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Abstract—Binaural technology becomes increasingly popular

in  the  multimedia  systems.  This  paper  identifies  a  set  of

features  of  binaural  recordings  suitable  for  the  automatic

classification of the four basic spatial audio scenes representing

the most typical patterns of audio content distribution around a

listener. Moreover,  it compares the five artificial-intelligence-

based  methods  applied  to  the  classification  of  binaural

recordings.  The  results  show  that  both  the  spatial  and  the

spectro-temporal  features  are  essential  to  accurate

classification  of  binaurally  rendered  acoustic  scenes.  The

spectro-temporal features appear to have a stronger influence

on the classification results than the spatial metrics. According

to the obtained results, the method based on the support vector

machine, exploiting the features identified in the study, yields

the classification accuracy approaching 84%.

I. INTRODUCTION

UE to a growing popularity of binaural technology [1],

large  repositories  of  audio  material  with  binaural

sound will soon be created. This will inevitably give rise to

challenges concerning the management of spatial audio con-

tent. The method proposed in this paper could potentially be

used for automatic indexing, search and retrieval of binaural

recordings according to their spatial  properties,  helping to

manage future audio repositories. 

D

Most of the studies in the area of acoustic scene classifi-

cation (ASC) aim to identify an environment where a given

scene was recorded  [2]-[4]. Little work has been done to-

wards the classification of the recordings according to their

spatial characteristics. The key idea underlying this work is,

therefore,  to  extract  the features  from binaural  recordings

and to develop a prototype classifier allowing for classifica-

tion of the spatial properties of acoustic scenes. 

Taking advantage from feeding binaural signals to the in-

put of ASC algorithms does not constitute a new approach.

Chu et al. developed an environment-aware robotic system

equipped with binaural  microphones  [5]. Trowitzsch et al.

demonstrated benefits from using a binaural signal processor

for  detection of  environmental  sounds  [6].  More recently,
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such researchers as Han and Park, as well as Weiping at al.,

exploited binaural signals in their ASC algorithms submitted

to the DCASE2017 Challenge [7], [8]. However, to the best

of the authors’ knowledge, no-one has yet attempted to clas-

sify spatial properties of auditory scenes evoked by binaural

recordings. 

This  study  extends  and  builds  on  the  recent  work  by

Zieliński [9]. In contrast to the aforementioned study, which

was focused on the classification of five-channel surround

sound  recordings,  the  experiment  described  in  this  paper

was devoted to the classification of binaural audio content. 

II.TAXONOMY OF BASIC SPATIAL AUDIO SCENES

Information provided at the output of the proposed classi-

fier identifies one of the four basic spatial scenes, labeled as

FB, FF, BF, and BB. These scenes constitute the typical dis-

tribution patterns of foreground and background audio con-

tent around the listener in the horizontal plane (see Table I).

Foreground sound objects represent easily identifiable, im-

portant and clearly perceived audio sources, whereas back-

ground objects normally represent reverberant, unimportant,

unclear, ambient, “foggy” and distant sound sources. A tax-

onomy of the acoustic scenes adopted in this study was in-

spired  by  Rumsey’s  simplified  spatial  audio  scene-based

paradigm [10]. 
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TABLE I.

THE BASIC SPATIAL AUDIO SCENES

Acoustic Scene Description

Foreground-

Background (FB)

A listener perceives foreground audio content in 

the front and background content behind the 

head.

Foreground-

Foreground (FF)

A listener is surrounded by foreground audio 

content.

Background-

Foreground (BF)

A listener perceives background audio content in

the front and foreground content behind the head.

Background-

Background (BB)

A listener is surrounded by background audio 

content.
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III. CORPUS OF BINAURAL RECORDINGS

In total 600 binaural recordings were gathered for the pur-

pose of this experiment. Most of the selected excerpts were

extracted from the recordings available in the Internet, while

28 recordings, which constitutes 4.7% of all the items, were

obtained through a binaural processing of the commercially

available  5.0  surround  sound  recordings.  The  gathered

sound clips represented such recording genres  as classical

music, pop music, jazz, electronic music, nature, documen-

tary, drama, ambient recordings, and film soundtracks. Dur-

ing the selection procedure, care was taken that each excerpt

exemplified a single spatial scene (FB, FF, BF or BB).  The

recordings were annotated manually by the first author. The

average duration of the acquired audio samples was equal to

20  seconds.  The  recordings  were  stored  in  uncompressed

two-channel audio files with a sampling rate of 44.1kHz and

a 16-bit  resolution.  The  available  recordings  in  the audio

corpus were split into the two subsets intended for the train-

ing  (75%  of  items)  and  validation  purposes  (25% of  ex-

cerpts), respectively. 

IV. FEATURE EXTRACTION

In total 1012 features were extracted for the purpose of

this study. They could be divided into two broad categories:

spatial and spectro-temporal. An overview of the extracted

features was given in Table II. The rms-based metrics and

binaural cues were classified in this study as spatial features,

whereas the spectral features, the Mel-frequency cepstral co-

efficients (MFCCs) and the discrete cosine transformed am-

plitude  modulation  spectrogram  coefficients  (DCT  AMS)

were categorized as the spectro-temporal metrics. The pro-

cedure used to extract the features was outlined below. 

Let x and y denote the left and right ear signals of the bin-

aural recordings, respectively. Some of the metrics were ex-

tracted  directly  from the  above  signals  whereas  the  other

features were calculated based on m and s signals, where m

= x + y and s = x – y. Prior to calculating the metrics, the sig-

nals were split into 20 ms time frames with a 10 ms overlap.

In order to save the computation time the duration of the an-

alyzed time-blocks of the recordings was reduced to 7 sec-

onds.

For each time frame, a ratio between the rms values of the

x and  y signals was computed.  This way the obtained de-

scriptors constituted a crude approximation of the interaural

level differences (ILD).  Similarly,  for  every time frame, a

ratio between m and s signals was also calculated. It was as-

sumed by the authors that this ratio could also be considered

to be a simple descriptor of spatial characteristics.

All the metrics, including those described in the remain-

der of the paper, were calculated for every time frame of the

signals.  Then,  they  were  summarized  using  the  absolute

mean values and standard deviations. In order to account for

temporal fluctuations of the rms ratio across the time frames,

the standard delta metrics [11] were also computed in a sim-

ilar way as explained above.

There are three fundamental cues responsible for the spa-

tial  perception  of  sound:  interaural  level difference (ILD),

interaural  time  difference  (ITD),  and  interaural  coherence

(IC) [1], [12]. These cues were computed separately for each

output  of  a  40-channel  gammatone filter  bank using their

corresponding rate-maps. The rate-maps constitute a repre-

sentation of auditory nerve firing rates [13] and are used in

ASC algorithms  [6]. The standard  delta  metrics  [11] were

also computed based on the ILD, ITD, and IC cues. The bin-

aural cues were estimated using the publically available soft-

ware  package  developed  as  an  auditory  front-end  of  the

TWO!EARS system [14]. 

The  following  spectral  features  were  included  in  the

study:  centroid,  spread,  brightness,  high-frequency content,

crest,  decrease,  entropy,  flatness,  irregularity,  kurtosis,

skewness, roll-off, flux, and variation. They all constitute the

standard metrics commonly used in music information re-

trieval algorithms [15]. The above spectral features were ex-

tracted separately from the x and y signals. Then, the differ-

ences between the obtained spectral descriptors (difference

features)  were computed for  each time frame.  In addition,

the same procedure was also applied to the m and s signals. 

Mel-frequency  cepstral  coefficients  (MFCCs)  are  com-

monly used in the ASC algorithms as  spectral  descriptors

[4]. In our study, the first 20 coefficients were extracted for

the  m and  s signals,  respectively,  and  summarized  using

means  and  standard  deviations.  The  similar  calculations

were also performed for the delta-MFCC coefficients. More-

over, the same procedure was also applied to the difference

values between the MFCC coefficients  obtained for the  m

and s signals, respectively.

The last group of features included in this study was de-

rived from the amplitude modulation spectrograms (AMSs)

[16]. First, the AMSs were calculated for the  m and  s sig-

nals, respectively. Then, the modulation spectrograms were

transformed using the discrete cosine transform (DCT). As a

result, for each time frame 600 DCT coefficients were pro-

duced. In order to compress the data, only the first 40 coeffi-

cients were  preserved (the value adjusted  during the pilot

experiments).  Finally,  the  DCT coefficients  were  summa-

rized across time frames using the mean values and standard

deviations.  

V. EXPERIMENTS AND RESULTS

The  following  five  algorithms  were  selected  and  com-

pared in terms of their ability to classify the spatial scenes:

(1) k-nearest neighbors algorithm (k-nn), (2) multinomial re-

TABLE II. 

OVERVIEW OF THE EXTRACTED FEATURES (1012 METRICS IN

TOTAL)

Spatial Features Spectro-Temporal Features

Feature 

Acronym

RMS Binaural 

Cues

Spectral 

Features

MFCC DCT 

AMS

No. of 

Features

8 492 112 240 160
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gression with a least absolute shrinkage and selection opera-

tor (lasso)  [17], (3) random forest, (4) neural network, and

(5) support vector machine (svm). 

The training data consisted of 451 observations and 1012

variables (features). A standard 10-fold cross-validation was

performed during the supervised training procedure. 

Fig. 1. shows the average classification accuracy results

obtained using a single classification algorithm, namely the

random forest. The classifier employing a subset of only 8

features based on the rms estimators produced the worst re-

sults,  with  the  mean  accuracy  below  60%.  This  outcome

shows that such simplistic metrics are inadequate, on their

own (that is used in isolation from the other features), to re-

liably discriminate between the audio scenes. Far better re-

sults could be obtained by using a set of 492 features based

on the  binaural  cues,  with  an  accuracy  reaching  approxi-

mately 70%. Spectral features (112 metrics), when used on

their own, yielded a similar level of accuracy. Slightly better

accuracy could be obtained employing solely the MFCC fea-

tures (240 metrics). DCT-AMS features (160 metrics) used

in isolation from the other descriptors produced slightly dis-

appointing results with the accuracy level of approximately

65%. The best classification outcome was obtained by incor-

porating  all  the  features  simultaneously  (1012  metrics),

yielding  a  mean  classification  accuracy  of  approximately

78%.

Note that a conglomerate of all the 500 spatial features

produced  markedly  worse  results  compared  to  those  ob-

tained using the combined group of all the 512 spectro-tem-

poral  features.  This  surprising  outcome  showed  that  the

spectro-temporal  features might be better at discriminating

between the spatial scenes than the spatial metrics. This ob-

servation was confirmed during the validation test described

below.

In order to reduce the risk of overfitting, a backward step-

wise selection technique  [17] was applied to the test data.

An overview of the obtained results, including the accuracy

levels, the number of retained features and the values of the

model parameters, were presented in Table III. The obtained

results show that the best models obtained for the lasso re-

gression  method,  random  forest,  and  support  vector  ma-

chines produced very similar results, with the accuracy level

being equal to approximately 79.8%. The main difference

between these models was the number of the selected fea-

tures. For the lasso regression method, 116 features were se-

lected, whereas for the random forest only 33 metrics were

retained. The best model obtained for the support vector ma-

chine was based on 490 selected features.  The worst  out-

comes were produced by the neural network and k-nn algo-

rithms. The best models selected for each classifier during

the feature selection procedure were subsequently used in a

validation test.

During the validation test, based on the test dataset, the

best classification accuracy results were obtained using the

support vector machine (83.89%), followed by the random

forest (77.18%), and the lasso regression method (76.51%).

The neural network and the method based on the  k-nearest

neighbors produced the worse accuracy results, at the level

of 75.17%. The confusion matrix obtained for the support

vector  machine  (the  winning  method)  was  presented  in

Fig. 2. It can be seen that the algorithm could make a partic-

ularly  good  distinction  between the  BB scene and  the re-

maining three scenes (sensitivity of 90.7%).

TABLE III. 

OVERVIEW OF THE BEST MODELS OBTAINED THROUGH THE

PROCEDURE OF FEATURE SELECTION

Classifier Accuracy 

(%)

No. of 

Features

 Parameters

k-nn 73.17 445 k = 7

lasso 

regression

79.84 116 Alpha = 0.55

Lambda = 6.460145×10-3

random 

forest

79.81 33 No. of trees = 500

mtry = 17

neural 

network

77.64 394 No. of hidden layers = 1

No. of hidden units = 3

Weight decay = 0.1

svm 79.83 490 Kernel – radial basis 

function (RBF)

Sigma = 1.822721×10-3 

Cost  = 1 

VI. DISCUSSION AND CONCLUSIONS

The aim of this study was to identify the features useful

for discrimination of the four basic spatial audio scenes of

binaural recordings, labeled as FB, BF, FF, and BB (see Ta-

ble I). The obtained results showed that spatial audio scenes

could be classified using a mixture of spatial and spectro-

Fig.  1 Classification accuracy obtained using lasso regression for 

selected groups of features. The results show means and associated 

95% confidence intervals. Numbers in brackets denote a quantity 

of features in each group.

Accuracy

RMS (8)

DCT AMS (160)

Spectral (112)

Binaural Cues (492)

All Spatial (500)

MFCC (240)

All Spectro-Temporal (512)

All Features (1012)

0.55 0.60 0.65 0.70 0.75 0.80
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temporal metrics with an accuracy exceeding 80%. This out-

come indicates that  the standard spectro-temporal  descrip-

tors  combined  with  the  fundamental  binaural  cues  (ITD,

ILD,  and  IC)  are  adequate  for  the  aforementioned  task.

Moreover, it provides evidence that the task of spatial audio

scene classification may be successfully undertaken without

employing a blind source separation algorithm or any other

sophisticated techniques aiming to isolate and/or localize au-

dio sources in complex binaural audio scenes. Such an ap-

proach could simplify the design of spatial audio scene clas-

sifiers.

It was surprising to observe that the spectro-temporal fea-

tures appeared to have a stronger influence on the classifica-

tion results than the spatial metrics. This effect,  which re-

quires further investigation, could have been caused by an

unintended correlation between the spectral and spatial char-

acteristics of the audio recordings used in this study. 

Out of the five machine-learning algorithms compared in

this  study,  the  support  vector  machine  exhibited  the  best

classification performance, reaching an accuracy of 83.89%

upon the validation test.  While this result can be considered

as satisfactory at this stage of research, there is still scope

for  improvements.   In  order  to  enhance  the  proposed

method,  a  model  accounting  for  a  well-known  binaural

precedence effect [18] could be incorporated in future stud-

ies.
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Fig.  2 Confusion matrix for the best classification algorithm 
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