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Abstract—CT scans are an important tool in the diagnosis
of lung tumors in medicine. This work presents an automated
system for lung tumor diagnosis on CT scans. Scans are automat-
ically segmented using marker-based watershed transformation,
which successfully segments hardly separable, lung wall adjunct
tumors. The scans are further analyzed in a sliding window
approach using Haralick features and a Support Vector Machine
classifier to detect and classify benign and malignant tumors. This
novel approach for classification was tested using the LUNGx
Challenge dataset [1] and achieved exceptional results while
utilizing a minimal training set.

I. INTRODUCTION

C
CANCER is still one of the most frequent causes of

death worldwide [2]. Lung cancer is in the course of

this the leading cause of cancer deaths for men as well

as one of the most common cancers diagnosed in woman

[3]. An early diagnosis is important, as it can influence the

choice of treatment and thus prolong the patient’s life. A

widely used diagnostic method is the analysis of computed

tomography (CT) scans of the lung. Recent work has shown

that selected texture features can be used on CT scans to

distinguish between benign and malignant pulmonary nodules

[4], [5], [6]. The presented approach introduces a workflow

that automatically identifies and classifies tumor tissue in

lung CT scans by extracting Haralick texture features [7] and

classifying image regions in a sliding window approach using

a Support Vector Machine (SVM) classifier.

II. BACKGROUND

For a systematic detection of tumors in lung CT scans

several sub-problems have to be considered. We will discuss

them together with their state of the art solutions. The general

procedure and methodology of a tumor diagnosis system can

be subdivided into the following four sub-problems [8]:

1) Preprocessing: The goal of preprocessing is the reduc-

tion of unwanted artifacts and noise often occurring in

CT scans. The preprocessing step facilitates the further

processing of the image and may also be used to enhance

certain image features for later processing.

2) Segmentation: Segmentation is used to separate se-

mantically coherent image areas. It is a crucial step in

order to achieve a successful classification, because the

segmentation result significantly influences the results of

the following processing steps.

3) Feature Extraction: This step uses algorithms to extract

selected features from the image. Lung tumors often

differ in size, texture or contour.

4) Classification: After the feature extraction, each iden-

tified region is evaluated based on its characteristics.

Based on the rating of the chosen classifier, images or

image areas may be assigned to a positive or negative

class.

Based on these sub-steps a system for tumor recognition

and classification can be created from a combination of

different approaches that are capable of solving one or more

of these subproblems. For segmentation, feature extraction

and classification numerous different methods can be utilized.

Recent works concentrating on texture features for cancer

analysis archive promising classification results using an SVM

classifier for tumor detection and evaluation. A recent work

by Nilesh Bhaskarrao Bahadure et al. [9] shows the impact

of texture features in combination with an SVM classifier

for tumor detection in brain MRI scans. They achive an

accuracy value of 96.51%. The use of texture features for

tumor detection has also been studied in the area of lung CT

scans by several research groups:

• Zayed and Elnemr [4] study the effectiveness of Haralick

texture features on the identification of lungs with malign

pulmonary nodules. For segmentation, the lung with the

largest volume is mirrored and used as a mask for the

second lung to separate tumors inter-grown with the

lung wall. They conclude that selected texture features

could be useful for the detection of abnormalities in CT

lung scans. Although this approach may detect abnormal

lungs, the position of the abnormal tissue within the

diseased lung cannot be determined.

• Han et al. [5] compare the performance of different

descriptors (Haralick 2D and 3D, Gabor, Local Binary

Patterns) for classification of benign and malignant lung

tumors. For training, they use CT scans with outer tumor

borders annotated by different radiologists. Han et al.

discuss that Haralick features yield the best classification
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Fig. 1: Illustration of our complete workflow including segmentation, heatmap calculation and classification of the detected

tumor. The red marker is the computed indicator for a malign nodule.

results for differentiation between malign and benign

nodules (AUC of 92.7%). A segmentation step for a

complete tumor recognition system is missing, since the

precise tumor position has already been determined by the

radiologist. Thus, the work does not provide a system that

can automatically segment and classify tumors without

the preliminary work of a specialist.

• Zhao et al. [6] present a complete workflow that imple-

ments automatic segmentation and separation of tumor

tissue using thresholding and morphological operations,

without prior knowledge of tumor positions. They achieve

an accuracy between 86.8% - 93.9%. They classify tu-

mors of 3 different predefined size groups. This pre-

supposes in turn a manual division of the data, which

facilitates the segmentation problem by a possible reduc-

tion of parameters. The proposed approach is not fully

automated, as for a functioning segmentation information

on the position or size of the tumor must be given in

advance.

We suggest a system for automated tumor detection, which

implements all sub-steps (preprocessing, segmentation, fea-

ture extraction and classification) without relying on previous

knowledge in terms of tumor type, position or size. Our system

is able to automatically detect tumors in lung CT scans and

classify them as benign or malignant. In addition to this fully

automated approach, we provide a user interface to evaluate

results independently, set markers to optimize segmentation

results and to select fixed cutouts for classification.

We will evaluate our novel approach using a data set

from the SPIE-AAPM Lung CT Challenge [10], [11], [1],

which consists of CT scans of 70 patients of different age

groups with a slice thickness of 1 mm. For each patient, the

scans contain one or more either benign or malignant lung

tumors identified by follow-up examinations or pathological

assessments by experts. Both the position of the tumor center

and the classification into benign or malignant were annotated.

The dataset is divided into a calibration dataset containing 10

patients, as well as a test dataset, which covers the remaining

60 patients. The calibration dataset contains CT scans with

exactly 5 benign and 5 malignant tumors. The test dataset

consists of a total of 73 sections with 36 malignant and 37

benign tumors. The size of the tumors in the dataset varies

widely with small tumors being less than 3 mm in diameter

and large tumors larger than 35 mm in diameter. The difficulty

level of the dataset for the evaluation of benign and malignant

tumors can be classified as very demanding. Out of all 11

approaches submitted in this challenge, only 3 achieved an

AUC score significantly better than random guessing [10]. The

AUC values of radiologist assessments ranged between 0.7 and

0.85. The best participant scored an AUC value of 0.68, see

[10].

III. METHODS

This novel approach follows the results of Zayed and

Elnemr [4], Han et al. [5], and Zhao et al. [6] and uses texture

features for feature extraction. An SVM is used for classifica-

tion as it proved to be more successful than other classifiers

including neural networks, see Bahadure et al. [9]. The tumor

detection is based on multiscale sliding windows, since this

method is independent of the size of the searched object.

In a previous segmentation step, the lungs are extracted to

reduce the search area. This improves the results and reduces

the computing time. For the segmentation the marker-based

watershed transformation, as supposed by Kulkarni et al. [8],

is used. This method can also be used to separate tumors that

have grown into the lung wall. The markers are computed in a

preliminary step using morphological operations. In addition

to the introduced state of the art works, we present a complete

system for tumor detection and diagnosis that performs all

necessary steps for a tumor recognition system described

above and is independent of the tumor size.

Our approach can be divided into three steps:

1) Preprocessing and Segmentation:

In this first step, the lungs are separated from the

rest of the tissues and the image background. Using

morphological operations and marker-based watershed

transformation (WST), the image background and the

ribcage are removed.

2) Tumor detection:

Using a sliding window approach, texture features are

evaluated on different scales to compute heat maps,

which are used to identify tumor structures. The heat
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maps indicate image areas which contain potentially

tumor-like textures without providing information about

the malignity of tumors yet. For later evaluation the

user can either use this information to independently

mark structures for evaluation or automatically select all

interesting image areas for the evaluation based on the

prior calculated heat map.

3) Tumor classification:

Benign and malignant nodules can again be differenti-

ated by certain texture features as proposed by [4], [5],

[6]. The areas selected by the heat map or manually

selected by the user are again evaluated by an SVM

using texture features.

The complete workflow is shown in figure 1. The individual

steps in the diagnosis process are described individually as

such in the following sections.

For the purpose of training and evaluation, we inspected the

slices containing the tumor center for all ten patients in the

calibration set. We receive one or more grayscale images of

512× 512 pixels per patient, depending on how many tumor

centers have been annotated. The SVM was trained using the

calibration set provided by the challenge. We evaluated our

results using the test data set consisting of a total of 73 images.

The test set contained 30 images in which tumors were already

fused with the lung wall. In the remaining 43 test images, the

tumors were isolated inside of the lung. All CT images shown

in this paper are either taken from the dataset provided by the

challenge [1] or amended by our presented diagnostic system.

Preprocessing and Segmentation

The segmentation of the CT scans isolates the internal lung

tissue and facilitates the detection and classification of the tu-

mors. Large areas of the image are removed in this process and

do not need to be considered for later computation. The image

background followed by the thorax is removed in two steps,

using binarization, erosion, connected component labeling and

the marker-based watershed transformation. These operations

were implemented using the OpenCV library (see [12] or

https://opencv.org/). In addition to a fully automated approach,

users are also provided with an interactive mode. Here users

can set markers for an automatic separation of tissue based on

marker positions which may improve the segmentation results.

CT scans often contain artifacts in the image background.

These can be a barrier for further processing and segmentation

because they represent separate components that are also rec-

ognized as such by the connected component algorithm, even

though they are not part of the tissue that should be examined.

These artifacts are removed from the image background in a

first preprocessing step.

In several pictures, the chest adjoins the outer edge of the

picture, creating two separate background areas in the upper

and lower part of the picture. To prevent this and create a

coherent image background, a margin of 5 pixels is set for

the outer left and right sides of the image. Image noise is

removed using a median filter to improve further processing.

From the filtered image, a binary image is calculated using

(a) input image (b) binary

(c) components (d) biggest component removed

(e) after erosion (f) output image

Fig. 2: Removal of the image background: The input image

(a) is used to create a binary image (b). Using Connected-

component labeling components are determined (c). The

biggest component gets removed (d) and the image gets eroded

(e). By masking the eroded image on the input we obtain the

lung corpus (f).

a threshold intensity value of 130. The connected component

algorithm is applied to this binary image to identify the largest

foreground region as the image background, which is removed

in a new binary image. By erosion, all artifacts in the image

background can now be removed until only the ribcage is

left as a single foreground component. For this purpose, we

erode the binary image with an increasingly bigger quadratic

kernel starting with a kernel size of 1. After each iteration,

the number of foreground components is checked using the

connected component algorithm. This step is repeated until

only a single component, namely the rib cage, is detected. The

remaining background is now applied as an image mask to the

TIM ADAMS ET AL.: AUTOMATED LUNG TUMOR DETECTION AND DIAGNOSIS IN CT SCANS USING TEXTURE FEATURE ANALYSIS AND SVM 15



(a) input image (b) binary (c) eroded (d) components

(e) components with binary (f) components after WST (g) biggest component removed (h) output image

Fig. 3: Removal of the thorax: The input image (a) is used to create a binary image (b). The binary image is now eroded to

separate inter-grown tumors from the lung wall (c). By means of Connected-component labeling, all isolated components are

determined (d) and combined with the prior calculated binary image (e). After a marker-based watershed transformation (f)

the biggest component is removed (g) followed by the second biggest component (thorax). The resulting image only contains

the isolated lung tissue (h).

input image. The result is the isolated body scan without the

image background. The whole procedure is shown in figure 2.

In the second step, the thorax should be removed without

removing any attached tumor structures inside the lung tissue.

For this purpose, the output image of the last step is further

used as input. The input image is smoothed and binarized as

described above. The binary image is then eroded to separate

possible tumor structures that are internally connected to the

thorax. For the Erosion, a 13×13 pixel kernel is used. Follow-

ing systematic tests, this kernel size has proven to be optimal in

order to successfully separate as many tumor structures of the

test data set as possible from the lung wall. Using connected

component labeling, all isolated structures in the eroded binary

image are now identified and saved as markers. These markers

are then used in a marker-based watershed transformation on

the binary image to separate the rib cage from the inner tissue.

The different markers spread to all foreground pixels of the

previously created binary image. The labeled area with the

largest volume is identified as the chest area and is removed

from the original image like previously the background. In the

finished segmented result image only the two lungs remain.

The methodology is illustrated in figure 3.

With the proposed methodology, it is not possible to sep-

arate all tumors that are connected to the lung wall. It is

necessary that the diameter of the junction between tumor

and lung wall is smaller than the total diameter of the tumor.

Otherwise the tumor can not be completely separated from

the lung wall by erosion without entirely removing it. As a

result, no marker for the WST can be obtained and the tumor

assigned to the segment of the thorax after the WST step

and is completely removed together with the thorax in the

following step. Using the proposed method on the test data

18 out of 30 tumors that were connected to the lung wall can

be successfully separated automatically. This corresponds to a

loss of 16.44% of all tumors to be segmented in relation to the

entire data set of 73 images. If markers are placed manually at

critical locations before segmentation 100% of the test images

can be successfully segmented.

Tumor Detection

The recognition of tumors on the basis of texture features

can be difficult if the size of the tumor is unknown. Consid-

ering windows of different sizes, texture features may have

different values for the same image coordinate. This is due

to the fact that the texture of the window contents changes

significantly with different window sizes. Even if a trained

classifier gives a positive response to the texture features of

the correct window size, the response may be negative if the

window is too large or too small.
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(a) input image (b) automatic segmentation result (c) input with user markers (d) guided segmentation result

Fig. 4: Guided segmentation using markers provided by the user. The tumor in the input image (a) could not be automatically

segmented. However, if markers are provided by the user (c), the segmentation yields a correct result.

To localize the tumor structures, our approach utilizes

sliding windows of 11 different scales ranging from 29 × 29
pixels to 9 × 9 pixels, which correspond to the maximum

and minimum size of all tumors found in the training set.

The sliding window iterates through the image from the top

left to the bottom right corner. Texture features are extracted

from each window. An SVM uses these features to calculate

a score and assign the window to a positive or negative class.

In a result matrix, the entry corresponding to the central

coordinate of the current window is increased if the respective

section is assigned to the tumor class. The entry is additionally

scaled with the SVM score of the respective window to assign

more weight to windows that receive a high rating by the

SVM. After generation of the last weighted result matrix,

all result matrices are concatenated and the resulting matrix

is normalized to a maximum intensity of 255. The resulting

matrix is used to create a heat map that identifies image areas

with tumor-like texture.

The complexity of the heat map calculation is in

O(11nm) = O(n2), where n is the number of image lines,

m is the number of image columns, and n = m.

For classification purposes, this work uses the SVM-light

implementation of Joachims (see [13] or http://svmlight.

joachims.org). For the training of the SVM, image sections

with a size of 9×9 pixels to 29×29 pixels from the 10 images

of the calibration dataset were generated for the positive class

on the basis of the annotated tumor centers of the dataset

per patient for each possible scale. For the negative class, 20

random cutouts of a random size between 9× 9 and 29× 29
pixels were selected from the rest of the image. Sections

for the negative class which contained a tumor center were

discarded and regenerated. For all sections, JFeatureLib (see

[14] or https://github.com/locked-fg/JFeatureLib) was used to

extract feature vectors with texture features that were used to

train the SVM. For the training of the SVM an RBF kernel

with a σ value of 10−8 was used. The best kernel and optimal

parameters were experimentally determined by optimizing the

accuracy on the training data. The accuracy was calculated

using leave-one-out cross-validation.

The heat maps generated in the previous step describe

regions, whose texture is most similar to those of tumors.

From these regions, excerpts are taken for evaluation in the

last step. For this, the minimum bounding box of each isolated

area of the heat map is calculated. Boxes that are smaller

than 5 × 5 pixels are discarded because the smallest tumors

already have a diameter of at least 9 pixels. Based on the

calculated bounding box, the central coordinate of each area

is determined. These central coordinates are then used to find

the bounding box of the respective component in the input

image which corresponds to the area of the heat map. Since the

bounding box of the heat map does not always correspond to

the full size of the respective components in the input image,

this approach has the advantage that the new bounding box

fully covers the components in the original image and can thus

optimally describe the texture of the respective components.

The various components are already separated by WST

and provided with a unique label connected to the prior

segmentation step. Based on the previously determined central

coordinate, the label and the associated component can be

determined. Based on this information, a new bounding box

can be calculated which corresponds to the component in

the input image. For each window generated, the SVM again

calculates a score which is intended to reflect the probability

that a tumor is present in the respective window.

IV. RESULTS

The tumor detection was evaluated using 2 different strate-

gies:

Strategy 1: All found windows were treated as tumors.

This approach has the advantage of minimizing the number

of false negative results. However, as many textures can be

recognized as a tumor in some images, the number of false

positives also increases significantly.

Strategy 2: Only the window with the highest SVM score

is considered. The advantage of this strategy is that as many

false positives as possible can be excluded. The disadvantage

is that true positives can also be rejected as false negatives.

This would be fatal, especially in the case of an actual diseased
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(a) input image (b) segmented image (c) calculated heat map

Fig. 5: Segmented image and resulting heat map

patient, since this corresponds to an unrecognized potentially

harmful tumor.

An example of a scan in which more than a single tumor

is found is shown in figure 6. The bounding boxes of the two

identified components are determined by the heat map in the

original image and evaluated again by the SVM. In Figure

6, the right calculated bounding box contains a correctly

recognized tumor. The left bounding box includes a component

that has been erroneously recognized as a tumor. The SVM

score of the correctly recognized tumor segment is with 3.12

higher than that of the incorrectly recognized tumor segment

with a score of only 0.88.

The results of the window selection are described in table

I. For the SPIE-AAPM Lung CT Challenge test dataset, only

the tumor centers coordinates are annotated. A window is

considered a true positive if it contains the annotated tumor

center. All windows that do not contain a tumor center are

considered false positives. Tumors that were not detected by

a window were considered false negatives. Out of a total of

73 tumors, 59 tumors were detected and 14 tumors were not

detected. Of the 59 recognized tumors, 44 had the highest

SVM value of any detected windows in each image. Strategy

1 improves the recall by over 20% compared to Strategy 2.

However, the precision value is over 40% below the value

of Strategy 1. Strategy 2 thus also leads to a higher F-

measure. Although Strategy 2 performs statistically better than

Strategy 1, it should still be viewed critically for practical

application. In the case of an actual application, automatically

recognized tumors could once again be confirmed or denied

by expert knowledge; a false negative would have far worse

consequences in such a scenario, as an unrecognized tumor

would in any case be a risk for the patient.

TABLE I: Evaluation of tumor detection

Strategy TP FP FN Precision Recall F-Measure

Strategy 1 59 112 14 34,50% 80,82% 0,4835
Strategy 2 44 15 29 74,58% 60,67% 0,6666

Fig. 6: Two detected tumors with different SVM ratings. The

right window with a rating of 3.12 contains a correctly detected

tumor, the left window with a rating of 0.88 contains a falsely

detected non-tumor structure.

Tumor classification

In addition to the differentiation between tumor and non-

tumor tissue, tumor tissue can again be classified as benign

and malignant on the basis of the present texture. For this

purpose, the image windows previously obtained from the

heat map are evaluated by a second SVM. In contrast to

the previous step, the textures of the two classes differ only

marginally. Feature vectors that have an equal or similar

mean in the same dimensions for both classes are difficult
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to separate using these features. A reduction of the feature

space by removing such dimensions, which are very similar

or identical for both classes, can increase the accuracy of the

classification. Therefore for the distinction of the two tumor

classes only those features are used, whose mean values differ

significantly for both classes. Qian Zhao et al. [6] already

identified homogeneity, energy, correlation and entropy as the

most discriminating features in t-tests in order to distinguish

between benign and malignant tumors.

In this work, the mean values of the texture features were

analogically compared. By utilizing t-tests, p-values were de-

termined for each feature in order to determine the discriminat-

ing characteristics. The features were extracted from windows

containing tumors for the 10 patients of the calibration dataset.

For the training of the SVM and the classification only features

with a p-value of less than 0.05 were used to train the classifier.

TABLE II: Evaluation of p-values for feature selection

Feature
Mean Variance

benign malign benign malign p-value

Energy 0,014 0,034 0,027 0,026 0,147
Contrast 12,532 9,870 7,082 10,908 0,961
Correlation 250983 27771 189268 119048 0,024
Variance 12004 4797 6579 3526 0,003
Homogeneity 0,366 0,426 0,114 0,105 0,228
Sum Average 29,65 17,60 7,806 5,976 0,001
Sum Variance 118,74 58,28 44,856 86,548 0,223
Sum Entropy 3,032 2,435 0,460 0,533 0,024
Entropy 4,434 3,537 0,724 0,757 0,020
Diff. Variance 5,709 6,790 3,239 6,005 0,632
Diff. Entropy 11,912 11,625 0,270 0,376 0,189
Meas. of Corr. 1 -0,235 -0,198 0,045 0,062 0,238
Meas. of Corr. 2 10,505 10,000 0,289 0,177 0,022
max. Corr. Coeff. 11,007 10,832 0,145 0,200 0,034

In order to evaluate the classification independently of the

preliminary step, the tumor windows for evaluation were

determined on the basis of the annotated central coordinates.

The SVM was trained on the calibration data set based

on the previously determined discriminating features. The

performance was evaluated on the basis of the 73 sections

of the test data set, as intended by the organizers of the

challenge. Based on the results of the t-tests presented in

Table II, the texture features Correlation, Variance, Average

Sum, Sum Entropy, Entropy, Correlation 2, and Maximum

Correlation Coefficient were selected for the training of the

SVM. The significance of the features correlation, variance

and entropy described in [6] can thus be confirmed. It is

not possible to confirm the significance of the contrast and

energy characteristics which were rejected on the basis of

the calculated p-values. One possible explanation for these

different outcomes for the two features would be a different

methodology for the tumor window selection. Through the

evaluation of the entire bounding box, areas of the adjacent

background for the classification were considered in this work.

The SVM achieves the best classification results using the

RBF kernel with a σ value of 10−8. The kernel with the

highest performance and the corresponding optimal parameters

were determined experimentally. The test dataset achieved a

recall value of 0.75 %, a precision value of 0.5625 %, and an

accuracy of 0.589 %. The ROC calculated for the SVM output

has an AUC value of 0.61. The ROC is shown in figure 7.

Fig. 7: Calculated ROC curve describing our classification

results

Of all 11 methods submitted to the challenge, only a

total of 2 achieved an AUC value above 0.61. Compared

to the submissions that only used the calibration data set

consisting of 10 patients for training, the presented work

scores second best. Other submissions used the National Lung

Screening Trial (NLST) dataset with 53.454 lung scans of

former smokers or the Lung Image Database Consortium

(LIDC) dataset with lung CT scans of 1,010 different patients.

The submission with the highest achieved AUC value used

an unspecified in-house dataset. Most submissions use some

form of thresholding or region growing for segmentation. The

watershed transformation used in this work is not used in any

of the submitted papers. In addition to our approach, three

submissions of the Challenge use an SVM as a classifier. Of all

submissions that use an SVM classifier, two achieved a lower

AUC value than the presented work; one work achieved the

same AUC value. A submission uses a convolutional neural

network (CNN) trained on the LIDC record as a classifier.

However, this work only achieved an AUC of 0.59. The

best work achieved an AUC of 0.68 using a support vector

regressor for classification.

V. DISCUSSION AND FURTHER RESEARCH

In the following section, we will discuss our obtained

results and present possible improvements to further enhance

our presented methods. We suggest improvements for each

individual step which may further increase the accuracy of

the presented system.

A. Segmentation

With the presented methodology 83.56% of the test im-

ages were successfully segmented. Successful segmentation

requires both the separation of lungs and lung wall, as well

as the separation of tumors from the lung wall, if they are
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interconnected. The biggest challenge of the segmentation

has been the separation of lung-walled tumors. While the

presented methodology was able to correctly segment all lungs

with isolated tumors, 12 out of 30 of the lung wall tumors

could only be separated by manually placed markers. In the

segmentation step, therefore, it has been shown above all that

additional user input can be used to improve the efficiency of

the system. For our presented approach the prerequisite for a

successful automatic segmentation is a maximum width of the

connection region between tumor and lung wall. This width

must be less than the diameter of the tumor, since a separation

by erosion is otherwise impossible. This problem was solved

in this work by an active approach with user input by placing

markers at critical junctions. A desirable approach would be

able to find these markers fully automatically without user

input, whereby the segmentation could also be carried out fully

automatically for all special cases. This could be realized by

a form of edge tracking, which marks the affected image area

in the event of a strong change of the gradient direction.

B. Tumor detection

Using texture features, up to 80.82% of the annotated

tumors could be successfully detected and localized, provided

that all areas of the heat map were considered for detection.

However, this strategy also falsely identifies tumors in many

areas of the image. If only the area with the highest SVM score

was considered per image, 88.19% of these false positives

could be eliminated. However, this strategy reduces the recall

to 60.67 %. It has thus been shown that an improvement of the

recognition accuracy results in a reduction of the recognition

rate and vice versa. Future work could build on the results to

find methods that eliminate a larger number of false positives

without reducing the recall value.

C. Tumor classification

Compared to the other work of the SPIE-AAPM Lung CT

Challenge, the proposed methodology has achieved above-

average results. The SVM was trained only using the provided

calibration set consisting of 10 images. This shows that the

presented methodology of classifying texture features by SVM

is able to achieve good results even on small training sets.

Training with a larger dataset could potentially further improve

the classification results.

Currently, only the layer containing the tumor center is used

to evaluate the tumor based on its textural features. Fang Han

et al. [5] use three-dimensional Haralick features to classify

tumors. In their approach, surrounding tissue layers are also

considered for the evaluation of the tumor. They increased

the AUC value for their dataset to 0.9441 by using three-

dimensional Haralick features compared to two-dimensional

Haralick features which scored an AUC value of 0.9373.

In future work, three-dimensional Haralick features could

be utilized to possibly further improve the accuracy of the

classification.

VI. CONCLUSION

The results of this work have shown that the presented

methodologies can be successfully used to implement a com-

plete system for automatic tumor diagnosis. We received and

presented very encouraging results. Texture features can still

be considered a strong tool for image classification, even in

complex applications like tumor recognition and classification.

Furthermore our SVM classifier has proven to be very effective

in combination with Haralick features, achiving better results

than several other classifiers on the same data set.

REFERENCES

[1] S. Armato III, L. Hadjiiski, G. Tourassi, K. Drukker, M. Giger, F. Li,
G. Redmond, K. Farahani, J. Kirby, and L. Clarke, “Spie-aapm-nci lung
nodule classification challenge dataset,” Cancer Imaging Arch, 2015.

[2] L. A. Torre, R. L. Siegel, and A. Jemal, “Lung Cancer Statistics.”
Springer, Cham, 2016, pp. 1–19. [Online]. Available: http://link.
springer.com/10.1007/978-3-319-24223-1{\_}1

[3] Cancer Research UK, “World cancer factsheet,” 2012. [Online].
Available: http://www.cancerresearchuk.org/sites/default/files/cs_report_
world.pdf

[4] N. Zayed and H. A. Elnemr, “Statistical Analysis of Haralick Texture
Features to Discriminate Lung Abnormalities,” International Journal of

Biomedical Imaging, vol. 2015, pp. 1–7, oct 2015. [Online]. Available:
http://www.hindawi.com/journals/ijbi/2015/267807/

[5] F. Han, H. Wang, G. Zhang, H. Han, B. Song, L. Li, W. Moore,
H. Lu, H. Zhao, and Z. Liang, “Texture Feature Analysis for
Computer-Aided Diagnosis on Pulmonary Nodules,” Journal of

Digital Imaging, vol. 28, no. 1, pp. 99–115, feb 2015. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/25117512http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4305062http:
//link.springer.com/10.1007/s10278-014-9718-8

[6] Q. Zhao, C.-Z. Shi, and L.-P. Luo, “Role of the texture features
of images in the diagnosis of solitary pulmonary nodules in
different sizes.” Chinese journal of cancer research = Chung-kuo yen

cheng yen chiu, vol. 26, no. 4, pp. 451–8, aug 2014. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/25232219http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4153941

[7] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features
for Image Classification,” IEEE Transactions on Systems, Man, and

Cybernetics, vol. SMC-3, no. 6, pp. 610–621, nov 1973. [Online].
Available: http://ieeexplore.ieee.org/document/4309314/

[8] S. G. Kulkarni and S. B. Bagal, “Techniques for Lung Cancer
Nodule Detection: A Survey,” International Research Journal of

Engineering and Technology, pp. 2395–56, 2015. [Online]. Available:
https://irjet.net/archives/V2/i9/IRJET-V2I9323.pdf

[9] N. B. Bahadure, A. K. Ray, and H. P. Thethi, “Image Analysis
for MRI Based Brain Tumor Detection and Feature Extraction
Using Biologically Inspired BWT and SVM,” International Journal

of Biomedical Imaging, vol. 2017, pp. 1–12, mar 2017. [Online].
Available: https://www.hindawi.com/journals/ijbi/2017/9749108/

[10] S. G. Armato, K. Drukker, F. Li, L. Hadjiiski, G. D. Tourassi, R. M.
Engelmann, M. L. Giger, G. Redmond, K. Farahani, J. S. Kirby,
and L. P. Clarke, “LUNGx Challenge for computerized lung nodule
classification,” Journal of Medical Imaging, vol. 3, no. 4, p. 044506,
dec 2016. [Online]. Available: http://medicalimaging.spiedigitallibrary.
org/article.aspx?doi=10.1117/1.JMI.3.4.044506

[11] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel,
S. Moore, S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and
F. Prior, “The Cancer Imaging Archive (TCIA): Maintaining and
Operating a Public Information Repository,” Journal of Digital

Imaging, vol. 26, no. 6, pp. 1045–1057, dec 2013. [Online]. Available:
http://link.springer.com/10.1007/s10278-013-9622-7

[12] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[13] T. Joachims, 2008, http://svmlight.joachims.org/ Accessed: 2018-02-05.
[14] Https://github.com/locked-fg/JFeatureLib Accessed: 2018-02-05.

20 COMMUNICATION PAPERS. POZNAŃ, 2018


