
On the Autotuning Potential of Time-stepping

methods from Scientific Computing

Natalia Kalinnik1, Robert Kiesel2, Thomas Rauber1, Marcel Richter2 and Gudula Rünger2

1 University Bayreuth
Email: {natalia.kalinnik,rauber}@uni-bayreuth.de

2 Chemnitz University of Technology
Email: {robert.kiesel,m.richter,ruenger}@cs.tu-chemnitz.de

Abstract—Due to the ever changing characteristics of the
newly provided hardware, there is the permanent requirement of
designing and re-designing software adequately to meet the basic
hardware conditions. Especially for well-established software,
easy portability of the functional as well as the non-functional
properties, such as runtime performance or energy efficiency,
would be beneficial, so that the software adapts automatically
to the given hardware conditions. In this article, we explore
the autotuning potential of several methods from scientific
computing. In particular, we consider time-stepping methods
and investigate the effect of relevant tuning parameters of the
different methods. We also address the question, whether offline
or online autotuning approaches are appropriate for the specific
method. The methods from scientific computing considered are
particle simulation methods, solution methods for differential
equations, as well as sparse matrix computations.

Index Terms—offline and online autotuning, performance
analysis, portability of efficiency, time-stepping methods.

I. Introduction

I
T IS a well-known fact that the life-span of software is
usually much longer than the life-span of the hardware

on which it is executed. The common practice is to port
and tune the existing software for the new hardware
generation by adapting it to the hardware details of the
new architecture. Especially, if the software is a complex
software system developed over many years, the effort
of porting and tuning is high, but the development of a
completely new software system would also be too time-
consuming. Because of the advent of heterogeneous hard-
ware platforms, the effort for porting, re-designing, tuning
or re-developing software is even increasing. The challenge
and a major research question is how complex software
systems can be developed such that the runtime behavior
of the software system can adapt or can be adapted to the
ever-changing hardware of a varying heterogeneous type.
Specifically, we consider the question whether and how
software can gain portable efficiency by self-adaptation,
also called autotuning.

In this article, we investigate the tuning potential of
important simulation methods from scientific computing
and address the question, which techniques can be used
to support the tuning towards the development of flex-
ible complex software systems. The simulation methods

considered include sparse matrix computations, particle
simulation methods, and solution methods for ordinary
differential equations. The article provides a systematic
investigation of the potential for self-adaptation towards
a better runtime performance using offline and online
autotuning.
Offline autotuning is performed in a separate offline

phase, which is executed at software installation time
before the actual software execution and in which the run-
time behavior of the software on the given architecture is
explored by detailed performance tests with different input
scenarios. The test results are used to generate one or
several implementations of the software that run efficiently
on the given hardware platform for different input sets.
After the generation of the software, no further adaptation
is performed during production runs. Typical examples for
offline autotuning are ATLAS [1] and PHiPAC [2] for dense
matrix multiplication. Offline autotuning can be applied if
the runtime behavior depends only or mainly on the size
of the input set and other characteristics of the input set
play only a minor role.
Online autotuning is integrated into the execution of the

software. The software observes the performance behavior
for the given input set during the runtime and adapts
its behavior such that the performance is increased as
much as possible. Thus, online autotuning is able to adapt
the software behavior to the characteristics of the input
set. Examples for online autotuning approaches are Active
Harmony [3] or Periscope [4]. The challenge of online
autotuning is to integrate the self-adaptation at runtime
in such a way that the runtime performance is affected as
little as possible.
This article investigates the autotuning potential of sim-

ulation methods from scientific computing and discusses
the usage of offline and online autotuning approaches.
In particular, we provide a detailed performance analysis
of the different simulation methods, investigate relevant
parameters which have a large influence on the perfor-
mance, and analyze whether the parameters identified are
amenable to autotuning and which autotuning methodol-
ogy is suitable. Depending on the method from scientific

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 329–338

DOI: 10.15439/2018F169

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 329

computing and the parameters identified, different auto-
tuning approaches are best suited for different methods.
The article derives a guideline, which method requires
which degree for offline and online autotuning.

The rest of the article is structured as follows. Section
II gives an overview of relevant aspects of autotuning ap-
proaches. Section III considers applications from different
areas and discusses their autotuning potential. Section IV
discusses related work. Section V summarizes the obser-
vations for the different applications and concludes the
article.

II. Overview of Autotuning Approaches

In this section, we give an overview of key terms and
techniques that are important for applying autotuning for
time-stepping simulation methods.

A. Key aspects of self-adaptation

The main terms portability of efficiency and auto-tuning
or self-adaptive software are often used as keywords today
and we start by giving a precise definition for each of the
terms.

An important goal in parallel scientific computing is
portability of efficiency of simulation algorithms. A per-
formance portable implementation of an application or
algorithm can be defined as one that will achieve high
performance across a variety of target systems [5]. Depend-
ing on the target system, high performance may be quite
different, and the definition means high performance for
each specific target system. For heterogeneous resources,
a major challenge is the diversity of devices on differ-
ent machines, which provide widely varying performance
characteristics [6]. A program optimized for one processor
processor may not run as well on the next generation of
processors or on a device from a different vendor, and
a program optimized for GPU execution is often very
different from one optimized for CPU execution.

Adaptation and self-adaptation of software in gen-
eral refers to the the ability of self-adjustment or self-
modification of the software in accordance with changing
conditions of environment or structure. This term has first
been explored in [7]. Thus, self-adaptive software evaluates
its own behavior during execution and changes its behavior
when the evaluation indicates that it is not accomplishing
what the software is intended to do, or when a better
functionality or performance seems to be possible [8].

There are different levels on which software can be tuned
or influenced towards a better performance:

• hardware-level: this includes hardware techniques
such as dynamic voltage and frequency scaling
(DVFS) for energy optimization;

• system-level: this includes scheduling approaches by
a compiler or operating system to improve task exe-
cutions on a parallel target system;

• software-level: this includes modifications at the
software-level towards better performance, e.g.,

source-code transformations such as loop transforma-
tions; this captures also the case that the software can
adapt itself using knowledge from earlier computing
steps.

There are a variety of interactions between these different
levels and the final performance improvements achieved for
a specific situation may come from performance improve-
ments at different levels. The main focus of this article are
performance improvements at the software-level and the
questions which methods of self-adaptation are suitable
for which application areas.

B. Tuning parameters and possibilities

The efficiency of an application software can depend
on many influencing parameters and program transforma-
tions, system parameters and characteristics of the input
set may have a large influence on the resulting runtime
performance or energy efficiency. In this subsection, we
provide a short overview.
A new implementation version for a simulation method

from scientific computing can be generated by applying
correctness-preserving program transformations such as
loop interchange, loop distribution, loop unrolling or loop
tiling. Moreover, SIMD instruction or memory prefetching
techniques can be applied. The result is an implementation
version with the same input-output behavior but poten-
tially improved non-functional properties according to a
given optimization goal.
Some of the program transformations may be based

on the use of transformation parameters. Examples are
loop unrolling or loop tiling where an unroll factor or a
blocking factor needs to be specified. The selection of a
suitable set of program transformations along with their
parameter values and an order in which the program trans-
formations should be applied may significantly increase
the performance or the energy efficiency. The application
of the program transformation could be controlled by a
performance model such as the ECM model [9].
The execution of a program implementation may also

be influenced by configuration and system parameters.
These include the usage of compiler options, the number
of threads or processes used for the execution of the imple-
mentation and the mapping of these threads or processes
to the resources of the given HPC system. For the case
of energy efficiency as target function, the selection of
the operational frequency for DVFS may also play an
important role. For some of the simulation methods, also
characteristics of the input set may play an important
role for the resulting performance or energy efficiency.
Examples are signal processing where the size of the input
set may determine which algorithm is the most efficient
one [10], [11] or spare linear algorithms where the sparsity
and composition of the data structures such as vectors
or matrices may play an important role [12], [13]. This
behavior can also be observed for particle simulation meth-
ods that are considered in this article, where the initial

330 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

distribution of the particles may have a strong influence
on which simulation method and which implementation
leads to the fastest execution.

C. Offline and Online Autotuning approaches

The main emphasis of this article are methods of self-
adaptation for the application class of time-stepping sim-
ulation methods from scientific computing, since these
methods constitute an important class of HPC software.
Depending on the characteristics of the specific simulation
method and the underlying simulation algorithm, offline or
online approaches may be suitable for self-adaptation. In
the following, we give an overview.

1) Offline Autotuning: Analyzing the hardware and
software for tuning and preselecting parameter sets are
main aspects of the offline autotuning. The offline auto-
tuning is performed before the first time step is executed
and is performed once.

In this autotuning approach there should be an auto-
mated generation of test parameter sets for the identifica-
tion of the influence of various platform and input param-
eters, e.g., processor frequency or number of threads. For
the quantification of the influences, these parameters will
be evaluated and analyzed. This evaluation and analysis
can be done with some microbenchmarks. In the offline au-
totuning approach is also a creation of application-specific
performance models, e.g., the Roofline model [14] or the
ECM model[9], for the simulation application which can
provide additional information. These performance models
are evaluated by experiments and facilitate a selection of
suitable program variants and configurations regarding all
available program variants. The selected program variants
are arranged in a decision tree which is provided to the
online tuning step, whereby the leaves of the decision
tree contain implementation variants considered for the
execution and the inner nodes contain conditions to decide
which leaves are appropriate. The conditions capture rel-
evant information about the input data that is suitable to
identify implementation variants than potentially lead to
good runtime results under the conditions given. Depend-
ing on the application, the conditions may include the size
of the input data and specific properties of the input data
such as distribution characteristics for particle simulation
methods, distribution patterns for sparse matrix computa-
tions, or access distances for solution methods for ordinary
differential equations.

2) Online Autotuning: The monitoring and control of
the self-adapting behaviour of time-stepping simulation
methods are key components of the online autotuning
approach. Many mechanisms should be provided to ensure
a comprehensive online adaptation process for different
simulation methods, which differ significantly in their
computational structure, e.g. data arrangement or loop
structures. Hence, the following online tuning mechanisms
require to be as much application independent as possible

in order to be applied to diverse time-stepping simulation
methods.
The offline autotuning step pre-selected a diverse set

of implementation variants that should be considered for
the execution of the time-stepping simulation method.
These implementation candidates are processed by a se-
lection and preparation mechanism which ensures a later
usage of these candidates. Architectural and algorithmic
parameters are determined by an evaluation mechanism
and include major properties of the actual input data.
This evaluation step is performed before the first time
step is executed. The set of determined parameters is
used by a search mechanism, which works on parameter
configurations and traverses the decision tree built in the
offline tuning step. Thus, the search mechanism selects
a final set of suitable implementation candidates based
on the given parameter configuration. A generic iteration
controller mechanism applies the final set of implementa-
tion candidates to the first time steps and compares their
overall performance. This comparison process determines
the best implementation candidate and the appropriate
runtime parameters for the execution of the remaining
time steps. The monitoring mechanism utilizes the initial
comparison of the implementation candidates within the
first time steps and observes the overall performance
behaviour of the following time steps until the application
finishes its execution. Hence, significant deviations of the
performance measured can be detected and a new selec-
tion of a more suitable implementation candidate can be
initiated to react on varying input data properties.
3) Cost estimations: The estimation of resources, e.g.

time, energy or memory space, required to solve a given
problem can be used to provide upper and lower limits for
the appropriate resource. Hence, existing implementations
can be rated based on these limits and are more or less
suitable to solve a specific problem with actual input
data on different HPC-systems or with different execution
units, e.g. CPU, GPU or multiple HPC-systems. The cost
estimation of a given algorithm or an implementation can
be provided by a cost function. The granularity of cost
functions can range from estimating whole programs of
arbitrary size, which may result in quite complex or merely
rough estimations, to specific parts of an implementation,
e.g. time-step loops, single loop kernels or basic operations
as vector, load or store operations. Since cost functions for
loop kernels can be formulated quite accurately, offline au-
totuning approaches can benefit greatly of such estimation
functions to predict the resource consumption of repeating
calculations.
Time-stepping simulation methods should ensure an ef-

ficient calculation of each time step for varying input data.
Thus, several implementations are provided for executing
an actual time step, i.e. one loop iteration, and in general
perform best with different input data and parameter
configurations. Therefore, a selection of implementations
has to be applied to limit the number of existing imple-

NATALIA KALINNIK ET AL.: ON THE AUTOTUNING POTENTIAL OF TIME-STEPPING METHODS FROM SCIENTIFIC COMPUTING 331

mentations to match a given requirement, e.g. time or
energy consumption. Additionally, the input data may
provide further selection criteria for the most suitable
implementation variants based on the given cost functions.
This leads to a significant reduction of the search space
used within the autotuning process and, hence, ensures a
faster convergence of the offline tuning step to find the
optimal implementation variant for the current execution
state.

III. Tuning examples and experimental results

To investigate the potential for self-adaptivity, we con-
sider particle simulation methods, sparse matrix computa-
tions, and solution methods for differential equations and
analyze their performance behavior with respect to varies
tuning parameters, including the degree of parallelism,
the operational frequency used, and application-specific
parameters such as the grid size for particle simulation
methods.

A. Particle simulation methods

We consider particle simulations with long-range in-
teractions caused, e.g., by electrostatic or gravitational
forces. The behavior of the particles is simulated by a
series of time steps. In each time step, for each particle
the simulation computes the forces caused by all other
particles and determines the resulting new positions and
velocities of the particles. This results in O(N2) complex-
ity per time step if all interactions are taken into account.
Many approaches have been proposed to reduce the com-
plexity, including Fourier-based methods and hierarchical
methods. Most of these advanced methods use a splitting
approach and distinguish between long-range interactions
from far-away particles and short-range interactions from
nearby particles. Short-range interactions are typically
computed exactly and long-range interactions are typically
approximated.

The distinction between short-range interactions and
long-range interactions is often performed by using a 3D
grid structure with spatial cells. The short-range interac-
tions cover all particles residing in the same or neighboring
cells. The size of the spatial cells influences the computa-
tional behavior of the simulation and may also have an
influence on the resulting accuracy of the simulation. The
different advanced particle simulation methods mainly
differ in the computation of the long-range interactions.
In the following, we consider two different approaches,
a Fourier-based approach and a hierarchical tree-based
approach based on multipole expansions.

The performance behavior of the particle simulation
methods considered depends on different hardware-specific
and application-specific parameters. The hardware-specific
parameters include the hardware platform used and the
number of processes or threads employed. The application-
specific parameters mainly include the separation between
the short-range and long-range interactions. The number

of particles and the initial distribution of the particles
may also have a strong influence on the resulting per-
formance of the different methods. In the following, we
concentrate on the influence of the number of particles, the
number of processors used, and the separation between the
short-range and long-range interactions and the resulting
grid sizes. The experiments are performed on an Intel
Haswell system with two Xeon E5-2683 v3 processors, each
equipped with 14 cores and a L3 cache of size 35,840 KB.
The performance experiments are performed with two
particle systems with non-uniform distribution: a small
particle system with 300 ·82 = 19, 200 particles and a large
particle system with 300 · 85 ≈ 9.8 million particles.

Fourier-based methods

Fourier-based methods compute the long-range inter-
actions in Fourier space. Often, fast Fourier-transforms
(FFT) are employed. The resulting computational com-
plexity per time step is O(N · logN), if the particles are
sufficiently uniformly distributed [15]. In the following,
we use an FFT-based particle simulation method for our
experiments. For this method, the separation between
the short-range and long-range interactions is determined
by the grid sizes used. Figure 1 depicts the resulting
execution times for both the small and the large particle
system for different grid sizes. The execution times for
4 MPI processes are shown in the left diagram and the
execution times for 56 MPI processes are shown in the
right diagram. The diagrams show that different grid sizes
lead to significantly different execution times due to the
differences in the near-field and far-field computations.
The optimum grid size that leads to the smallest execution
time depends on the number of particles and the number
of processes used. For both 4 and 56 MPI processes, the
optimum grid size is 32 for the small particle system
and 320 for the large particle system. Measurements have
shown that these grid sizes are the optimum sizes also for
other numbers of processes. For a sequential execution,
the optimum grid size remains at 32 for the small particle
system and changes to 448 for the large particle system
(not shown in a figure).
The development of the execution time for different

numbers of MPI processes is shown in Fig. 2 for the small
particle system. It can be seen that the relative order
between the resulting performance for the different grid
sizes does not change with the number of processes.

Hierarchical multipole method

The fast multipole method (FMM) computes the par-
ticle interactions based on multipole expansions [16]. In
each time step, the method calculates the (gravitational
or electrostatic) potential at each particle position, which
allows the computation of the new positions and velocities
of the particles. The potential is split into a near-field
and a far-field potential. To do so, an octree structure
is defined, which results from a spatial decomposition

332 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

1

10-2

10-1

101

102

103

104

16 32 64 96 128 192 256 320 384 448 512

T
im

e
[s

]

Grid size

FFT runtime with 4 processes

Near-field / 300x82

Far-field / 300x82

Total / 300x82

Near-field / 300x85

Far-field / 300x85

Total / 300x85

1

10-2

10-1

101

102

103

104

16 32 64 96 128 192 256 320 384 448 512

T
im

e
[s

]

Grid size

FFT runtime with 8 processes

Near-field / 300x82

Far-field / 300x82

Total / 300x82

Near-field / 300x85

Far-field / 300x85

Total / 300x85

Figure 1. Execution times of the FFT-based particle simulation method for different grid sizes for the small and the large particle system
for 4 (left) and 8 (right) MPI processes.

 0.01

 0.1

 1

 10

 1 2 4 8 14 28 56

T
im

e
[s

]

Number of MPI processes

Parallel runtime

16

32

64

96

128

192

Figure 2. Development of the execution times of the FFT-based
particle simulation method for different numbers of MPI processes
and different grid sizes between 16 and 192.

into hierarchical boxes, and the particles are sorted into
these boxes according to their current position. The spatial
decomposition is controlled by a predefined maximum
tree depth. For a particle p, the near-field potential is
determined by computing the potential at the position of p
caused by each of the particles in the same and in neigh-
boring octree boxes. The far-field potential is computed
by using approximations for the potential caused by all
particles in a specific octree box. These approximations
are computed for each octree level. The approximations
at suitable octree levels are then used for approximating
the far-field potential at a specific particle position. The
maximum tree depth determines the separation in the
near-field and the far-field potential. The resulting com-
plexity is O(N). In contrast to the FFT-based particle

simulation, the FMM does not require that the particles
are sufficiently uniformly distributed.
Figure 3 depicts the resulting execution times for both

the small and the large particle system for different maxi-
mum tree levels. The execution times for 4 MPI processes
are shown in the left diagram and the execution times for
56 MPI processes are shown in the right diagram. The
figure shows that the maximum tree depth can have a
significant influence on the resulting execution time. For
the small particle system, the optimum maximum tree
depth is 4 for 4 MPI processes, 8 for 8 MPI processes, and
3 for 56 MPI processes. For the large particle system, the
optimum maximum tree depth is 7 for 4 MPI processes, 9
for 8 MPI processes, and 10 for 56 MPI processes.

Autotuning-Potential

The experiments of both long-range interaction ap-
proaches confirm that the runtime performance is influ-
enced by the particle system size and the separation of
the short-range and long-range interactions, i.e., by the
grid size or the maximum tree depth. For the hierarchical
method, the optimal separation setting to get the best
runtime also depends on the number of MPI processes
used. Some estimates, e.g., choose high number of MPI
processes for better performance, can be done with of-
fline autotuning before the first time step to start with
acceptable parameters. To get the optimal parameters
they have to be determined with online autotuning. Since
the distribution of the particles in the particle system
changes after each time step, it is also possible that the
optimal parameter setting is changing over time. Thus
the online autotuning has to be reapplied after several
time steps to respond to imbalances and improve the
overall runtime performance. Therefore the performance
must be constantly checked for irregularities. For other
optimization goals, e.g. energy efficiency, the autotuning-
potential behaves the same.

NATALIA KALINNIK ET AL.: ON THE AUTOTUNING POTENTIAL OF TIME-STEPPING METHODS FROM SCIENTIFIC COMPUTING 333

1

10-2

10-1

101

102

103

104

105

 2 3 4 5 6 7 8 9 10

T
im

e
[s

]

Maximum tree depth

FMM runtime with 4 processes

Near-field / 300x82

Far-field / 300x82

Total / 300x82

Near-field / 300x85

Far-field / 300x85

Total / 300x85

1

10-2

10-1

101

102

103

104

105

 2 3 4 5 6 7 8 9 10

T
im

e
[s

]

Maximum tree depth

FMM runtime with 56 processes

Near-field / 300x82

Far-field / 300x82

Total / 300x82

Near-field / 300x85

Far-field / 300x85

Total / 300x85

Figure 3. Execution times of the FMM particle simulation method for different maximum tree levels for the small and the large particle
system using 4 (left) and 56 (right) MPI processes.

B. Sparse matrix methods

Methods performing operations on sparse matrices face
additional challenges compared to methods processing
dense matrices. Therefore typical calculations as sparse
matrix-vector product (SpMV), sparse general matrix-
matrix multiplication (GEMM) or solving sets of linear
equations using Cholesky factorization have to consider
carefully, which memory layout of the sparse input matri-
ces provides the highest benefit in terms of the required
performance and given limitations. The sparse property
refers to matrices with a significant number of zero matrix
elements and, thus, few actual non-zero matrix elements,
which in general constitute a rather small fraction of the
overall matrix elements.

In the case of the sparse GEMM operation, there is a
upper runtime complexity of O(n3) for a dense matrix
memory layout and a simple GEMM algorithm for dense
matrices. However, the usage of more suitable sparse ma-
trix memory layouts, called sparse matrix formats (SMF)
in the following, is in general based on the exploitation
of specific matrix properties of the input matrices and
can lead to significant performance improvements. Since
the reduction of the number of zero matrix elements
stored leads to a better spatial locality when accessing
the non-zero matrix elements, memory hierarchies, i.e. the
cache hierarchy, can be utilized more efficiently. Hence,
performance improvements in terms of time, power and
memory consumption can be achieved.

Although the chosen SMF can have a great influence
on the performance of the sparse GEMM, the set of
parameters influencing performance rather consists of a
diverse mix of software and hardware parameters. Solv-
ing sparse matrix methods efficiently on a given HPC
system relies on several parameters, including the usage
of different numbers of threads, the scaling of core and
uncore frequency, the availability of SIMD processing

units and a proper workload balance within the chosen
implementation. Some of the listed parameter influences
are considered subsequently with a comparison of three
different SMF for a sparse GEMM operation. The SMF
chosen are Compressed Sparse Row (CRS), Block Sparse
Row (BSR) and Ellpack-Itpack (EIP). The thermal1 ma-
trix with 574,458 non-zero matrix elements is used for the
measurements and is taken from the SuiteSparse Matrix
Collection [17]. Test systems are a Skylake system with 2×
Xeon Gold 6130 processor each with 16 physical cores at
2.1 GHz and a Knights Landing system with a Xeon Phi
7250 processor with 68 physical cores at 1.4 GHz.
The effect of different numbers of threads are depicted

in Fig. 4 and show different optimal thread utilizations
of the SMF. Moreover, the effect of the nominal core
frequency of two different HPC systems can be observed
and shows implicitly an inefficient usage of power for
certain proposed SMF, e.g. the EIP format can not utilize
more than 32 threads for the given test matrix on the
Knights Landing system. As an in-depth variable imple-
mentation parameter the block size for the BSR format
has a significant influence on the achieved runtime as
shown in Fig. 5. Comparing different modifiable frequency
ranges, the results indicate that the runtime performance
of different block sizes can differ such that a specific block
size can perform better within a specific frequency range,
i.e. the BSR-2 Version can achieve a better runtime within
a low frequency range compared to the BSR-16 variant.

Autotuning-Potential

Since a great proportion of the significant parameters for
sparse matrix methods are based on hardware properties
or on the properties of the input matrices, which are invari-
ant for most sparse matrix methods, a offline autotuning
approach implicates the most benefits. Therefore, the
application of the proper optimizations can improve the
performance required, e.g. runtime, energy consumption or

334 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

memory bandwidth utilization. Accordingly, performance
models as the Roofline model [14], which have to be
created only once for a given hardware configuration, can
be used to a great extent for decision making processes of
choosing a proper implementation for the desired sparse
matrix operation. Furthermore, other performance models,
i.e. the Execution-Cache-Memory (ECM) model [18], [9],
can provide additional information about memory bound
algorithms, which applies to a great proportion of sparse
matrix methods. Thus, predictions for a given algorithm
can be made for different numbers of threads, so that
several optimization goals can be pursued, e.g. optimizing
the runtime or finding an optimal number of resources used
to satisfy specific energy or memory constraints.

Additionally, an online tuning phase can be used to
observe and react to imbalances, which may occur dur-
ing the execution of the actual problem. This execution
behaviour can result due to the initial parameter setup,
which was determined in the offline phase. Therefore the
necessity for further optimizations can be caused by multi-
ple reasons, e.g. inappropriate estimation of cost functions
for kernels executed or data transfer times while using
multiple HPC-systems at once. As a result, the runtime or
energy measurements may not match the expectations and
lead to workload imbalances between different execution
units, e.g. CPUs or GPUs. Hence, an online tuning step
is desired to adjust the workloads or distribution of data
to use all execution resources to full capacity. For a sparse
matrix-vector multiplication (SpMV), such an online tun-
ing approach was investigated by [19] and is based on
a redistribution of workload between MPI processes if
the runtime measurements for the processing of a given
number of matrix rows are not similar to measurements of
other MPI processes.

Sparse matrix methods benefit the most of an offline
tuning phase. However, online tuning approaches can still
be applied and are a fine tuning process of the parameters
determined in the offline phase. Moreover, the application
of online tuning may depend on the actual sparse matrix
operation, which should be performed, or the execution
units used, e.g. online GPU workload adjustments may get
quite complex if the initial data distribution for multiple
GPUs has to be modified. Nevertheless, the potential of a
mixed tuning approach still contributes to the overall goal
of utilizing the given hardware resources to full capacity
while optimizing for a given performance goal, e.g. runtime
or energy consumption.

C. Solving differential equations

Numerical solution methods for ordinary differential
equations (ODEs) compute an approximate solution for
a given ordinary differential equation of the form

y′(x) = f(x,y(x)) with y(x0) = y0. (1)

by performing a series of time steps one after another until
the end of the predefined integration interval is reached

0.02

0.04

1.5

 0.01

 0.1

 1

4 16 32 48 64

R
u

n
ti

m
e

 [
s
]

CRS-Skylake
BSR-Skylake
EIP-Skylake

0.02

0.04

5

 0.1

 1

4 16 32 68 136 204 272

Number of threads

CRS-KL
BSR-KL
EIP-KL

Figure 4. Runtime-Thread scaling of three sparse matrix formats for
a Skylake system (top) and a Knights Landing system (bottom).

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

1 1.2 1.4 1.6 1.8 2.0 2.2

R
u

n
ti

m
e

 [
s
]

BSR-2
BSR-4

BSR-8
BSR-16

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1 1.1 1.2 1.3 1.4

Core frequency [Ghz]

BSR-2
BSR-4

BSR-8
BSR-16

Figure 5. Runtime comparison of the Block Sparse Row matrix
format with different block sizes as variable parameter for a Skylake
system (top) and a Knights Landing system (bottom). Both diagrams
refer to 64 threads used for the BSR variants.

[20]. As example method, we consider iterated Runge-
Kutta (RK) methods which perform a fixed number m

of computation steps in each time step using the approxi-
mation yκ of the preceding time step. In each computation
step, a fixed number s of stage vectors is computed using
the stage vectors from the preceding time step and evaluat-
ing the function f defined by the differential equation to be
solved. After the last computation step, the stage vectors
are combined and an approximation yκ+1 for the next
point in time is computed. An additional approximation of
lower order can be computed additionally for error control
and for the selection of the step size for the next time step.
Overall, a four-dimensional loop structure results within
each time step and many typical loop transformations such
as loop interchange, loop unrolling, or loop tiling can be
applied.

Taking the parameters of the transformations such as
tile sizes and unrolling factors into account, a large number
of code variants can be generated and it is not a priori
clear, which of these variants will lead to the best perfor-
mance on a given HPC system. This is an ideal situation
for autotuning. A pure offline approach cannot be applied,
since the function f of the differential equation to be solved

NATALIA KALINNIK ET AL.: ON THE AUTOTUNING POTENTIAL OF TIME-STEPPING METHODS FROM SCIENTIFIC COMPUTING 335

may have a large influence on the resulting computational
behavior of the different code variants. However, f is not
known in advance and a numerical solution method should
be efficient for different differential equations. On the other
hand, a pure online autotuning is also not feasible, since
too many code variants would need to be tested. Some of
these code variants could be quite slow, leading a further
increase of the resulting overhead. Thus, a combination of
offline and online autotuning is most promising.

The diagrams in Fig. 6 show the performance of different
shared memory implementation variants of the iterated
RK method (IRK) for the BRUSS2D example and for
different system sizes N . The time per step and compo-
nent is plotted against the increasing number of threads.
BRUSS2D is derived from a reaction diffusion PDE by a
spatial discretization on a N×N grid using the method of
lines. The resulting ODE system has dimension n = 2N2.
The experiments have been done on a system with two
Intel Xeon E5-2697 v3 processors, each equipped with 14
cores and 35 MB L3 shared cache. As RK method we
use the LobattoIIIC (8) [20] method with s = 5 stages
and m = 7 computation steps. The code variants [21]
utilize data parallelism, the n equations of the ODE system
are distributed among the available number of threads p.
The variants differ in the loop and the data structures
used. Consequently, they have different memory access
patterns, resulting in different utilization of the cache
and the memory hierarchy. The variants denoted with
suffix ’mt’ use loop tiling as an optimization technique
to further improve the locality of the memory references.
Further, four variants (PipeDb1m, PipeDb1mt, ppDb1m
and ppDb1mt) exploit a special structure of the function
f of BRUSS2D by overlapping of vectors and by using
pipeline-like computational structure of the computation
steps m [21]. These variants only require lock-based local
synchronization with neighbor threads, whereas all other
variants need global barrier operations.

The diagrams in Fig. 6 indicate that the performance
of IRK variants depends on the runtime parameters, such
as the dimension of the ODE system and the number of
threads executing the program. In particular, following
observations can be made: (1) For the same system size,
but for different numbers of threads, the order of the
implementation variants varies. For example, for N = 460
and thread numbers p < 20, the variant EAmt offers
the best performance, closely followed by the variant E

and A. For p = 20 all variants require nearly the same
execution time. For even larger numbers of threads, the
variants EAmt, A and E are the slowest variants. The
main reason for the smaller efficiency of these variants
for large numbers of threads are the costs of the barrier
operations used for synchronization of the threads. The
variants A, E, EAmt require two barrier operations per
stage in each computation step. All other variants need
either only one barrier operation per computation step
or use more efficient lock-based synchronization. (2) For

0 5 10 15 20 25 30

Threads

0

0.5

1

1.5

2

2.5

3

3.5

R
u

n
ti
m

e
 p

e
r

s
te

p
 a

n
d

 c
o

m
p

o
n

e
n

t
(s

)

×10-7 BRUSS2D, N=460

A

ppDb1m

Dblock

PipeDb2mt

EAmt

PipeDb1m

E

D

ppDb1mt

PipeDb2m

PipeDb1mt

PipeDe2m

0 5 10 15 20 25 30

Threads

0

0.5

1

1.5

2

2.5

3

3.5

R
u

n
ti
m

e
 p

e
r

s
te

p
 a

n
d

 c
o

m
p

o
n

e
n

t
(s

)

×10-7 BRUSS2D, N=2960

A

ppDb1m

Dblock

PipeDb2mt

EAmt

PipeDb1m

E

D

ppDb1mt

PipeDb2m

PipeDb1mt

PipeDe2m

Figure 6. Execution time per step and component of iterated RK
method for N = 460 (top) and N = 2960 (bottom) for different
numbers of threads.

the same number of threads, but for different system
sizes, different variants obtain the best performance. For
example, for p = 16 and N = 460, the variants EAmt, E
and A perform best, whereas for p = 16 and N = 2960
other variants run faster.

Autotuning-Potential

The experiments confirm that the performance of IRK
variants is strongly influenced by the input data. More-
over, our experience shows that the performance of IRK
variants also depends on the characteristics of the tar-
get architecture, such as the specific multi-core processor
design, the cache architecture and the resulting memory
latency and bandwidth. Thus, to obtain maximum per-
formance, it is important that an IRK solver can adapt
to the characteristics of the underlying architecture and
of the ODE problem to be solved. Since usually these
parameters are only known at runtime, the best variant
cannot be determined at compile or installation time, and
offline autotuning is not sufficient. For ODE solvers online
autotuning has to be applied, but due to the large search
space of candidate implementations and implementation
parameters such as tile sizes for loop tiling or factors for
loop unrolling, an online autotuning strategy should be
supported by offline autotuning. For example, for multi-
threaded implementations, offline measurements can be
used to estimate the synchronization overhead of different

336 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

implementation variants. At runtime this information can
be used to avoid the evaluation of variants if their syn-
chronization overhead is too high to outperform variants
with lower synchronization.

IV. Related work

The first autotuning approaches were offline approaches
for numerical methods for dense linear algebra problems
for which the properties of the HPC systems used play
the most important role for the execution time. These
approaches include ATLAS [1] and PHiPAC [2]. For some
application areas, properties of the input data may have a
significant influence on the resulting execution time [22].
In these cases, online approaches need to be employed
or integrated. An example for such an application area
is signal processing, where the size of the problem to be
solved determines which algorithm is the most efficient
one. Examples for approaches in this direction are FFTW
[10] and SPIRAL [11], [23]. For sparse linear algebra
problems, the distribution on the non-zeros in the matrix
to be processed may have a large influence, see OSKI
[12] and SALSA [13]. Several autotuning approaches for
specific application areas have been developed on the basis
of domain-specific languages (DSL) for the description of
the processing algorithms. From these DSL descriptions,
a compiler can generate different code variants that can
be tested in an online phase. An important application
area for these approaches are stencil computations, see
PATUS [24], Pochoir [25] and Halide [26] for approaches
in this direction. All approaches mentioned above are
application-specific, i.e., they have been developed for a
specific application area and exploit specific properties of
this application area.

Several general autotuning framework have been pro-
posed that work independent from a specific application
area. Active Harmony [3] is such a general autotuning
framework that aims at iterative parallel applications
that can come from many application areas. It includes
a source-to-source compiler tool to generate new code
variants at runtime according to loop transformations
as specified by the user. Active Harmony uses a pure
online approach, no offline component is included. Another
general autotuning framework is Perpetuum [27], which
aims at the selection of tuneable parameters such as block
sizes and number of threads. Parcae [28] provides a user-
level runtime system and a compiler to translate parallel
constructs and patterns into a task-based execution model.
PetaBricks [22] and Periscope [4] are other approaches in
this direction. A detailed survey of compiler autotuning
approaches with an emphasis on machine learning is given
in [29].

All approaches mentioned above are either offline or
online approaches, depending on the needs of the specific
applications area. None of these approaches employs both
an offline and an online phase as it is attempted in this
paper.

The generation of different code variants is an important
part of many autotuning approaches. The polytope model
[30] and compiler-based approaches [26] are often used
in this context. The resulting number of code variants
can be large and efficient heuristic search strategies are
important, including Simulated Annealing or Nelder-Mead
[31]. OpenTuner [22] provides several search strategies,
but other techniques based on machine learning are also
investigated [32]. Energy and performance autotuning for
two irregular applications, graph community detection us-
ing the Louvain method (Grappolo) and high-performance
conjugate gradient (HPCCG) have been investigated in
[33] for OpenMP multithreaded programs using Open-
Tuner.

V. Conclusion

In this article we have investigated the tuning po-
tential of important simulation methods from scientific
computing. The simulation methods considered include
sparse matrix computations, particle simulation methods
and solution methods for ordinary differential equations.
In particular, a detailed performance analysis has been
performed with considerations of relevant parameters. The
tuning potential has been investigated for offline and
online tuning.

The investigation shows that sparse matrix computa-
tions are mainly amenable to offline autotuning, particle
simulation methods require the use of online autotuning,
and solution methods for ordinary differential equations
need a combination of both offline and online autotuning.
This is related to the complexity of the input data and the
the number of implementation variants available.

The offline autotuning analyzes the hardware and soft-
ware and pre-selects parameters. With performance mod-
els, e.g., the roofline model or ECM model, some predic-
tions can be done. The three applications make different
usage of this offline approach. While good parameters
can be chosen for sparse matrix calculations, the offline
approach is used for the differential equations to reduce
the search space used in the online approach.

The online autotuning is good for adjusting the param-
eters and reacting to imbalances. While the importance of
this approach is different for the applications, each time-
stepping method can be adjusted at runtime to achieve
the best performance. Insufficient decisions from the offline
approach can be adjusted. To detect these imbalances, a
monitoring must be performed. This monitoring should be
application independent and can be done with established
tools.

Thus, it is usually advantageous to use both approaches
to tune methods from scientific computing. The offline
approach to set start parameters as good as possible and
to select suitable code variants, and the online approach to
fine-tune parameters, react on imbalances and select the
appropriate code variant.

NATALIA KALINNIK ET AL.: ON THE AUTOTUNING POTENTIAL OF TIME-STEPPING METHODS FROM SCIENTIFIC COMPUTING 337

Acknowledgement

This work has been supported by the German Min-
istry of Science and Education (BMBF), Project title
SeASiTe (Self-Adaptation of Time-step-based Simulation
Techniques on Heterogeneous HPC Systems) with project
number 01IH16012A/B.

References

[1] R. Whaley, A. Petitet, and J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel
Computing, vol. 27, no. 1-2, pp. 3–35, 2001. doi: 10.1016/S0167-
8191(00)00087-9

[2] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel, “Optimizing
Matrix Multiply Using PHiPAC: A Portable, High-performance,
ANSI C Coding Methodology,” in Proc. of the 11th Int. Conf.
on Supercomputing, ser. ICS ’97. New York, NY, USA: ACM,
1997. doi: 10.1145/263580.263662 pp. 340–347.

[3] A. Tiwari and J. K. Hollingsworth, “Online adaptive code gen-
eration and tuning,” in Proc. of the 2011 IEEE Int. Parallel &
Distributed Processing Symp. (IPDPS 2011). IEEE, 2011. doi:
10.1109/IPDPS.2011.86 pp. 879–892.

[4] M. Gerndt, E. César, and S. Benkner, Eds.,Automatic Tuning of
HPC Applications – The Periscope Tuning Framework. Shaker
Verlag, 2015, doi: 10.2370/9783844035179.

[5] M. Wolfe, “Compilers and More: What Makes Performance
Portable?” April 19, 2016.

[6] P. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amaras-
inghe, “Portable Performance on Heterogeneous Architectures,”
in Proc. of the Eighteenth Int. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
’13). ACM, 2013. doi: 10.1145/2451116.2451162 pp. 431–444.

[7] J. Aseltine, A. Mancini, and C. Sarture, “A survey of
adaptive control systems,” IRE Transactions on Automatic
Control, vol. 6, no. 1, pp. 102–108, Dec 1958. doi:
10.1109/TAC.1958.1105168

[8] D. BAA-98-12, “DARPA Broad Agency Announcement on Self
Adaptive Software,” 1997.

[9] G. Hager, J. Treibig, J. Habich, and G. Wellein, “Explor-
ing performance and power properties of modern multi-core
chips via simple machine models,” Concurrency and Computa-
tion: Practice and Experience, vol. 28, pp. 189–210, 2016. doi:
10.1002/cpe.3180

[10] M. Frigo and S. Johnson, “The design and implementation of
FFTW3,” Proc. of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.
doi: 10.1109/JPROC.2004.840301 Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[11] F. de Mesmay, Y. Voronenko, and M. Püschel, “Offline library
adaptation using automatically generated heuristics,” in Int.
Parallel and Distributed Processing Symp. (IPDPS), 2010. doi:
10.1109/IPDPS.2010.5470479

[12] R. Vuduc, J. Demmel, and K. Yelick, “OSKI: A library of auto-
matically tuned sparse matrix kernels,” in Institute of Physics
Publishing, vol. 16, 2005. doi: 10.1088/1742-6596/16/1/071

[13] V. Eijkhout and E. Fuentes, “Machine learning for multi-stage
selection of numerical methods,” in New Advances in Machine
Learning. INTECH, feb 2010, pp. 117–136, doi: 10.5772/9376.

[14] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
insightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. doi:
10.1145/1498765.1498785

[15] R. W. Hockney and J. W. Eastwood, Computer Simulation
Using Particles. Bristol, PA, USA: Taylor & Francis, Inc.,
1988, doi: 10.1137/1025102.

[16] L. Greengard, The Rapid Evaluation of Potential Fields in
Particle Systems. Boston: MIT Press, 1988.

[17] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–
1:25, Dec. 2011. doi: 10.1145/2049662.2049663

[18] J. Hofmann, J. Eitzinger, and D. Fey, “Execution-Cache-
Memory Performance Model: Introduction and Validation,”
ArXiv e-prints, Sep. 2015.

[19] S. Lee and R. Eigenmann, “Adaptive runtime tuning of paral-
lel sparse matrix-vector multiplication on distributed memory
systems,” in Proceedings of the 22Nd Annual International
Conference on Supercomputing, ser. ICS ’08. ACM, 2008. doi:
10.1145/1375527.1375558 pp. 195–204.

[20] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differ-
ential Equations I: Nonstiff Problems. Berlin: Springer–Verlag,
1993, doi: 10.1137/1032091.

[21] M. Korch and T. Rauber, “Locality optimized shared-memory
implementations of iterated Runge-Kutta methods,” in Euro-
Par 2007. Parallel Processing, ser. Springer LNCS, vol. 4641.
Springer, 2007. doi: 10.1007/978-3-540-74466-5 78 pp. 737–747.

[22] J. Ansel, “Autotuning programs with algorithmic choice,”
Ph.D. dissertation, Massachusetts Institute of Tech-
nology, Cambridge, MA, Feb. 2014. [Online]. Avail-
able: http://groups.csail.mit.edu/commit/papers/2014/ansel-
phd-thesis.pdf

[23] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. Johnson, and N. Rizzolo, “SPIRAL: Code gener-
ation for DSP transforms,” Proc. of the IEEE, special issue on
“Program Generation, Optimization, and Adaptation”, vol. 93,
no. 2, pp. 232– 275, 2005. doi: 10.1109/jproc.2004.840306

[24] M. Christen, O. Schenk, and H. Burkhart, “PATUS: A code gen-
eration and autotuning framework for parallel iterative stencil
computations on modern microarchitectures,” in Proc. of the
25th IEEE Int. Parallel and Distributed Processing Symp., May
2011. doi: 10.1109/IPDPS.2011.70

[25] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and
C. E. Leiserson, “The Pochoir stencil compiler,” in Proc. of
the Twenty-third Annual ACM Symp. on Parallelism in Al-
gorithms and Architectures (SPAA ’11). ACM, 2011. doi:
10.1145/1989493.1989508 pp. 117–128.

[26] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines,” in Proc. of the 34th ACM SIGPLAN
Conf. on Programming Language Design and Implementation
(PLDI’13), 2013. doi: 10.1145/2499370.2462176 pp. 519–530.

[27] T. Karcher and V. Pankratius, “Run-time automatic perfor-
mance tuning for multicore applications,” in Euro-Par 2011.
Part I., ser. LNCS, E. Jeannot, R. Namyst, and J. Roman, Eds.,
no. 6852. Springer, 2011. doi: 10.1007/978-3-642-23400-2 2 pp.
3–14.

[28] A. Raman, A. Zaks, J. Lee, and D. August, “Parcae: A System
for Flexible Parallel Execution,” in Proc. of the 33rd ACM
SIGPLAN Conf. on Programming Language Design and Imple-
mentation, ser. PLDI ’12, 2012. doi: 10.1145/2254064.2254082
pp. 133–144.

[29] A. H. Ashouri, G. Palermo, J. Cavazos, and C. Silvano, Au-
tomatic Tuning of Compilers Using Machine Learning, 1st ed.
Springer, 2017. doi: 10.1007/978-3-319-71489-9.

[30] D. Feld, T. Soddemann, M. Jünger, and S. Mallach, “Facilitate
SIMD-Code-Generation in the Polyhedral Model by Hardware-
aware Automatic Code-Transformation,” in Proc. of the 3rd
International Workshop on Polyhedral Compilation Techniques,
A. Größlinger and L.-N. Pouchet, Eds., Berlin, Germany, Jan.
2013. doi: 10.13140/2.1.5066.3368 pp. 45–54.

[31] J. A. Nelder and R. Mead, “A Simplex Method for Function
Minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–
313, 1965. doi: 10.1093/comjnl/7.4.308

[32] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and
B. Catanzaro, “Nitro: A framework for adaptive code variant
tuning,” in 28th IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS 2014), May 2014. doi: 10.1109/IPDPS.2014.59
pp. 501–512.

[33] A. Panyala, D. Chavarra-Miranda, J. B. Manzano, A. Tumeo,
and M. Halappanavar, “Exploring performance and en-
ergy tradeoffs for irregular applications,” J. Parallel Dis-
trib. Comput., vol. 104, no. C, pp. 234–251, Jun. 2017. doi:

10.1016/j.jpdc.2016.06.006

338 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

