conducting a sensitivity analysis on the impact of
ensemble size and penetration on communication overhead and
residual error.

I. INTRODUCTION

In Germany where a financial security of guaranteed feed-in

prices has meanwhile been granted since the early 90th – but

also in other countries of the European union and world wide,

the share of distributed energy resources (DER) within the

electricity grid is constantly and rapidly rising. According to

the goal defined by the European Commission [1], concepts

for integration into electricity markets will quickly become

indispensable to reduce subsidy dependence for both: active

power provision and for providing ancillary services like

frequency or voltage control [2], [3].

Consequently, combining smart measurement technologies

for decentralized information gathering on current operatio-

nal grid state, new tele-control techniques, communication

standards and scalable, decentralized self-organized control

schemes will lead to a so called smart grid with decentra-

lized power conditioning and control of the production and

distribution of electricity managed without central control; as

in the vision of [4] or similar for Europe [5].

As the smart grid will have to delegate many control tasks

to small and distributed energy units, new control algorithms

are required that are able to cope with large problem sizes

and distributed and only locally available information. Virtual

power plants (VPP) are a well-known instrument for aggrega-

ting and controlling DER [6]. Concepts for several purposes

(commercial as well as technical) have been developed. A

usual use case commonly emerging within VPP control is

the need for scheduling the operation of participating DER.

Predictive scheduling [7] describes the optimization problem

for day-ahead planning of energy generation in VPPs, where

the goal is to select a schedule for each energy unit – from an

individual search space of feasible schedules with respect to a

future planning horizon – such that a global objective function

(e. g. resembling a target power profile for the VPP as close

as possible) is optimized.

Recently, distributed approaches gained more and more

importance for VPP control. Different works proposed hier-

archical and decentralized architectures based on multi-agent

systems and market-based computing [8], [9]. Newer appro-

aches try to establish self-organization between actors within

the grid [10]–[12]. In contrast, today’s commercial VPP are

often operated by a single authority that at the same time

is the owner of (and responsible for) all distributed energy

resources in this rather static unit ensemble. Independently

from a concrete implementation for predictive scheduling, the

dispatch algorithm has to choose a schedule for each DER in

the VPP such that all objectives are met.

In order to choose an appropriate schedule for each par-

ticipating DER, the algorithm must know from each DER,

which schedules are actually operable and which are not.

Depending on the type of DER, different constraints restrict

possible operations. The information about individual local

feasibility of schedules has to be modeled appropriately in

(distributed) optimization scenarios, in order to allow unit

independent algorithm development. For this purpose, meta-

models of constrained spaces of operable schedules have been

shown indispensable as a means for independently modeling

constraints and feasible regions of flexibility. Each energy unit

has its own individual flexibility – i. e. the set of schedules

that might be operated without violating any technical ope-

rational constraint – based on the capabilities of the unit,
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Fig. 1. Example for a training set of schedules for a co-generation plant.
A state-of-charge of 50% at night and an increased thermal demand for
showering in the morning and dish washing in the evening result in higher
flexibilities during these periods.

operation conditions (weather, etc.), cost restrictions and so

forth. Integrating these constraints to possible operations of an

arbitrary energy unit demands a means for meta-modeling that

allows model independent access to feasibility information.

[13] introduced a support vector based model that captures

individual feasible regions from training sets of operable

example schedules. Figures 1 and 2 show example training

sets for a co-generation plant and a heat pump respectively.

With an appropriate extension – so called decoders [14] – ,

these models can also be used for repairing infeasible solution

or for systematically generating feasible solutions [15]. Agent-

based approaches can derive a so called support vector decoder

automatically from the surrogate model and use it as a means

for generating feasible solutions without domain knowledge on

the (possible, situational) operations of the controlled energy

resource [14].

Examples for using decoders in optimization within the

smart grid can be found in [16]–[19]. In general, the idea

works in two successive stages – a decoder training phase

and the actual algorithm/ negotiation execution phase where

the decoder is used [7]. During the training phase a decoder

is calculated for each unit. These calculations can be done

fully parallel. During the succeeding load planning phase,

these decoders may be used by an optimization algorithm

that determines the optimal partition of a given active power

target schedule into schedules for each single unit. The decoder

automatically repairs infeasible solutions and thus the solver

does not need any domain knowledge about the energy units,

their individual constraints, or possible operation.
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Fig. 2. Example for a training set of schedules for a heat pump with a
maximum deviation of 500 Wh from the integral of set thermal demand.

An example for a recently developed agent approach for

fully decentralized predictive scheduling is given by the

combinatorial heuristics for distributed agents (COHDA). In

COHDA [20] each agent is responsible for exactly one energy

unit and uses a decoder to locally decide on feasible schedules

for the represented unit. The algorithm has shown excellent

performance [17], [20], [21]. But, as soon as an agent has

to represent a local ensemble of energy units instead of a

single device, a problem arises because usually only flexibility

models of single units are available. Generating a single

decoder for handling all constraints and feasible operations

of the whole ensemble is hardly possible due to statistical

problems when combining training sets from individually

sampled flexibility models. Due to the folded densities only a

very small portion from the interior of the feasible region (the

dense region) is captured by the machine learning process.

But, a combined training set is needed if one wants to train a

single decoder for each agent.

For this reason, in [22] a substitute for the single decoder

part that generates suitable and feasible schedules for the

negotiating agents has been proposed. To achieve this, an

evolution strategy is harnessed to do the job of solving the

problem using individual decoders (one for each unit in the

ensemble). In this way, an optimization problem has to be

solved instead of a single mapping with a decoder for each

agent decision during the negotiation, but with harnessing the

full flexibility of the ensemble. Hence, a new decision method

is introduced to the agent approach based on a covariance

matrix adaption evolution strategy that widens the applicabi-

lity to including multiple local ensembles of DER into the

VPP without changing the underlying negotiation between the

agents.

In [22] the general approach had been scrutinized on basis of

gained optimization results regarding effect and performance

of the CMA-ES part. A closer look on underlying mechanisms

of the agent negotiation and parameter impact is missing so

far. Moreover, the influence of ensemble size and composition

is unknown. Here, we extend the former work with a study

on the impact of folded distributions on different energy units’

aggregated flexibility – constituted by the agents’ entities – and

conduct a sensitivity analysis regarding the impact of group

size, composition or group number on the agent approach as

well as on the CMA-ES intermediate results.

The rest of the paper is organized as follows. First, an

outline on predictive scheduling and related work regarding

the decoder approach as well as decentralized, agent-based

methods for solving is presented. A strong focus is on the com-

binatorial heuristics for distributed agents. After scrutinizing

the problem of folded power level distributions in aggregated

training sets for different types of energy unit ensembles, the

necessity of integrating a heuristic approach into the agent

method for ensembles is derived. We recap the hybridization of

covariance matrix adaption evolutions strategies with support

vector decoders and the bi-level approach from [22] for

circumventing the problem of folded distributions. The sen-

sitivity of different group traits is analyzed. We conclude with

results from several simulation studies showing beyond the

effectiveness of the hybrid approach the scalability regarding

ensemble size, penetration and communication expenses. Mo-

reover, it is shown that the overall efficiency of the underlying

agent approach is not seriously effected by integrating a sub-

optimization process into the decision phase.
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II. RELATED WORK

A. Predictive scheduling

As related work, solutions to predictive scheduling with

decoders have to be discussed in the context of agent-based

approaches prior to deriving the root cause that raises the

problem when extending scheduling to participants that locally

have to control more than one single energy unit. We start with

a definition of the general predictive scheduling problem.

As opposed to the usual time series model, we regard

a schedule as real valued vector p = (p1, . . . , pd) ∈ R
d

with each element pj denoting mean active power generated

(positive values) or consumed (negative values) during the j-

th of d time intervals. Starting time and width of each time

interval are assumed to be known from context information.

The feasibility of a schedule p is defined by sets of unit

specific technical and economic constraints.

One of the crucial challenges in operating a VPP arises

from the complexity of the scheduling task due to the large

amount of (small) energy units in the distribution grid [23].

In the following, we consider predictive scheduling, where the

goal is to select exactly one schedule pi for each energy unit

Ui from a search space F (U) of feasible schedules specific to

the possible operations and technical constraints of unit U and

with respect to a future planning horizon, such that a global

objective function (e. g. resembling a target power profile) is

optimized by the sum of individual contributions [24]. A basic

formulation of the scheduling problem is given by

δ

(

m
∑

i=1

pi, ζ

)

→ min; s. t. pi ∈ F (Ui) ∀Ui ∈ U . (1)

In equation (1) δ denotes an (in general) arbitrary distance

measure for evaluating the difference between the aggregated

schedule of the group and the desired target schedule ζ.

W. l. o. g. we assume the Euclidean distance is used.

To each energy unit Ui exactly one schedule pi has to

be assigned. The desired target schedule is given by ζ.

F (Ui) denotes the individual set of feasible schedules that

are operable for unit Ui without violating any (technical)

constraint. Solving this problem without unit independent

constraint handling leads to specific implementations that are

not suitable for handling changes in VPP composition or unit

setup without having changes in the implementation of the

scheduling algorithm [17].

Flexibility modelling can be understood as the task of

modelling constraints for energy units. For optimization ap-

proaches in smart grid scenarios, black-box models capable

of abstracting from the intrinsic model have proved useful

[25], [26]. They do not need to be known at compile time.

A powerful, yet flexible way of constraint-handling is the use

of a decoder that gives a search algorithm hints on where in

the search space to look for schedules satisfying local hard

constraints (feasible schedules) [26], [27].

For our experiments, we used a decoder as described in

[15]. Here, a decoder γ is given as mapping function

γ : Rd → R
d; γ(p) 7→ p∗. (2)

With p∗ having the following properties:

• p∗ can be operated by the respective energy unit without

violating any constraint,

• the distance ‖p − p∗‖ is small; where the term small

depends on the problem at hand and often denotes the

smallest distance of p to the feasible region.

With such decoder concept for constraint handling one can

now reformulate the optimization problem as

δ

(

m
∑

i=1

γi(pi), ζ

)

→ min, (3)

where γi is the decoder function of unit i that produces

feasible, schedules from p ∈ [0, pmax]
d resulting in schedules

that are operable by that unit. Please note, that this is a

constraint free formulation. With this problem formulation,

many standard algorithms for optimization can be easily

adapted as there are no constraints (apart from a simple box

constraint p ∈ [0, pmax]
d) to be handled and no domain

specific implementation (regarding the energy units and their

operation schedules) has to be integrated. Equation (3) is used

as a surrogate objective to find the solution to the constrained

optimization problem equation (1).

B. COHDA

The Combinatorial Optimization Heuristics for Distributed

Agents (COHDA) was originally introduced in [28], [29].

Since then it has been applied to a variety of smart grid

applications [17], [24], [30], [31]. With our explanations we

follow [29].

Originally, COHDA has been designed as a fully distributed

solution to the predictive scheduling problem (as distributed

constraint optimization formulation) in smart grid management

[28]. In this scenario, each agent in the multi-agent system

is in charge of controlling exactly one distributed energy

resource (generator or controllable consumer) with procuration

for negotiating the energy. All energy resources are drawn

together to a virtual power plant and the controlling agents

form a coalition that has to control the VPP in a distributed

way. It is the goal for the predictive scheduling problem to

find exactly one schedule for each energy unit such that

1) each assigned schedule can be operated by the respective

energy unit without violating any hard technical con-

straint, and

2) the difference between the sum of all targets and a

desired given target schedule is minimized.

The target schedule usually comprises 96 time intervals of 15

minutes each with a given amount of energy (or equivalently

mean active power) for each time interval, but might also be

constituted for a shorter time frame by a given energy product

that the coalition has to deliver.

An agent in COHDA does not represent a complete solution

as it is the case for instance in population-based approaches

[32], [33]. Each agent represents a class within a multiple

choice knapsack combinatorial problem [34]. Applied to pre-

dictive scheduling each class refers to the feasible region in
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the solution space of the respective energy unit. Each agent

chooses schedules as solution candidate only from the set of

feasible schedules that belongs to the DER controlled by this

agent. Each agent is connected with a rather small subset

of other agents from the multi-agent system and may only

communicate with agents from this limited neighborhood. The

neighborhood (communication network) is defined by a small

world graph [35]. As long as this graph is at least simply

connected, each agent collects information from the direct

neighborhood and as each received message also contains

(not necessarily up-to-date) information from the transitive

neighborhood, each agent may accumulate information about

the choices of other agents and thus gains his own local belief

of the aggregated schedule that the other agents are going to

operate. With this belief, each agent may choose a schedule

for the own controlled energy unit in a way that the coalition

is put forward best while at the same time own constraints are

obeyed and own interests are pursued.

All choices for own schedules are rooted in incomplete

knowledge and beliefs in what other agents are probably going

to do; gathered from received messages. The taken own choice

(together with the basis for decision-making) is communicated

to all neighbors and in this way knowledge is successively

spread throughout the coalition without any central memory.

This process is repeated. Because all spread information about

schedule choices is labeled with an age, each agent may

decide easily whether the own knowledge repository has to be

updated. Any update results in recalculating of the own best

schedule contribution and spreading it to the direct neighbors.

By and by all agents accumulate complete information and as

soon as no agent is capable of offering a schedule that results

in a better solution, the algorithm converges and terminates.

Convergence has been proven in [20].

More formally, each time an agent receives a message, three

successive steps are conducted. First, during the perceive phase

an agent aj updates its own working memory κj with the

received working memory κi from agent ai. From the foreign

working memory the objective of the optimization (i. e. the

target schedule) is imported (if not already known) as well

as the configuration that constitutes the calculation base of a

neighboring agent ai. An update is conducted if the received

configuration is larger or has achieved a better objective value.

In this way, schedules that reflect the so far best choices

of other agents and that are not already known in the own

working memory are imported from the received memory.

During the following decision phase agent aj has to decide

on the best choice for his own schedule based on the updated

belief about the system state Γk. Index k indicates the age

of the system state information. The agent knows which

schedules of a subset of other agents (or all) are going to

operate. Thus, the schedule that fills the gap to the desired

target schedule exactly can be easily identified. Due to opera-

tional constraints of the controlled DER, this optimal schedule

can usually not be operated. Thus, each agent is equipped

with a decoder that automatically maps the identified optimal

schedule to a nearby feasible schedule that is operable by the

DER and thus feasible. In this way, the decision routine of the

agent reduces simply to a mapping call of the decoder. Based

on a set of feasible schedules sampled from an appropriate

simulation model for flexibility prediction [36], the decoder

can be built by learning a support vector model after the

approach of [15].

If the objective value for the configuration with this new

candidate is better, this new solution candidate is kept as

selected one. Finally, if a new solution candidate has been

found, the working memory with this new configuration is

sent to all agents in the local neighborhood. The procedure

terminates, as soon as all agents reach the same system state

and no new messages are generated. In this case no agent is

able to find a better solution. Finally, all agents know the same

final result.

As the whole procedure is based exclusively on local

decisions, each agent decides privately which schedules are

taken. Private interest and preferences can be included and all

information on the flexibility of the local DER is kept private.

The same must hold true for agents controlling an ensemble

of energy units.

III. ENSEMBLE SCHEDULING

A. Problem

Sometimes the technical equipment of a single participant

in a virtual power plant consists of more than just a single

generator (or prosumer or controllable consumption). Nevert-

heless, the owner as operator is usually still represented by a

single controlling agent when embedded into a decentralized

agent-based control scheme inside a virtual power plant. In this

case that agent has to handle the ensemble of energy units as

a single unit (in a sense as a single sub VPP) and negotiate to

the other agents with the aggregated flexibility. Nevertheless,

there is usually no joint model of the whole ensemble, and

thus the agent has to use an individual model of each unit and

thus a set of individual decoders for deciding on an aggregated

schedule for the ensemble.

If an agent covers a set of energy units instead of a single

unit, a decoder for the joint feasible region of the group of

units has to be used. A model of the operation of the ensemble

of units is usually not available. Using the training sets of

individual energy units and randomly combining them (adding

up exactly one from each training set) to joint schedules in

order to gain a training set for the joint behavior is not targeted.

The problem is that all source trainings sets are independent

random samples and thus the resulting training set exhibits a

density (of operable power levels) that results from folding the

source distributions.

Figure 3(a) shows a first example. Rather uniformly –

except for the gap between zero and minimum engine velocity

and a slightly degrading likelihood of higher power levels –

distributed values for levels of power as in the case of an co-

generation plant with sufficient buffer capacity fold up to an

multi-modal Irvin-Hall-distribution [37]. This distribution has

some similarities to a sharp normal distribution and the more
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Fig. 3. Probability density of different numbers of folded distributions of operable power levels for co-generation plants for a very cold winters day.
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Fig. 4. Probability distribution of power levels at different time intervals of
an ensemble of 10 micro CHP units. The training set exhibits a concentration
in the inner part of the whole flexibility (grey boxes denoting 3/4 of the
samples) making it highly imbalanced.

samples (number of energy units in the ensemble) are folded

the more leptokurtic the pdf gets.

Whereas Figure 3(a) considers the distribution of power

levels at a certain point in time (7:00 a.m.), shows Figure 3(b)

the situation averaged over all time periods of a sample winters

day. Due to the integration of the warmer daylight periods, the

likelihood of high power levels degrades. Nevertheless, in the

case of ensembles of co-generation plants the distributions fold

up to a similar aggregated distribution that generates training

sets unsuitable for machine learning. If a model is based on

an estimation of probability distributions, then it is highly

susceptible to the spatial distribution of the samples in feasible

space [38] because merely regions of high density are learned.

Figure 3(c) shows as a third example the folded distributions

in the case of a heat pump.

This folding leads to a sample with a very high density in

the middle of the feasible region. At the outskirts the sample

is extremely sparse. Thus, almost all instances from the outer

parts are neglected as outliers from the support vector approach

that generates the surrogate model and the decoder.

For this reason, a decoder trained from such a training

sample reproduces only a very small, inner portion of the

feasible region. In this way, most of the flexibility that an

ensemble could bring in into virtual power plant control is

neglected. This can also be seen in Figure 4. The rather small

grey boxes represent the data (power levels for different time

intervals) that actually should spread over the area denoted by

the outer whiskers. Only the small inner part is going to be

learned by a model.

B. CMAES with decoder

The covariance matrix adaption evolution strategy [39], [40]

(CMA-ES) is a well known evolution strategy for solving multi

modal black box problems.

CMA-ES improves its operations by harnessing lessons

learned from previously successful evolution steps for future

search directions. A new population of solution candidates

is sampled from a multi variate normal distribution N (0,C)
with covariance matrix C which is adapted such that it that it

maximizes the occurrence of improving steps according to pre-

viously seen distributions for good steps. Sampling offspring is

weighted by a selection of solutions of the parent generation.

In a way, the method learns a second order model of the

objective function and exploits it for structure information and

for reducing calls of objective evaluations. An a priori parame-

trization with structure knowledge of the problem by the user

is not necessary as the method is capable of adapting unsuper-

vised. A good introduction can for example be found in [41].

Especially for non-linear, non-convex black-box problems, the

approach has demonstraded excellent performance [41]. CMA-

ES is initially not designed for integrated constraint handling

in constrained optimization. Nevertheless, some approaches

for integrating constraint handling have been developed. In

[42] a CMA-ES is introduced that learns constraint function

models and rotates mutation distributions accordingly. In [43]

an approximation of the directions of the local normal vectors

of the constraint boundaries is built by accumulating steps that

violate the respective constraints. Then, the variances of these

directions are reduced for mutation.

CMA-ES is used for solving the internal optimization

problem that arises when an agent has to decide on the best
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possible joint schedule to offer during the decision phase of

the COHDA negotiation for virtual power plants. With our

explanations we follow [22].

We consider an agent negotiation with a stage where each

agent has to search the individual flexibility and thus the

individual feasible region of operable schedules for the best

option (according to given objectives). In case the agent has to

control an ensemble with more the one local unit, a decoder

that models the feasible region cannot be used as in the case of

a single unit. For this reason, a local optimization problem has

to be solved in order to decide on a schedule: find the closest

aggregated schedule that the local ensemble can operate. This

is basically the same problem as for predictive scheduling Eq.

1. As this smaller sub-problem happens to be a local one seen

from the agent’s perspective, there is no need to harness a

distributed solving strategy. Additionally, the problem size is

expected to stay rather small with a limited number of devices

e. g. inside a household.

Because the operation of several decoders that model the

different feasible regions of the local ensemble has to be

involved, a heuristic that uses only a small number of objective

evaluations is advantageous. CMA-ES is well known for this

characteristic [41]. For handling the constraints, the readily

available decoders can be used. Thus, the decoder technique

also adapted to and employed to the CMA-ES part (cf. . [22]).

In each iteration g of CMA-ES a multivariate distribution

is sampled in order to generate a new offspring solution

population in the vicinity of good parent solutions:

x
(g+1)
k ∼ m(g) + σ(g)N (0,C(g)), k = 1, . . . , λ. (4)

C(g) ∈ R
n×n constitutes the covariance matrix of the

search distribution at generation (iteration) g with overall

standard deviation σ(g) which can also be interpreted in terms

of an adaptive (multivariate) step size. The step size is adapted

individually for each dimension to support and favor direction

where fast improvement can be expected according to formerly

seen results. The mean of the multivariate distribution is

denoted by m(g), λ ≥ 2 denotes the population size.

The new mean m(g+1) for generating the sample of the

next generation in CMA-ES is calculated as weighted average

m(g+1) =

µ
∑

i=1

wix
(g+1)
i:λ ,

∑

wi = 1, wi > 0, (5)

of the best (in terms of objective function evaluation) indi-

viduals form the current sample x
(g)
i , . . . ,x

(g)
λ . In order to

introduce the decoder into CMA-ES, ranking is now done with

the help of the decoder mapping γ:

f(γ(x
(g)
1:λ)), . . . , f(γ(x

(g)
λ:λ)), λ ≥ µ, (6)

to define x
(g)
i:λ as the ith ranked best individual.

For the case of the ensemble scheduling example, a solution

candidate x is the concatenation of individual schedules

x = p1p2 . . .pm

= (p11, p12, . . . , p1d, p21, . . . , p2d, . . . , pmd)
(7)

with p1, . . . ,pm denoting schedules for the respective units in

the ensemble.

Finally, the covariance matrix is updated as usual, but also

based on the decoder based ranking Eq. 6:

C(g+1)
µ =

µ
∑

i=1

wi

(

x
(g+1)
i:λ −m(g)

)(

x
(g+1)
i:λ −m(g)

)⊤

. (8)

CMA-ES has a set of parameters that can be tweaked to

some degree for a problem specific adaption. Nevertheless,

default values that are applicable for a wide range of pro-

blems are usually available. For our experiments, we used the

following default settings for the CMA-ES part. The (external)

strategy parameters are λ, µ, wi=1...µ, controlling selection and

recombination; cσ and dσ for step size control and cc and µcov

controlling the covariance matrix adaption. We have chosen to

set these values after [41]:

λ = 4 + ⌊3 lnn⌋, µ =

[

λ

2

]

, (9)

wi =
ln(λ2 + 0.5)− ln i
∑j=1

µ
λ
2 + 0.5)− ln i

, i = 1, . . . , µ (10)

Cc =
4

n+ 4
, µcov = µeff , (11)

Ccov =
1

µcov

2

(n+
√
2)2

+

(

1− 1

µcov

)

min

(

1,
2µcov − 1

(n+ 2)2 + µcov

)

.

(12)

An in-depth discussion of these parameters is also given in

[44]. These settings are specific to the dimension N of the

objective function. In our case is N = d · m related to the

number of agents and the dimension of the assigned schedules

in the test cases that are discussed in the following section.

IV. RESULTS

1 2 3 4 5 6 7 8 9 10

0

2

4

6

ensemble size

er
ro

r/
M

A
P

E

d = 16
d = 48
d = 96

Fig. 5. Sensitivity of the approach to the group size (1 denotes no ensemble
in the VPP) of an embedded ensemble in the VPP for different planning time
horizons d.
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Fig. 6. Impact of the size of an embedded ensemble on the number of
exchanges messages and thus on the number of local decisions for different
planning horizons d.

TABLE I
SENSITIVITY OF THE APPROACH TO THE NUMBER OF GROUPS (SHARE OF

THE WHOLE VPP IN PERCENT) AND IMPACT ON THE COMMUNICATION

EFFORT (AND THUS ON LOCAL NUMBER OF DECISIONS) FOR A VPP WITH

10 PARTICIPANTS (SINGLE UNITS AND ENSEMBLES). SCHEDULING HAS

BEEN SIMULATED WITH 96-DIMENSIONAL SCHEDULES FOR A PLANNING

PERIOD OF A WHOLE DAY.

ensembles/ % δMAPE # messages

0 2.531 ± 1.254 1055.50 ± 244.15
2 2.672 ± 0.626 1271.16 ± 312.46
4 2.502 ± 0.289 1531.94 ± 350.78
6 2.352 ± 0.231 1613.08 ± 389.72
8 2.204 ± 0.210 1629.28 ± 422.94

10 2.102 ± 0.231 1581.00 ± 413.47

Evaluation was again done by simulation with a setup com-

prising a set of simulated energy resources and a multi-agent

system for control [22]. The agent system was implemented

after [20]. Each agent is responsible for conducting local

decisions and communication with other agents in charge of

controlling a small local ensemble of jointly controlled energy

resources. Each agent is equipped with the described CMA-ES

approach for local decisions on operation.

As a model for distributed energy resources we used a

model for co-generation plants that has already served in

several studies and projects for evaluation [15], [30], [31],

[45], [46]. This model comprises a micro CHP with 4.7 kW of

rated electrical power (12.6 kW thermal power) bundled with

a thermal buffer store. Constraints restrict power band, buffer

charging, gradients, min. on and off times, and satisfaction of

thermal demand. Thermal demand is determined by simulating

losses of a detached house (including hot water drawing)

according to given weather profiles. For each agent the model

is individually (randomly) configured with state of charge,

weather condition, temperature range, allowed operation gra-

dients, and similar. From these model instances, the respective

training sets for building the decoders have been generated

with the sampling approach from [36]. In addition, we used

models for heat pumps and boilers for hot water provision [47].

A fourth model simulates the flexibilities of a cool storage.

TABLE II
SENSITIVITY OF THE APPROACH TO THE NUMBER OF GROUPS AND IMPACT

ON THE COMMUNICATION EFFORT FOR A VPP WITH 50 PARTICIPANTS.

ensembles/ % δMAPE # messages

0 0.935 ± 0.122 87197.24 ± 14149.94
20 0.900 ± 0.354 121473.82 ± 49077.28
40 0.873 ± 0.337 130408.06 ± 63458.05
60 0.770 ± 0.350 145282.74 ± 86664.75
80 0.704 ± 0.378 156506.48 ± 81141.94

100 0.795 ± 0.500 111301.94 ± 78934.29

TABLE III
SENSITIVITY OF THE APPROACH TO THE NUMBER OF GROUPS AND IMPACT

ON THE COMMUNICATION EFFORT FOR A VPP WITH 100 PARTICIPANTS.

ensembles/ % δMAPE # messages

0 0.739 ± 0.556 404597.44 ± 192869.14
20 0.776 ± 0.425 443387.92 ± 419493.10
40 0.609 ± 0.355 488633.46 ± 387336.30
60 0.591 ± 0.347 501521.85 ± 573805.91
80 0.632 ± 0.497 493369.70 ± 487284.04
100 0.987 ± 0.660 303466.90 ± 412400.43

The applicability of the hybridized CMA-ES has already

been demonstrated in [22]. The approach is able to achieve

optimization results with a residual error less than 1 percent.

Often well better results with an absolute error of about 30 W

for scenarios with a rated power of 470 kW are achieved. Here,

again we used the mean absolute percentage error (MAPE)

δMAPE = δ(x, ζ) =
100

d

d
∑

i=1

∣

∣

∣

∣

ζi − xi

ζi

∣

∣

∣

∣

, (13)

in order to be able to compare different scenarios with different

number of energy units and different rated power.

We simulated the effect of integrating ensembles instead

of single energy units into a VPP on the residual error and

on the number of exchanged messages between the agents.

As the agent system under research is a gossiping type of

agent system [48], each message triggers a local decision that

translates into a decoder call in the single unit case but into

solving a optimization problem with CMA-ES in the ensemble

case. Thus, the number of messages is an important indicator

for performance scaling with number of integrated ensembles.

Figure 5 shows a first result. The experiment scrutinized

a VPP with 10 participants. One participant is an ensemble.

The size of the ensemble has been increased from 1 to 10

(an ensemble of size 1 translates again to a single unit)

to evaluate means residual error and number of exchanged

messages. The experiment has been conducted for differently

large planning horizons. For shorter planning horizons the size

of the ensemble has almost no impact. Actually, the residual

error decreases a little (due to growing flexibility in the VPP).

For longer planning horizons the same effect can be observed

up to a size where the error escalates to a higher level. At

the same time, the number of exchanged messages decreases

(cf. Fig. 6). Obviously, the CMA-ES approach starts suffering

from some premature convergence problems when the local

problem size (ensemble size time schedule dimension) exceeds

a certain size; at least when the standard parametrization is
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used. Premature convergence at the second level optimization

inside an ensemble leads to similar results in successive

optimization attempts with similar schedule configurations in

the whole VPP. As no better solution is found, the agent

sends no message and the first level optimization at agent level

ceases earlier with a sub-optimal solution. Hence, integrating

methods to prevent premature convergence in the CMA-ES

part could largely improve the whole VPP optimization in case

of larger ensemble sizes.

Another experiment scrutinizes the number of ensembles

in a VPP. Tables I to III show the result. Now, the share

of ensembles (with a fixed size of 3 CHP) in a VPP is

varying from 0 to 100 percent and the effect is scrutinized. The

result quality increases in most of the cases due to a growing

flexibility with a growing number of ensembles. For smaller

VPP sizes the communication effort grows with the number

of ensembles, for larger VPPs the number of sent messages

stays on the same level compared with the case of 100 percent

single units.

With these results, one can conclude that the introduction of

ensembles does not deteriorate the performance of the agent-

based predictive scheduling. Performance shortcomings for

larger ensembles seem to be due to premature convergence

and should be overcome with future integration of e. g. a

better adapted step size control.

V. CONCLUSION

Using machine learning approaches for flexibility modeling

and automatically deriving decoders from these models for

efficient and domain knowledge independent implementation

of (distributed) optimization methods has proven a useful tool

in managing the future smart grid. So far, these models can

only be applied to single energy units, because distributions of

power levels in the training sets of single units fold up when

aggregating them to ensemble training sets. Thus, the training

set renders useless for appropriately learning a model for the

joint flexibility of a group of energy units.

[22] presented a hybrid approach to overcome the problem

of folded densities when training decoders for ensembles of

energy resources in predictive scheduling. To achieve this, we

embedded a CMA-ES solver in the decision routine of an

established agent-based solution.

With this approach also households, hotels, small busines-

ses, schools or similar with an ensemble of co-generation, heat

pump, solar power, and controllable consumers can take part in

agent-based decentralized predictive scheduling for providing

energy services in future smart grid architectures without a

need for an (expensive) individual link of each single device

in the ensemble. By using a hybrid approach of evolution stra-

tegy and support vector based decoder, such ensemble based

participants in virtual power plants can easily be represented

by a single agent. Moreover, agents with our decision method

still implement the same interface as single unit agents and can

thus be easily integrated with the standard COHDA protocol.

Applicability had already been demonstrated in [22].

Our new simulations showed that CMA-ES is well suitable

for being hybridized with a decoder in order to build a system

that may operate with arbitrary energy units regardless of

individual constraints that restrict feasible operation. CMA-ES

performs satisfactorily on reasonable large ensembles. Addi-

tional simulations showed that size and number of ensembles

within a VPP scale well up to reasonable sizes. Communica-

tion does not suffer from an increase in number of exchanged

messages. Based on these results the inclusion of secondary,

local optimization objectives like cost or preferences are a

consequentially next step in future work.
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