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Abstract—Community detection is a widely discussed topic
in network science which allows us to discover detailed in-
formation about the connections between members of a given
group. Communities play a critical role in the spreading of
viruses or the diffusion of information. In [1], [8] Kempe et al.
proposed the Independent Cascade Model, defining a simple set
of rules that describe how information spreads in an arbitrary
network. In the same paper the influence maximization problem
is defined. In this problem we are looking for the initial vertex set
which maximizes the expected number of the infected vertices.
The main objective of this paper is to further improve the
efficiency of influence maximization by incorporating information
on the community structure of the network into the optimization
process. We present different community-based improvements
for the infection maximization problem, and compare the results
by running the greedy maximization method.

I. INTRODUCTION

B
UILDING networks between people, companies, or other
individuals based on their activities or properties became

a common task in the previous decade. These networks de-
scribe the connection structure of their members, and show us
a bigger and more detailed picture about their behavior. One of
the most useful methods applied to networks is the detection

of dense subgraphs, known as the detection of communities.
Community detection is a well researched area of network
science and a large variety of methods exists in its literature[2],
but validating the results of an arbitrary community detection
method, especially in an application-oriented way, remains an
open problem.

Strong connections between individuals belonging to the
same community make it easy for viruses, information or
influence to spread between members. The Independent Cas-
cade [1] model provides a possible scenario of how an actual
spreading event can happen. The inputs of this model are:
a graph, an assignment of edge infection probabilities to its
edges and the set of initially active vertices. The process is
iterative and in each iteration, every active vertex tries to
activate its neighbors with the probability assigned to the edge
connecting them. Each vertex remains active for exactly one
iteration, afterwards it is removed from the spreading process.
The process stops if there are no more active vertices. In the
same paper the influence maximization problem is defined.
In this problem we are looking for the initial vertex set
which maximizes the expected number of the infected vertices.
While the optimization problem is NP-complete, Kempe et al.

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 237–243

DOI: 10.15439/2018F201
ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 237



proposed a greedy method that gives a guaranteed precision
result. A variety of other algorithms and heuristics were
proposed to improve the efficiency of influence maximization
[3][20][21]. A good overview of the maximization problem
can be found in [22].

The greedy method gives us a good and guaranteed solution
for infection maximization, but in real-sized networks it is
unable to solve the task within a acceptable time. Here we
introduce a new method, where the search space of the original
greedy method is reduced based on different scores. Another
objective is to compare the output of different community
detection algorithms. Community detection methods are hard
to validate if real life, since information about the members is
not available.

In this paper we present new community based infection
maximization methods which can improve the basic greedy
method and increase the size of the solvable network. The
methodology is also suitable to validate and compare different
community detection methods.

II. COMMUNITY DETECTION

The main objective of community detection is to find
dense subgraphs. The largest fraction of detection methods
in the literature defines communities as disjunct sets of nodes.
A significant number of works, however, follow a different
approach, allowing overlaps between the groups of nodes. In
this paper we take the latter, overlapping approach.

First of all we define different community detection algo-
rithms to extract information for the infection maximization
algorithm. For this purpose we chose a directed community
detection method, and converted an undirected method from
the literature to directed. The first algorithm which is used
in this paper, is the directed version [6] of the original
Clique percolation method [5]. The second method is the Hub
Percolation method (HPM) [4], which was extended to work
on directed networks.

A. Directed Hub Percolation

The original hub percolation [4] method is based on cliques
and hubs. Maximal cliques are maximal fully connected sub-
graphs of an arbitrary graph, while hubs are locally important
nodes in community detection. We choose the method because
during the detection process, the method provides additional
information which can be useful for the maximization prob-
lem. At first the algorithm finds undirected maximal cliques
containing at least 3 nodes in the network. In our case the
clique detection algorithm is replaced by a directed clique
detection algorithm, and an additional parameter is introduced
in the end of the method because providing higher resolution
of the results. First of all we define the concept of a directed
maximal clique.

Let dvc
be the restricted out-degree of a node v in clique c:

the out-degree of a given node inside the clique. The definition
of the directed maximal clique is the following:

• The clique contains all directed edges from v1 to v2 where
dv1c > dv2c

Fig. 1. An example of a directed clique. The restricted out degree of the
nodes are 3, 2, 1 and 0.

• The clique contains no directed loops
• Every node in a clique has a different restricted out-

degree
• It is maximal so it can not be expanded to a bigger clique

The Figure 1 shows an example of a directed clique. The
restricted out degree of the nodes are different from each other.
In the literature this structure also called transitive tournament
[18][19]. Based on the clique definition, the algorithm of the
directed hub percolation method is the following:

1) Find all at least 3 sized maximal cliques in the network.
Let C contain these cliques.

2) A HubValue is defined for every node as follows: ∀v ∈
V (G) let hv = |Hv| where Hv = {h|v ∈ h, h ∈ C}.

3) Base on hv and a Hub Selection strategy we decide
whether vertices are chosen as hub. Let H be the set
of the hubs.

4) Let Ch be the set of the cliques which contains only
hubs.

5) Let Ce be the set of extended cliques built in the
following way: expand all ch ∈ Ch with the cliques
containing at least 2 common vertices with ch, that is
with c ∈ C where |ch ∩ c| ≥ 2. Let ce be the subgraph
of the expanded vertices.

6) Merge every ce0 , ce1 ∈ Ce if they have at least x

common hubs.
7) The given Ce set contains the communities of the

network.

B. Hub Selection

The third step of the algorithm introduces a Hub Selection
strategy, which defines how vertices are chosen as a hubs. The
hub selection strategies are the following:

• Median of 1 neighborhood: A vertex v is hub, if the
value of hv is greater than the median of the hv values
of its neighbors.

• Mean of 1 neighborhood with parameter: A vertex v

is hub, if the value of hv is greater than the average of
the hv values of the neighbors, multiplied by a q > 0
parameter.

• Weighted mean of 1 neighborhood: The value of the hv

is multiplied by the weights on the out-edges. A vertex
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v is hub, if the value of the computed hv is bigger than
the average of the hv values in one neighborhood.

The third strategy was changed compared to the original,
emphasizing the direction of the edges, because a hub is better
if it has more out edges. In our experience, it improves the
quality of the output, if the hub selection strategy contains
information about the edge weights.

III. INDEPENDENT CASCADE MODEL

There are numerous models of infection spreading in the
literature, and these models were adopted to many different
scientific fields including epidemics, sociology and economics.
The two models most relevant to this paper were proposed in
[8] by Domingos and Richardson and [7] by Granovetter. The
former was used to improve the efficiency of virus marketing,
the latter was the first method used to model the spreading of
behavior. These models were later adopted to networks in [1],
[9] by Kleinberg and Kempe. The infection model discussed
in this paper is the Independent Cascade Model. The rest of
this section describes this model in detail.

Let G = (V,E) be a directed network, where ∀(v, u) ∈ E

edge has a p(v, u) probability where 0 < p(v, u) ≤ 1.
We assign states to the nodes: they are either susceptible,
infected or removed. Let A0 be the initial infected set of
nodes A0 ⊂ V (G), all other nodes are susceptible at the
beginning. The infection process takes place in discrete time
steps or iterations. Through the iterations let Ai denote the set
of the nodes which become infected in the i-th iteration. Each
node stays infected for exactly one iteration, afterwards it is
removed from the process. The process terminates in finite
steps, and let A denote the set of removed nodes at the end
of the process. In each iteration each infected node may make
one attempt to infect its susceptible neighbors according to
the value p(v, u) on the edge connecting them. Algorithm 1
summarizes the Independent Cascade Model.

Algorithm 1 Independent Cascade
1: Let A0 denote the set of initially infected nodes
2: While Ai 6= ∅
3: Ai ← newly infected nodes
4: ∀v ∈ Ai tries to infect their neighbors with p(v, u)
5: If the infection is successful
6: Ai+1 = Ai+1 ∪ u

7: End If

8: End While

If the Ai set is empty the infection process stops. Let σ(A0)
denote the expected number of infected nodes with A0 as the
initial set. Let wf (v) be the final infection probability of a
given node. The value of the σ(A0) formally is the following:

σ(A0) =
∑

v in G(V )

wf (v) (1)

There are numerous examples in the literature to compute
the σ(A0) [3], [11]. The exact computation of σ(A0) is a #P-
Complete problem [21].

A. Complete Simulation

In this paper the complete simulation algorithm proposed in
[3], [1] is used to compute the expected number of infected
vertices. A generalized version of the model can be found
in [3]. In Complete Simulation algorithm sample size is an
important parameter because it sets the number of independent
simulations, as such the precision of the result. The Complete
Simulation algorithm for the Independent Cascade Model is
shown on Algorithm 2.

Algorithm 2 Complete Simulation
1: Input: Graph G, sample size s

2: A0 ← initially infected nodes
3: j ← 0
4: ∀v ∈ G(V ) : fv = 0
5: While j < s

6: ∀e ∈ G(E) let the edge active or passive based on p(e)
7: Modified DFS from ∀v ∈ A0

8: If n ∈ G(V ) node is accessible from v ∈ A0

9: n : fv ← fv + 1
10: End If

11: j ← j + 1
12: End While

13: ∀v ∈ G(V ) : fv ← fv
s

The simulation generates s different networks, each having
different, randomized edge infection probabilities, and in every
independent simulation every edge is either in an active or a
passive state. The modified Depth First Search uses only active
edges to visit the nodes, and increases the fv values of the
nodes if they are visited in the simulation instance. Finally,
the fv values are divided by the number of the independent
simulations, which gives us an expected value for every node.
In this paper complete simulation is used to get the σ(A0)
value for a given initially infected set.

B. Infection maximization

The infection maximization problem is an optimization
problem where the main objective is to maximize the spread
of infection in the network. The problem is to find the set of
k initial infectors which give the maximal expected infection,
so in other words we are looking for an A0 vertex set for any
|A0| = k which maximizes the value of σ(A0).

To try different varieties of these sets, several repeated
computations of the simulation is needed. If we want to try
all possible initially infected sets for k = 2 of the example
on Figure 2 we need 56 different simulations for this small
network, but in a real-sized network it is not computable in
acceptable time. The original infection maximization problem
was published by Kempe et. al [1]. In the same paper they
have proven the NP-hardness of the problem, and gave a
greedy optimization method which can give at least 63% of
the optimum for any case.
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Fig. 2. On figure a) the A0 = {1, 5} so nodes 1 and 5 are infected initially
and k = 2. The figure b) shows the result of the simulation with samplesize
of 100 000. The red nodes are the initially infected nodes, the purple nodes
have greater infection than zero, and the green nodes are uninfected. In this
example σ(A0) = 2.94546.

C. Greedy method

The greedy method starts from an empty set and increases
the number of the initially infected nodes until it reaches the
given k. In every iteration the algorithm chooses the node
that currently seems to be the best choice. The algorithm
does not give the optimal solution but it has a guaranteed
precision of 63% of the optimum, but in most real-life cases
it gives much better solution. At first the algorithm chooses the
most infectious node from the network which can maximize
the spread alone in the most efficient way. After that in
every iteration one node is added to A0 which gives the
greatest improvement of the spread of infection with the other
selected nodes. In the end, the algorithm gives an infected
node set which maximizes the expected value of the infection.
Algorithm 3 shows the greedy method.

Algorithm 3 Greedy method
1: Input: Graph G, size of the infected set k
2: Output: A0 infected set
3: A0 ← ∅
4: While |A0| ≤ k

5: A0 = A0 ∪ arg maxv∈G(V )\A0)σ(A0 ∪ {v})

In every iteration of the algorithm the next node is chosen
from a {G(V ) \ A0} set. The idea of the paper is to reduce
the size of the set of the possible nodes so we will minimize
the search space in every iteration based on some computed
value which comes from a community detection algorithm.

IV. REDUCTION METHODS

The original greedy method gives us a quite good solution,
but in real-sized networks the running time of the method
can be too high. If the search space of the greedy method
is reduced, it cannot guarantee the 63% precision of the
optimal solution, but with a well chosen heuristic it can give
a better solution. The main advantage of our methodology is
the running time. In this section different reduction methods
are demonstrated based on a computed value assigned to every
node describing the quality of a node as an infector. We aim

to improve the performance of the method by incorporating
community-based information taken from one of the detection
methods discussed above. Let V ∗ be the reduced selection set,
and in every iteration the reduced greedy algorithm chooses
from {G(V ∗) \ A0} resulting in decreased runtime. We give
two different values based on the directed hub percolation
method and the directed clique percolation methods. We
introduce two different f(v) functions which scores the nodes
based on a different community or clique based statistic.

A. Hub Value

Cliques indicate the strongest connection between groups
of nodes because in a clique every node is connected with
each other. Let f(v) f : v → Z be a function which assigns a
number to every node. Let fhv(v) be a function that assigns
the hub value hv introduced in section 2 to the nodes of
the network indicating how many directed cliques contain the
node. The score is based on the idea, that a node can be a good
infector if multiple cliques contain it, because in this way the
node can spread the infection between cliques.

Fig. 3. Example of hub value calculation. The hub value of node 3 is
fhv(3) = 2 because two directed cliques contain the red node. All of the
green nodes have one as a hv . In this case the node 3 is a very good infector
because it can spread the infection in both directed cliques.

After every nodes get the score, the G(V ) set is sorted
according to hv . The reduced V ∗ set contains the top nodes
of the ordered G(V ) set. Since the hub value doesn’t contain
information on the edges of the graph, we introduce two
different approaches.

• unweighted hub value: The nodes are sorted based only
on hv values.

• mean weighted hub value: The hv is multiplied by the
mean of the probabilities on every out-edge of the actual
node.

Since the second technique contains information on the edge
weights and the out degree of the node, it gives a higher score
if a node is in many cliques, has many out edges, and the out
probabilities are high. If the network is undirected, the method
can be more efficient because an undirected clique indicates a
stronger connection than a directed.
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B. Community Value

The second technique can be based on the results of
different community detection methods, providing the ability
to compare these methods. In this case the score for a given
node is how many communities contain the actual node. Every
overlapping community detection method can be compared
using this methodology providing a comprehensive community
comparing technique.

The basic idea is the same in the previous section, the
difference is in the f(v) function. Let cv be the community
value and let the fcv(v) f : v → Z be a function which scores
the nodes based on their community values. The reduced set
works in the same way as in the case of hub values. The
communities in real life have additional meanings: they can
group the nodes into different sets, but if the main objective
is infection maximization, a node can be a good infector if
it is a member of many communities. The nodes with large
community values can work as an infection bridges between
different communities, since in real life a person or a company
can be a good infector if it appears in many different areas of
life.

Fig. 4. Community values in overlapping communities. Since two different
communities contain the red nodes, the community value of the red nodes is
2. The community value of the green node is 1.

Figure 4 shows an example of the community value. Con-
sidering only the individual communities, the red nodes and
the green nodes are the same because they are just simple
members of the group. From a global viewpoint however, the
green nodes can be less effective in disease spreading because
they are only connected to nodes inside their communities. The
red nodes have access to both communities. The community
value can also be used in two ways based on the computation
of the value.

• unweighted community value: The cv values denote how
many communities contain the node.

• mean weighted community value: The cv values are
multiplied by the mean of the probabilities on every out-
edge from v.

The nodes with zero or low out degrees are also eliminated
from the reduced set. In the results section, the above tech-
niques were compared to the results of the original greedy
method.

V. RESULTS

In this section we present the results of our modified infec-
tion maximization method, and test our methodology which
provides a way to compare different overlapping community
detection techniques. We ran the algorithm on a PC with
I7 4790 CPU (3.6 Ghz) and 16GB of RAM. The Complete
Simulation and the optimization framework is implemented in
Java. We tested our methodology on six different randomly
generated and seven real-life networks. For the random net-
works we used the igraph package of the R language and for
the figures we used a Python version of our framework. With
the greedy method the sample size was set high to get the best
precision.

A. Precision of the results

All test were run with s = 1000 in every iteration because in
the greedy method the algorithm has to compute the expected
value for all possible nodes which is very time-consuming.
Higher s values do not give more precise results as presented
in this section, but their computation takes much longer. At
the end of the testing process the final solution was rerun
with s = 100000. Results show that complete simulation has
lower precision compared to the greedy method by 1.14%
measured on the final set of infected nodes. Let σ(A0)greedy
be the expected value of the given infected set in the greedy
method, and σ(A0)final be the expected value of the infected
set with a high precision complete simulation. Table I shows
the precision loss of complete simulation compared to the
greedy method on the final infection values ordered according
to the density of the network.

TABLE I
PRECISION OF INFECTION MAXIMIZATION

Diff Precision Density
0.70245 1.148% 1.774
0.8183 1.082% 1.802
0.87047 0.403% 1.833
0.86507 0.905% 1.834
0.77251 0.545% 1.838
0.06035 0.161% 3.104
0.81857 0.654% 3.473
0.05284 0.252% 3.492
0.03828 0.038% 3.708
0.69613 0.562% 3.872
0.51405 0.550% 4.602
2.53454 0.270% 6.393
1.05984 0.158% 25.44

The column diff shows the difference between σ(A0)greedy
and σ(A0)final. The precision column denotes the percentage
of loss compared to the expected value of the final infections.
Results were computed on the random networks below.

B. Random networks

The random graphs were generated in 6 different sizes
with the forest fire model [12]. The properties of the random
networks are the following:

• Number of nodes from 250 to 1500
• Number of edges from 873 to 5205
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• Forward burning probability was 0.34
• Edge probabilities were randomly drawn from an uniform

distribution between 0 and 0.2
The test results of the original greedy algorithm, and the

size of the networks are shown on Table II.

TABLE II
RESULTS OF THE ORIGINAL GREEDY ALGORITHM ON RANDOM NETWORKS

Graph nodes edges k Greedy Time

rand_1 250 873 3 20.922 15.81s
rand_2 500 1552 5 37.338 84.31s
rand_3 750 3452 8 93.321 438.52s
rand_4 1000 3708 10 99.462 796.65s
rand_5 1250 4841 13 123.756 1704.85s
rand_6 1500 5205 15 125.044 2534.69s

During testing the size of the initial infected set was 1%
of the number of nodes in every scenario. The randomly
generated networks are not too big, just enough to show our
concept works. Furthermore, a real-sized network has millions
of nodes and edges or more and it is not possible to test the
greedy algorithm on it due to its time complexity. The size of
the reduced set V ∗ was 10% of the number of nodes. Table
III shows the result of the greedy algorithm with the reduced
V ∗ based on hub and community based methods. As the size
of the networks increases, the running times follow the size
of the reduced set. The time column shows that the running
times are approximately 10% of the original.

TABLE III
RESULTS FOR THE HUB AND COMMUNITY BASED REDUCED SET

ALGORITHM ON RANDOM NETWORKS. (HV: HUB VALUE, DHP:

COMMUNITY VALUE BASED ON DIRECTED HUB PERCOLATION, DCP:
COMMUNITY VALUE BASED ON DIRECTED CLIQUE PERCOLATION, DIFF:

PERCENTAGE OF THE SOLUTION COMPARED TO THE GREEDY

ALGORITHM, TIME: TIME OF THE SOLUTIONS COMPARED TO THE TIME

OF THE GREEDY METHOD)

Graph HV Diff DHP Diff DCP Diff Time

rand_1 20.87 99.7% 21.03 100.5% 4.65 22% 18%
rand_2 37.35 100% 37.67 100.8% 9.45 25% 13%
rand_3 93.07 99.7% 93.35 100.1% 26.45 28% 11%
rand_4 99.46 100% 100.25 100.5% 22.63 22% 11%
rand_5 124.06 100% 123.1 99.5% 31.15 25% 10%
rand_6 124.9 99.9% 121.4 97% 34.55 28% 10%

In four cases the hub or community value based reduced
set method gives a similar or better solution than the original
greedy algorithm. However in the rest of the cases it can-
not reach the reference solution but it still gives acceptable
results with a much better running time than the simple
greedy method. If we compare our two community detection
methods, the table shows that the directed hub percolation
method gives much better solution than the directed clique
percolation. The DHPM detects the overlapping nodes, and the
strongly connected dense subgraphs better than the DCPM in
these networks. Besides random networks we also tested our
methodology on real-life networks.

C. Real networks

The first five real-life networks considered in this paper
are word association graphs based on a survey connected to

the website "Agykapocs.hu" created by László Kovács[17].
The nodes of these graphs are words and the edges are
associations between the words based on the user answers.
The different networks come from the different versions of the
word-association network. The rest of the real-life networks
are from a well known data set from Stanford University [13].
The first network from this data set is an email network which
describes email connections of a large European research
institution [14][15]. The second is the bitcoin alpha trust
network which describes trust connections between bitcoin
traders [16]. The edge weights of the network were generated
in the same way as with the random networks: they were drawn
from an uniform distribution between 0 and 0.2.

TABLE IV
RESULTS OF THE ORIGINAL GREEDY ALGORITHM ON REAL NETWORKS

Graph nodes edges k Greedy Time

real_1 2751 5043 28 215.955 8969.39s
real_2 2088 3839 21 141.533 3868.12s
real_3 1680 3082 17 95.563 2005.33s
real_4 1460 2632 15 75.568 1298.91s
real_5 1305 2315 13 61.137 889.64s
email 1005 25571 10 670.187 5742.73s
bitcoin 3783 24186 38 936.535 83303,53s

We can find a lot of real-life networks larger than these,
but according to Table IV even on these quite small networks
the running times can be very high, indicating that the normal
greedy algorithm may not be able to find a good solution
especially with a high k parameter. The results of the reduced
set algorithm are shown in Table V.

TABLE V
RESULTS FOR THE HUB AND COMMUNITY BASED REDUCED SET

ALGORITHM ON REAL-LIFE NETWORKS.(HV: HUB VALUE, DHP:

COMMUNITY VALUE BASED ON DIRECTED HUB PERCOLATION, DCP:
COMMUNITY VALUE BASED ON DIRECTED CLIQUE PERCOLATION, DIFF:

PERCENTAGE OF THE SOLUTION COMPARED TO THE GREEDY

ALGORITHM, TIME: TIME OF THE SOLUTIONS COMPARED TO THE TIME

OF THE GREEDY METHOD)

Graph HV Diff DHP Diff DCP Diff Time

real_1 215.05 99% 215.8 100% 189.6 87% 10%
real_2 139.92 99% 138.6 98% 122.8 87% 10%
real_3 99.46 104% 97.78 102% 87.69 91% 10%
real_4 74.87 99% 74.34 98% 71.64 94% 10%
real_5 61.18 100% 59.54 97% 58.54 95% 11%
email 662.5 99% 662.4 99% 663.4 99% 10%
bitcoin 924.7 98% 916.4 98% 928.1 99% 11%

On real-life networks the results are not as pronounced as
with the random networks. In three cases our method reaches
very good solutions with a satisfactory running time, but the
other solutions are still satisfactory. If we compare the two
reduced set methods, we can say that the DCPM works much
better on real-life networks. In the general case however, the
DHPM still works better.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a new community based infection
maximization algorithm to reduce the running time of the
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greedy algorithm of Kempe et al, allowing the application
of the algorithm to real-life networks. The methodology also
allows us to measure the quality of any overlapping commu-
nity detection method. Our approach is based on a community
or hub based f(v) function that scores the nodes according
to their ability to infect other nodes, and builds a reduced
candidate set for the greedy method.

The main result of this paper is based on the hypothesis, that
in real-life infections spread easier inside communities. Apart
from the main result, the improved infection maximization
method, we present a comparing methodology which can sup-
port the development of different high resolution community
detection algorithms. In the future we want to improve the
presented community-based approaches and try out different
f(v) functions to score the nodes. While our current method-
ology is based on and supports the greedy algorithm, we want
to develop a clearly community based infection maximization
method using the results of this paper.

ACKNOWLEDGMENT

László Hajdu acknowledges the support of the National
Research, Development and Innovation Office - NKFIH Fund
No. SNN-117879.

Miklós Krész acknowledges the European Commission
for funding the InnoRenew CoE project (Grant Agreement
#739574) under the Horizon2020 Widespread-Teaming pro-
gram and the support of the EU-funded Hungarian grant
EFOP-3.6.2-16-2017-00015.

REFERENCES

[1] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the
spread of influence through a social network. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD ’03). ACM, New York, NY, USA, 137-146. DOI:
10.1145/956750.956769

[2] Santo Fortunato. Community detection in graphs. Physics Re-
ports, 486(3-5):75-174, February 2010. ISSN 03701573. DOI:
10.1016/j.physrep.2009.11.002.

[3] A. Bóta, A. Pluhár, M. Krész: Approximations of the Generalized
Cascade Model. Acta Cybernetica Volume 21 (2013) 37–51. DOI:
10.14232/actacyb.21.1.2013.4

[4] M. K. A. Bota. A high resolution clique based overlapping community
detection algorithm for small world networks. Informatica, 39:177-186,
2015.

[5] G. Palla, I. Derényi, I. Farkas, T. Vicsek: Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435 (2005), pp. 814-818 DOI: 10.1038/nature03607

[6] G. Palla, et al., Directed network modules, New J. Phys. 9 (2007) 186.
DOI: 10.1088/1367-2630/9/6/186

[7] M. Granovetter. Threshold models of collective behavior. Am. J. Sociol,
83:1420-1443, 1978. DOI: 10.1080/0022250X.1983.9989941

[8] P. Domingos, M. Richardson, Mining the Network Value of Customers,
Proc. Seventh ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
(2001) 57-66. DOI: 10.1145/502512.502525

[9] D. Kempe, J. Kleinberg, E. Tardos, Influential Nodes in a Diffusion
Model for Social Networks. Proceedings of the 32nd International Col-
loquium on Automata, Languages and Programming (ICALP), Springer-
Verlag (2005) 1127- 1138. DOI: 10.1007/11523468_91

[10] Wei Chen, Chi Wang and Yajun Wang, Scalable Influence Maximiza-
tion for Prevalent Viral Marketing in Large-Scale Social Networks.
Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM (2010) 1029-1038. DOI:
10.1145/1835804.1835934

[11] Srivastava, Ajitesh and Chelmis, Charalampos and Prasanna, Viktor K.
(2015) The unified model of social influence and its application in
influence maximization. Social Network Analysis and Mining 5(1):66:1-
66:15 DOI: 10.1007/s13278-015-0305-x

[12] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densifi-
cation laws, shrinking diameters and possible explanations. Proceed-
ings of the1th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ACM (2005) 177-187 DOI:
10.1145/1081870.1081893

[13] Jure Leskovec and Andrej Krevl, SNAP Datasets: Stanford Large
Network Dataset Collection, http://snap.stanford.edu/data, jun. 2014

[14] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich.
"Local Higher-order Graph Clustering." In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2017. DOI: 10.1145/3097983.3098069

[15] J. Leskovec, J. Kleinberg and C. Faloutsos. Graph Evolution: Den-
sification and Shrinking Diameters. ACM Transactions on Knowl-
edge Discovery from Data (ACM TKDD), 1(1), 2007. DOI:
10.1145/1217299.1217301

[16] S. Kumar, F. Spezzano, V.S. Subrahmanian, C. Faloutsos. Edge Weight
Prediction in Weighted Signed Networks. IEEE International Conference
on Data Mining (ICDM), 2016. DOI: 10.1109/ICDM.2016.0033

[17] Kovács, L., Conceptual Systems and Lexical Networks in the Mental
Lexicon, (In Hungarian: Fogalmi rendszerek és lexikai hálózatok a
mentális lexikonban) Tinta Konyvkiadó, Budapest, 2013.

[18] Szabó Sándor, Zaválnij Bogdán Coloring the nodes of a directed graph
Acta Universitatis Sapientiae Informatica 6:(6) pp. 117-131. (2014) DOI:
10.2478/ausi-2014-0021

[19] Szabó Sándor, Zaválnij Bogdán Coloring the edges of a directed graph
Indian Journal of Pure & Applied Mathematics 45:(2) pp. 239-260.
(2014) DOI: 10.1007/s13226-014-0061-z

[20] Yu Wang, Gao Cong, Guojie Song, and Kunqing Xie. 2010. Community-
based greedy algorithm for mining top-K influential nodes in mo-
bile social networks. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data min-
ing (KDD ’10). ACM, New York, NY, USA, 1039-1048. DOI:
https://doi.org/10.1145/1835804.1835935

[21] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence
maximization in social networks. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining (KDD ’09). ACM, New York, NY, USA, 199-208. DOI:
https://doi.org/10.1145/1557019.1557047

[22] Yuchen Li, Ju Fan, Yanhao Wang, Kian-Lee Tan. 2018. Influence Maxi-
mization on Social Graphs: A Survey. IEEE Transactions on Knowledge
and Data Engineering PP(99):1-1 DOI: 10.1109/TKDE.2018.2807843
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