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Abstract—We consider the problem of discovering sequential
patterns from event-based spatio-temporal data. The dataset is
described by a set of event types and their instances. Based on
the given dataset, the task is to discover all significant sequential
patterns denoting the attraction relation between event types
occurring in a pattern. Already proposed algorithms discover all
significant sequential patterns based on the significance threshold,
which minimal value is given by an expert. Due to the nature of
described data and complexity of discovered patterns, it may
be very difficult to provide reasonable value of significance
threshold. We consider the problem of effective discovering K
most important patterns in a given dataset (that is, discovering
top-K patterns). We propose algorithms for unlimited memory
environments. Developed algorithms have been verified using
synthetic and real datasets.

I. INTRODUCTION

D
ISCOVERING knowledge from spatio-temporal data is

gaining attention of researchers nowadays. Based on

literature, we can distinguish two basic types of spatio-

temporal data: event-based and trajectory-based [1]. Event-

based spatio-temporal data is described by a set of event

types F = {f1, f2, . . . , fn} and a set of instances D. Each

instance e ∈ D denotes an occurrence of a particular event

type from F and is associated with instance identifier, location

in spatial dimension and occurrence time. Fig. 1 provides

possible sets D = {a1, a2, . . . , d10} and F = {A,B,C,D}.

The same datasets are presented in Table I. Event-based

spatio-temporal data and the problem of discovering frequent

sequential patterns in this type of data have been introduced

in [2].

The task of mining spatio-temporal sequential patterns in

given datasets F and D may be defined as follows. We assume

that the following relation (or attraction relation) fi1 → fi2
between any two event types fi1 , fi2 ∈ F denotes the fact, that

instances of event type fi1 attract in their spatial and temporal

neighborhoods occurrences of instances of event type fi2 . The

strength of the following relation fi1 → fi2 is investigated

by dividing the density of instances of type fi2 in spatio-

temporal neighborhoods of instances of type fi1 and density of

instances of type fi2 in the whole spatio-temporal embedding

space V . If obtained ratio is greater than 1, then it is possible

that fi1 → fi2 constitute a pattern. We provide the strict

definition of density in Section III. The problem introduced

in [2] is to discover all significant sequential patterns defined

in the form fi1 → fi2 → · · · → fim , where the significance

TABLE I
AN EXAMPLE OF A SPATIO-TEMPORAL EVENT-BASED DATASET

Identifier Event type Spatial location Occurrence time

a1 A 19 1
a2 A 83 1
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b1 B 25 3
b2 B 1 3
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c1 C 25 7
c2 C 15 7

.
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d1 D 21 11
d2 D 13 12

.
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.

.

.
.
.
.

threshold is given by an expert. In contrary to this approach,

we consider the problem of discovering K most significant

patterns in the given dataset. Providing significance threshold

for discovering patterns may be difficult due to the complex

nature of considered task.

The rest of the paper is organized as follows. Related

work is described in Section II. In Section III, we provide

elementary notions. Our algorithms and main results are pre-

sented in Section IV. In Section V, we provide experimental

results for both real and synthetic data. In Section VI, we give

conclusions and future problems. The main results of the paper

are:

1) We introduce the notion of top-K patterns in event-based

spatio-temporal data, namely we define the ranking of

top-K sequential patterns with minimal length given by

parameter min_len and point out the efficient pruning

strategy for creating the top sequences set.

2) We formulate the algorithm discovering such top se-

quential patterns in event-based spatio-temporal data.

3) Proposed algorithm has been verified using both syn-

thetic and real datasets. For experiments on synthetic

data we used the same types of datasets as used in [2].

As a real datasets, we used the two types of datasets

containing event instances related to air pollution data.
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Fig. 1. Visualization the spatio-temporal event-based dataset from Table I and a set of possible significant sequences

II. RELATED WORK

The problem of discovering top-K most important frequent

patterns in various types of data has been well investigated in

literature. TFP algorithm for discovering top-K closed frequent

patterns for transaction databases has been given in [3]. In this

approach, the user has a possibility to provide a parameter

minlen specifying minimal length of discovered patterns (that

is, minimal number of items occurring in a pattern). TFP

discovers top-K closed frequent patterns by means of the

FP-growth algorithm (proposed in [4]) for frequent patterns

mining. The authors of [5] extends approach proposed in [3],

by considering the problem of effective discovering top-K

closed sequential patterns for transaction databases (the notion

of closed sequential patterns has been introduced in [6]) and

giving algorithm TSP for that purpose. In [7], the authors

provide an algorithm discovering top-K jumping emerging

patterns.

The problem of discovering sequential patterns in databases

containing transactions records has been well investigated. The

reader may refer to [8], [9], [10], [3] for the fundamental

notions in this topic. More recently, surveys on methods for

mining sequential patterns are given in [11], [12]. More recent

papers in the area of mining top important frequent itemsets

are [13], [14], [15].

Various types of methods have been developed for discover-

ing patterns in event-based spatio-temporal data. The authors

of [2] introduce the notion of sequential pattern for event-

based spatio-temporal data and provide algorithms for both

limited and unlimited memory environments. Obtained results

show usefulness of proposed approach, however experiments

(i.e. computation time) obtained for large datasets seem to be

unsatisfactory. On the other hand, results presented in [2] are

not well verified using real datasets. The additional drawback

of algorithms proposed in [2] is large number of noise and re-

dundant patterns obtained during mining process. The method

of discovering top-K introduced in our article eliminate these

deficiencies. A survey of methods for discovering patterns in

spatio-temporal data is given in [16], [17]. The problem of

discovering hierarchical spatio-temporal patterns has been con-

sidered in [18]. The problem of discovering spatio-temporal

patterns from trajectory data and objects movements data has

been considered in [19], [20], [1], [21], [22], [23].

III. BASIC NOTIONS

The dataset given in Fig. 1 is contained in the spatio-

temporal space V , which temporal dimension is of size 20
and spatial location is provided by numbers between 0 and

100. For simplicity in Fig. 1 we denote spatial location in

only one dimension. Usually, spatial location is defined by two

dimensions (f.e. geographical coordinates). By |V | we denote

the volume of space V , calculated as the product of spatial

area and size of time dimension. Spatial and temporal sizes

of spatio-temporal space are usually given by an expert. For

example, for Fig. 1 |V | = 20 ∗ 100 = 2000. In the following

definitions and notions we use terms sequential patterns and

sequence interchangeably.

Definition 1. Neighborhood space. By VN(e) we denote the

neighborhood space of instance e. For VN(e) having cylindrical

shape, R denotes the spatial radius and T temporal interval

of that space. The volume |VN(e)| of neighborhood space is

equal to π ∗R2 ∗ T .

The shape of VN(e) is given by an expert and may be

adjusted to particular dataset. Consider example given in Fig. 1

where we denote neighborhood spaces VN(a1), VN(a2), VN(a3).

In Fig. 2, we provide an example of cylindrical neighbor-

hood space VN(a1) with spatial location specified by two

coordinates. The volume of that space is |VN(a1)| ≈ 384.65.
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The reader may refer to [2] for other possible definitions of

neighborhood spaces.
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Fig. 2. Possible shape of neighborhood space VN(a1)

Definition 2. Neighborhood [2]. For a given event type f

and an occurrence of event instance e of that type, the

neighborhood of e is defined as follows:

N(e) ={p|p ∈ D

∧ distance(p.location, e.location) ≤ R

∧ (p.time− e.time) ∈ [0, T ]}

(1)

where R denotes the spatial radius and T temporal interval of

the neighborhood space VN(e).

As the neighborhood N(e) of instance e, we denote the

set of instances contained inside the neighborhood space

VN(e).The neighborhood of instance a1 (shown in Fig. 2) with

respect to event type B is N(a1) = {b1, b2, b3, b4, b5, b6}.

Definition 3. Density [2]. For a given spatiotemporal space V ,

event type f and its events instances in D, density is defined

as follows:

Density(f, V ) =
|{e|e.type = f ∧ e is inside V}|

|V |
(2)

that is, density is the number of instances of type f occurring

inside space V divided by the volume of that space.

Definition 4. Density ratio [2]. Density ratio for two event

types fi1 , fi2 and their instances in D is defined as follows:

DR(fi1 → fi2) =
avge.type=fi1

(Density(fi2 , VN(e)))

Density(fi2 , V )
(3)

where → denotes the following relation between event types

fi1 , fi2 .

avge∈fi1
(Density(fi2 , VN(e))) specifies the average density

of instances of type fi2 occurring inside the neighborhood

spaces VN(e) created for instances e ∈ fi1 . V denotes the

whole considered spatio-temporal space and Density(fi2 , V )
specifies density of instances of type fi2 inside that space.

If the value of density ratio for event types fi1 and fi2 is

greater than one, then instances of type fi1 attract in their

spatio-temporal neighborhood spaces occurrences of instances

of type fi2 . If the value is below one, then they repel

occurrences of instances of type fi2 . If the value is equal to

one, then there is no correlation between these two event types.

Definition 5. Sequence (sequential pattern) −→s and

tailEventSet(−→s ) [2]. −→s denotes a m-length sequence of

event types: s[1] → s[2] → · · · → s[m − 1] → s[m].
tailEventSet(−→s ) denotes the set of instances of type −→s [m]
participating in the sequence −→s .

Consider sequence −→s4 = A → B given in Fig. 1. The length

of the sequence is 2 and tailEventSet(−→s4) = {b1, b2, . . . , b14}
contains instances of event type B, which are in neighborhoods

of instances of event type A.

Definition 6. Sequence index [2]. For a given m-length

sequence −→s , sequence index is defined as follows:

1) When m = 2 then:

SI(−→s ) = DR(−→s [1] → −→s [2]) (4)

2) When m > 2 then:

SI(−→s ) = min

{

SI(−→s [1 : m− 1]),
DR(−→s [m− 1] → −→s [m])

(5)

where sequence −→s is constituted of event types −→s [1] →
−→s [2] → · · · → −→s [m].

Example 1. Consider the dataset given in Fig .1. As an

example let us consider the process of expanding sequence
−→s1 . One may notice that density of instances of type B is

significant in the neighborhood spaces created for instances

of type A. 1-length sequence −→s1 = A will be expanded to
−→s1 = A → B and as the tail event set of −→s1 , the set of instances

of type B contained in N(a1) or N(a2) or N(a3) will be

remembered (that is, tailEventSet(−→s1) = {b1, b2, . . . , b14}).

The neighborhood spaces will be created for each instance

contained in tailEventSet(−→s1) and −→s1 will be expanded with

event type C, to create −→s1 = A → B → C. Actual will be

tailEventSet(−→s1) = {c1, c2, . . . , c13}. In the same manner, the

sequence will be expanded with event type D.

The sketch of the ST-Miner algorithm provided in [2] is

as follows. First, for each event type in a dataset F , a 1-

length sequence is created. Then, in a depth-first manner,

each sequence is expanded with each event type in F , if

the value of density ratio between the last event type in

the sequence and event type considered to be appended is

greater than the predefined threshold. The value of density

ratio between these two event types is calculated by taking all

instances from the tail event set of the sequence, creating their

neighborhood spaces and verifying the ratio of the average

density of instances of event type considered to be appended in

these neighborhood spaces and the total density of instances of

that type in the embedding space. If the value of density ratio

is below given threshold, then the sequence is not expanded
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any more. If the opposite is true, the sequence is expanded in

the recursive way. The minimal value of density ratio between

any two consecutive event types participating in the sequence

is the sequence index (SI(−→s )).

IV. DISCOVERING TOP-K PATTERNS

In this section, we provide our algorithms discovering top-K

sequential patterns.

Definition 7. For a sequence −→s → f of length m + 1, we

say that f follows event type −→s [m]. tailEventSet(−→s → f )

contains all instances of type f contained in the neighborhoods

created for instances from tailEventSet(−→s ).

Definition 8. Supersequence and subsequence. For two se-

quences −→si = −→si [1] → −→si [2] → · · · → −→si [mi] and
−→sj = −→sj [1] → −→sj [2] → · · · → −→sj [mj ], where mj > mi,
−→sj is supersequence of −→si (−→si is subsequence of −→sj ) if only
−→si [1] =

−→sj [1] ∧
−→si [2] =

−→sj [2] ∧ · · · ∧ −→si [mi] =
−→sj [mi].

In Fig. 1, −→s1 is supersequence of −→s2 (−→s2 is subsequence

of −→s1). Please note however, that for example −→s1 is not

supersequence of −→s3 (and −→s3 is not subsequence of −→s1).

Definition 9. Top-K sequence (sequential pattern). We say

that sequence −→s of length min_len is the K-th top sequence

(sequential pattern), if there exist K-1 sequences in the top

sequences set with length min_len and the sequence index of

each is equal or greater than SI(−→s ).

Definition 10. Pruning threshold θ. Actual pruning threshold

θ for sequences considered to be in the top sequences set is

equal to the sequence index of any K-th top already discovered

sequence.

Lemma 1. For a given sequence −→s of a minimal length

min_len, if the sequence index SI(−→s ) is below the actual

pruning threshold θ, then −→s and any of its supersequences do

not belong to top sequences and −→s should not be expanded

with new event types any more.

Proof: If the sequence index of considered sequence −→s
is below pruning threshold θ, then −→s does not belong to

already discovered top sequences. By means of Definition 6

and Definition 8 any supersequence of −→s also does not belong

to top-K sequences set, so −→s should not be expanded with new

event types.

Informally the approach discovering top-K sequences is as

follows: starting with 1-length sequences (that is, sequences

containing singular event types) expand each sequence in a

depth-first manner up to the moment when its length is at

least min_len. We start discovering sequences with the basic

value of pruning threshold θ equal to 1. At the same time

we maintain the set of top-K already discovered patterns. By

D(f) we denote set of instances of type f in D.

In Algorithm 2, if the sequence index of considered se-

quence −→s is greater than pruning threshold θ then −→s will be

expanded with new event types. Additionally, considering −→s
to be inserted into top-K sequences ranking, three scenarios

are possible:

Algorithm 1 Procedure for discovering top-K sequential pat-

terns

Require: D - dataset containing event types and their in-

stances, F - set of event types.

Ensure: A set of top-K sequential patterns.

1: for each event type f ∈ F do

2: Create 1-length sequence −→s from f .

3: TailEventSet(−→s ) := D(f).
4: ExpandSequence(−→s ).

5: end for

1) If the length of the sequence −→s is at least min_len, and

if there are few than K - 1 patterns in the top-K set, then
−→s is inserted into the set (case 1 in Fig. 3).

2) If the length of the sequence −→s is at least min_len and

there are K - 1 patterns in the top-K set, then −→s is

inserted into the set and pruning threshold θ is set to

sequence index of already K-th sequence in the set (case

2 in Fig. 3).

3) If the length of the sequence −→s is at least min_len and

there are K patterns in the top set, then if the sequence

index of −→s is equal to threshold theta θ, then −→s is

inserted into top set (cases 5, 6 in Fig. 3).

4) If the length of the sequence −→s is at least min_len and

there are K patterns in the top set, then if the sequence

index of −→s is less than threshold theta θ, then −→s is not

inserted into the set (case 3).

5) If the length of the sequence −→s is at least min_len and

there are K patterns in the top set, then if the sequence

index of −→s is greater than threshold theta θ, then −→s is

inserted into the set, θ is set to the value of any K-th

sequences’ sequence index and all the sequences with

sequence indexes less than θ are deleted from the top

set (case 4).

In Fig. 3, we show possible scenarios where −→s is considered

to be inserted into top-K sequences set.

In Algorithm 2, Spatial Join procedure performed in step

2 calculates a join set between tail event set of −→s and set

of instances D(f) (that is, calculates tailEventSet(−→s → f )).

Spatial join may be performed using the plane sweep algorithm

proposed in [24]. Algorithm 3 calculates actual sequence index

of sequence −→s → f . DR(−→s [m] → f ) in step 1 of Algorithm 3

is calculated as follows. The nominator of ratio in Definition 4

is the average density of instances from tailEventSet(−→s →
f )) inside the neighborhood spaces created for instances from

tailEventSet(−→s ). The denominator is the density of instances

of type f (that is, D(f)) inside embedding space V .

V. EXPERIMENTS

We performed experiments on both generated (synthetic)

and real datasets. Our experiments have been conducted using

machine with Intel Core i7-6700HQ CPU, each 2.6GHz and

16GB of RAM.
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Algorithm 2 ExpandSequence(−→s )

Require: −→s - sequence to be expanded, K - number of top sequences to discover, min_len - minimal length of discovered

sequences, θ - pruning threshold for top sequences.

1: for each event type f ∈ F do

2: TailEventSet(−→s → f ) := SpatialJoin(TailEventSet(−→s ), D(f)).
3: Calculate SequenceIndex(−→s → f ).

4: if SI(−→s → f ) ≥ θ then

5: if length(−→s → f ) ≥ min_len then

6: if Number of already discovered sequences < K - 1 then

7: Insert −→s into the top sequences set.

8: else if Number of already discovered sequences = K - 1 then

9: Insert −→s into the top sequences set.

10: θ := sequence index of the actual K-th sequence in the top-K set.

11: else

12: Insert −→s into the top sequences set.

13: if SI(−→s ) > θ then

14: θ := sequence index of the actual K-th sequence in the top-K set.

15: Delete all sequences from the top sequences set with the sequence indexes less than θ.

16: end if

17: end if

18: end if

19: ExpandSequence(−→s → f ).

20: end if

21: end for

Algorithm 3 Calculate SequenceIndex(−→s → f )

Require: −→s → f - a sequence of event types; −→s [m] - the last event type participating in −→s .

Ensure: Actual sequence index SI(−→s → f).
1: return min(SI(−→s ), DR(−→s [m] → f )).

1 2

43

θ = 1 θ = 1.5

θ = 1.9 θ = 1.9

5

θ = 1.9

6

θ = 1.9

Fig. 3. Possibilities when −→s is considered to be inserted into top-K set with
parameters min_len = 3 and K = 5

A. Experimental Results using Generated Data

We used the similar generator and notation of datasets

names as proposed in [2]. In Table II, we recall parameters of

data generator. In our experiments, we use cylindrical spatio-

temporal neighborhood spaces VN(e) with parameters R = 10
(size of spatial dimension) and T = 10 (size of temporal

window), similar to this one shown in Fig. 2. The whole spatio-

temporal space V is given by parameters DSize = 1000
and TSize = 1200 (that is, both spatial dimensions are of

size 1000 and temporal dimension is of size 1200). The total

number of event instances in the dataset may be calculates as

follows: Pn ∗Ps ∗Ni ∗ 2, as in addition to patterns placed in

a dataset we generate the same number of noise events.

We generated the same types of datasets as used in [2].

In Fig. 5, we show average computation times (we generated

each dataset five times and averaged results) for three different

types of datasets. In each case, computation time increases

with increasing size of the dataset. We executed our algorithm

for five values of K parameter (equal to 20, 40, 60, 80 and

100) and constant parameter min_len equal to 3. In Fig. 5, we

are showing comparison of calculation time and the average

number of discovered sequences for both STMiner proposed in

[2] and our modification discovering top sequences set. The
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Fig. 5. Average computation times for randomly generated datasets with different number of instances per event type (diagrams (1), (2)), number of patterns
(diagrams (3), (4)) and patterns lengths (diagrams (5), (6))

TABLE II
DESCRIPTION OF DATA GENERATOR PARAMETERS (ACCORDING TO [2])

Name Description

Ps Length (number of event types) of generated sequence
Pn Number of sequences in generated data

DSize Size of spatial dimensions of embedding space V
TSize Size of temporal dimension of embedding space V
Nf Total number of event types occurring in dataset
Ni Number of instances per event type per sequence
R Size of spatial dim. of neighborhood space VN(e)

T Size of temporal dim. of neighborhood space VN(e)

size of the dataset for parameters Pn = 10, Ps = 5, Ni =
20Nf = 15 is 2000 event instances. As we may infer from

Fig. 4, STMiner is impractical for even small datasets as it has

a tendency to generate a huge number of redundant patterns.

In Fig. 6, we show average calculation times for both STMiner

and TopSTMiner when calculating exactly top 100 sequences

set. To discover such sequences in STMiner algorithm we

started with rather small θ threshold for sequence indexes and

by its iterative increasing we obtained the set of 100 sequences.

B. Experimental Results using Real Data

For the first experiment on real data, we used the dataset

of 14 types of pollutants available on the Internet repository
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exactly top 100 sequences.

[25]. For each type of pollutant, the grids of resolution

5km2 are available for years 2004-2014. Each grid contains

numerical values of pollutant for United Kingdom region.

For each grid and year, we calculated average value and

standard deviation of pollutant. As abnormally high values

of pollutants, we extracted events with values greater than

three standard deviations from average. The task will be to

investigate dependencies between these abnormal occurrences

of pollutants. In Fig. 7, we show three types of events of

pollutants extracted from the original dataset. We executed

our algorithm with parameters min_len = 2 and K = 200 and

using cylindrical neighborhood space with parameters R = 10
km and T = 1 year. The types of pollutants available in the

dataset and the number of abnormally high instances of each

pollutant type in the final dataset are shown in Table III. In

Table IV, we listed potentially interesting sequences form the

top-100 set.

For the second experiment on real data we used the dataset

of 6 pollutants obtained from 7 monitoring sites located in

London Central: London Bloomsbury, London Eltham, Lon-

don Haringey Priory Park South, London Harlington, London

Hillingdon, London Marylebone, London Kensington. The

name of pollutants and their numbers of instance in the

extracted dataset are shown in Table V. The data have been

obtained from the source [26]. Not each type of the pollutant

is available for all of the stations. In Table VI, we show the

name of each monitoring site, its location in the Northing,

Easting system and available pollutants.

The original dataset contains hourly observations of pol-

lutants shown in Table V for each day of 2015 for the

SO2 dry deposition Base cations (Ca + Mg) Nitrogen total deposition

HNO3 dry deposition NHx total deposition NOx total deposition

Fig. 7. Examples of extracted event types (SO2 dry deposition, base cations
and total deposition of nitrogen, HNO3 dry deposition, NHx total deposition,
NOx total deposition)

TABLE III
TYPES OF POLLUTANTS USED IN THE FIRST EXPERIMENT (INST. -

NUMBER OF INSTANCES)

Abbreviation Pollutant type Inst.

SOx-nss Total deposition of oxidised sulphur 1989
SO4-nss Wet deposition of sulphate 2256

SO2 Dry deposition of sulphur dioxide 1822
N Total deposition of nitrogen 1339

NHx Total deposition of reduced nitrogen 1252
NOx Total deposition of oxidised nitrogen 579
NH3 Dry deposition of ammonia 1162

NH3-c Concentration of ammonia 1292
NH4 Wet deposition of ammonium 2162
NO2 Dry deposition of nitrogen dioxide 698

HNO3 Dry deposition of nitric acid 1406
HNO3-c Concentration of nitric acid 32

NO3 Wet deposition of nitrate 2021
Ca+Mg Total deposition of base cations 2670

Ac Total deposition of acidity 1406

TABLE IV
EXAMPLES OF PATTERNS DISCOVERED IN TOP-100 SET FOR REAL DATA

FOR THE FIRST EXPERIMENT

Sequence Sequence index

HNO3 → NO2 68.02
NO2 → HNO3 65.849

N → NOx → Ac → NHx → SOx 49.057
NOx → Ac → NHx → SO4 49.0339
NOx → Ac → NHx → NO3 47.8773

NOx → Ac → N → NH4 47.6831

stations mentioned above. For each type pollutant and for

each station separately we extracted daily observations of such

pollutant in the form of time series (that is, for each day

we extracted 24 four observations respective to each hour).

Then we clustered daily observations into four clusters to
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TABLE V
TYPES OF POLLUTANTS USED IN THE SECOND EXPERIMENT

Pollutant type Number of instances in dataset

Carbon Monoxide 52
Nitric Oxide 197
Nitrogen Dioxide 490
Ozone 534
PM10 particle deposition 161
PM2.5 particle deposition 73

obtain days with high concentration of the pollutant. For the

clustering process we used R software, dtwclust package and

distance time warping similarity between time series measure.

The example of discovered clusters for Nitric Oxide pollutant

for the London Eltham Station is shown in Fig. 8 and PM2.5

pollutant for the London Marylebone Station in Fig. 9. As the

days with high concentration of pollutant we extracted these

from cluster 2 for the former and cluster 4 for the latter. Each

day with high pollutants’ concentration has been marked as an

event instance with event type corresponding to the pollutant

type. The spatial location of the event instance is the location

of respective monitoring station and the occurrence time is the

corresponding day of occurrence.

We employed our algorithm to such dataset with parameters:

K = 100, min_len = 2, R = 200 meters and T = 10 days.

The sizes of spatiotemoral space are as follows: DSize1 =
37040 meters, DSize2 = 14262 meters and TSize = 364 days

and are bounded by the locations of monitoring site and period

of observation. The coordinates of stations are given in the

Northing, Easting system. The parameter R specified as above

means, that the algorithm will be looking for the interesting

sequences considering events in each station separately. The

set of top-15 sequences discovered from such dataset is shown

in Table VII.

C. Results Discussion

For the experiments on synthetic data we show that even for

small datasets our improvement discovering top sequences is

more effective than the original algorithm STMiner proposed

in [27]. As it has been explained, for many datasets and

specific applications it may be difficult to provide a minimal

sequence index threshold for discovered sequences. The algo-

rithm proposed in the paper allows to eliminate this drawback

by specifying the number of top sequences to discover. For the

experimental results on real data we used two datasets, which

have been preprocessed to obtain a set of event instances. For

each of these datasets we obtain some potentially interesting

sequences, however the additional usefulness of the proposed

algorithm may be verified in the future experiments.

VI. CONCLUSIONS

In the paper, we consider the problem of effective discover-

ing of top-K sequential patterns in event-based spatio-temporal

data. In particular, we introduced the notion of top-K sequence

(sequential pattern), we proposed the method creating set of

top-K sequences and dynamically updating the set based on
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Fig. 8. Discovered clusters for Nitric Oxide pollutant for the London Eltham
Station (cluster 2 contains days with high concentration of the pollutant)
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Fig. 9. Discovered clusters for PM2.5 pollutant for the London Marylebone
Station (cluster 4 contains days with high concentration of the pollutant)
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Fig. 10. Discovered clusters for Nitrogen Dioxide pollutant for the London
Haringey Station (cluster 1 contains days with high concentration of the
pollutant)

the rank of already expanded pattern. The approach allows

to immediately prune patterns which for sure will not be
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TABLE VI
MONITORING STATIONS, THEIR LOCATIONS (IN THE NORTHING, EASTING SYSTEM) AND AVAILABLE POLLUTANTS

Monitoring station Location Available pollutants

London Bloomsbury 530119, 182039 Nitric Oxide, Nitrogen Dioxide, Ozone, PM10, PM2.5
London Eltham 543981, 174655 Nitric Oxide, Nitrogen Dioxide, Ozone
London Haringey Priory Park South 529987, 188917 Nitric Oxide, Nitrogen Dioxide, Ozone, PM10, PM2.5
London Harlington 508295, 177800 Nitric Oxide, Nitrogen Dioxide, Ozone, PM10, PM2.5
London Hillingdon 506941, 178610 Nitric Oxide, Nitrogen Dioxide, Ozone
London Marylebone 528126, 182015 Carbon Monoxide, Nitric Oxide, Nitrogen Dioxide, Ozone, PM10, PM2.5
London Kensington 524045, 181749 Carbon Monoxide, Nitric Oxide, Nitrogen Dioxide, Ozone PM10, PM2.5

TABLE VII
EXAMPLES OF PATTERNS DISCOVERED IN TOP-100 SET FOR REAL DATA

FOR THE SECOND EXPERIMENT

Sequence Sequence index

PM10 → PM25 1000
PM25→ CarbonMonoxide 1000
PM25→ PM10 1000
PM25→ CarbonMonoxide→ NitrogenDioxide 974.079
CarbonMonoxide→ PM25 927.609
CarbonMonoxide→ PM25→ NitrogenDioxide 865.219
NitricOxide→ PM25 841.01
NitricOxide→ PM25→ PM10 841.01
CarbonMonoxide→ PM10 804.612
CarbonMonoxide → PM10 →PM25 804.612
CarbonMonoxide → PM10 → PM25 → Ni.Di. 804.612
NitrogenDioxide→ PM25 800.361
NitrogenDioxide→ PM25→ CarbonMonoxide 800.361
NitrogenDioxide→ PM25→ PM10 800.361
NitricOxide → PM25 → CarbonMonoxide 785.106

among the top-K sequences with length defined by min_len

parameter. In the experiments, we show the efficiency of

proposed approach. We also presented experimental results for

real datasets. Obtained results are encouraging to investigate

the topic in future research.
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