
Universal serial bus as a communication medium

for prototype networked data acquisition and control

systems – performance optimisation and evaluation

Andrzej Tutaj, Jacek Augustyn†
AGH University of Science and Technology

Faculty of Electrical Engineering, Automatics,

Computer Science and Biomedical Engineering

Department of Automatics and Robotics

al. Mickiewicza 30, 30-059 Krakow, Poland

e-mail: tutaj@agh.edu.pl

Abstract—Universal serial bus can be considered a cost-
effective and high-throughput communication medium for sensor
networks and multinode control or data acquisition systems,
especially for prototyping purposes. In a prototype system, a
PC or Mac computer with a general-purpose operating system is
often selected as a host or root node for the USB bus and it acts as
a central data collector, supervisory user interface, and network
traffic scheduler. However, achieved communication performance
is often unsatisfactory since USB stack drivers incorporated in
Windows, Linux, or macOS operating systems are not optimised
for such specific purposes. The paper shows how an appropri-
ately selected and implemented user application communication
schedule, making use of operating system drivers pipelining and
multitasking capabilities, can substantially improve USB network
throughput and reduce communication latency.

Keywords—universal serial bus; sensor network; distributed and
networked control and data acquisition systems; rapid prototyping;
communication scheduling; USB stack pipelining and multitasking.

I. INTRODUCTION

A
COMMUNICATION channel constitutes a crucial part of

every sensor network, distributed data acquisition system,

or a networked control system. Its performance affects the

overall system quality of service. For measurement data acqui-

sition solutions, which often process large streams of data, the

most important network characteristic is its throughput. For

closed loop control applications the most critical parameter

is the round trip time as it directly influences the net loop

time delay. There are various networks and protocols available

with different properties and characteristics. They differ in

popularity, openness, initial costs and implementation efforts.

For small-scale distributed control and data acquisition

systems, a full-speed variant of the Universla Serial Bus (USB)

2.0 can be considered an attractive and convenient choice, es-

pecially well suited for prototyping purposes. It provides low-

cost, high-throughput communication channel with favourable

performance-to-price ratio. The network infrastructure can be

This work was supported by AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow, Poland, grant No. 11.11.120.396.

† Deceased.

built using inexpensive and easily available hardware compo-

nents. Software USB stacks and drivers are readily available

for most common general-purpose operating systems (OS),

like Windows, Linux, or macOS, which can host popular rapid

control prototyping (RCP) software engineering tools like

MATLAB/Simulink or LabVIEW. Modern microcontrollers

(MCU) and system on chips (SoC), on which network nodes

are likely to be built, are routinely equipped with a USB

device port peripheral with an integrated PHY module. High-

performance USB device stacks are usually available free of

charge from MCU manufacturers.

Unfortunately, a USB stack incorporated in a general-

purpose OS is usually not well suited for measurement data

acquisition or real-time closed-loop control systems, since it

has been designed and optimised for different applications.

Hence, the performance of such prototype configurations can

be poor unless special measures are undertaken. The paper

shows how an appropriately selected communication schedule

can substantially improve throughput and timing characteris-

tics of a multinode USB 2.0 network comprising PC computer

running Windows 7 OS and MATLAB RCP tool as a host node

and several MCU-based full-speed device nodes. The schedule

is realized by a user application coded as a MATLAB M-file

script and does not require any modifications to the standard

OS USB stack. Hence, it could be easily implemented under

any RCP tool and executed by any unprivileged OS user.

The solution takes advantage of a pipelined and multitasked

processing implemented by the OS USB driver stack.

The topic of USB bus applications for data acquisition or

control purposes is relatively popular in the literature where

numerous examples of various such systems can be found.

However, less work is reported concerning communication

performance optimization and characteristics adaptation. Some

researchers restrict their investigations to one-to-one commu-

nication systems, comprising a single host and a single device

node [1], [2], [3], [4], [5]. Their solutions employ either a

USB-to-UART adapter [1], an integrated circuit standalone

USB device controller connected to an MCU [2], [3], or

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 665–674

DOI: 10.15439/2018F203

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 665

an MCU or SoC device with an integrated USB peripheral

module [4], [5]. Performances of such systems, expressed in

terms of data throughput or timing properties, are considered

in [6], [7], [8], [9]. Other authors present applications of

multinode USB networks for various data collecting or control

purposes, including industrial systems, home automation, or

virtual instrumentation for power monitoring [10], [11], [12],

[13], but do not investigate system performances extensively.

Such a study can be found in [14], while the problem of

nodes synchronisation is addressed in [15], [16]. Some authors

propose hybrid solutions with the USB bus connecting a host

computer and a single controller of another multidrop bus, like

RS485, CAN, or I2C [17], [18].

The abundance of USB control and data acquisition so-

lutions, on one hand, and rarity of extensive performance

analysis and communication optimisation recommendations,

on the other hand, encouraged the authors of this article to

devote their research to the latter topic.

The paper is organised as follows. An introduction with

motivations and a literature review has been given in section I.

Section II presents hardware and software architecture of the

test bench system that has been used to verify effectiveness of

proposed communication schedules for network performance

improvement. Four different schedules considered in the paper

are elaborated in Section III. Results of experiments are given

and discussed in section IV. Section V provides final remarks

and further considerations and is followed by acknowledge-

ments and a reference list.

II. HARDWARE AND SOFTWARE ARCHITECTURE OF A TEST

SYSTEM

A. Host and device nodes

Main hardware and software components of a test system,

built in order to measure communication performances for

various polling schedules, are shown in Fig. 1. Their technical

characteristics are given in Tab. I. A portable PC computer

running MS Windows OS and hosting MATLAB application

is used as a host node of the USB network. A user application

responsible for polling all device nodes is coded as an M-

file script running in MATLAB environment. The standard

USB driver stack of the OS is employed and standard OS

Application Programming Interface (API) is used. Device

nodes are implemented on an MCU with integrated USB

device port using C++ language and bare metal programming

approach. A software USB device stack provided by the MCU

manufacturer is employed, however some modifications of the

stack code for latency reduction are implemented. In a real

application, the device node is expected to interface with a

physical system being controlled or monitored. However, for

communication performance evaluation, this system function-

ality is irrelevant and has been omitted.

B. USB transfer mode and speed selection

Out of three possible transmission speeds offered by the

USB 2.0 specification: low (LS), full (FS), and high (HS), the

full speed is a reasonable choice for moderately demanding

TABLE I
HARDWARE AND SOFTWARE COMPONENTS OF THE TEST BENCH

Host
node

Hardware DELL Latitude E6400, Core 2×2.54 GHz, 4 GB
RAM notebook PC computer
E-Port Plus PRO2X docking station

Software MS Windows 7 Professional SP1 operating sys-
tem
CDC USB class driver ver. 6.1.7601.17514
USB host controller driver ver. 6.1.7601.17586
MATLAB ver. 7.9.0.529 R2009b rapid develop-
ment environment

Device
node

Hardware Olimex SAM7-EX256 Rev. A evaluation board
Atmel SAM7X microcontroller based on
ARM7TDMI core, 48 MHz

Software USB device stack framework streamlined by the
authors
system-less bare-metal application written by the
authors

USB
hub

Hardware
Software

USB 2.0 high speed hub

applications. The data rate is relatively high compared to

CAN, RS-485, or similar standards, and the hardware im-

plementation on the USB device side is simplified, as most

modern MCU-s and SOC-s incorporate complete full-speed

USB peripheral modules. Hence, the FS variant has been

selected for USB devices in the study presented in the paper.

There are four transfer modes available with the USB 2.0

protocol: control, interrupt, isochronous, and bulk [19], [20].

Of these, the bulk mode is a natural choice for a distributed

system transferring potentially a large amount of data. Unlike

the isochronous one, it provides error detection and correction

features. Number of transactions allowed in a single USB

frame is not limited as with interrupt mode. Although there is

no bandwidth reservation for a bulk transfer, it can consume

up to 100% of the available bandwidth, provided that there

are no other modes transfers scheduled. Large allowable data

packet size helps to reduce transmission overhead and thus

allows high data throughput.

A standard and popular Communication Device Class

(CDC) has been selected for the test application. Software

drivers for CDC class are routinely incorporated in most OS-

es, making it attractive for rapid prototyping purposes, as no

extra programming is required from the user. Virtual Com Port

(VCP) driver is used on the host site. It allows standard OS

API as well as standard MATLAB functions set for serial port

handling to be employed.

C. Data and control flow in the system

Fig. 2 shows relations between MATLAB API function

calls, OS API function calls, USB bus transactions, and device

node actions. A user M-file script implements polling policy

with each individual device node contacted once in a single

cycle. The cycle is repeated endlessly. MATLAB serial object

as well as fwrite and fread functions are used. Their calls are

translated into write and read OS API calls and interact with

the OS USB stack via VCP and CDC drivers. Hardware host

and device controllers on the PC and MCU side, respectively,

as well as USB 2.0 hubs are engaged in data transfer over

666 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

USB device
network node

USB host
network node

ARM Cortex-M4
SoC

E
m

b
ed

d
ed

U
S

B
 s

ta
ck

U
se

r
ap

p
li

ca
ti

o
n

USB
bus

network

H
o

st
 U

S
B

 s
ta

ck

U
S

B
 h

o
st

 c
o

n
tr

o
ll

er
(h

ar
d

w
ar

e)

C
D

C
 c

la
ss

 d
ri

v
er

(s
o

ft
w

ar
e)

H
o

st
 c

o
n

tr
o

ll
er

d
ri

v
er

 (
so

ft
w

ar
e)

H
o

st
 c

o
n

tr
o

ll
er

in
te

rf
ac

e
(H

C
I)

F
u

n
ct

io
n

s
p

er
fo

rm
in

g
o

p
er

at
io

n
s

o
n

 f
il

e
h

an
d

le
s

MATLAB

U
se

r
ap

p
li

ca
ti

o
n

sc
ri

p
t

M
-f

il
e

IN direction

OUT direction

PC computer
Windows 7
operating system

Open file
handles

1

2

N

N1

N2

N3

H1N0

U
D

P
-

U
S

B
d

ev
ic

e
p

o
rt

S
y

st
em

 I
/O

A
P

I

Hub

User space Kernel space

N4

N5
N6

H2Hub

Host node
Device
nodes

Fig. 1. Hardware and software architecture of the test bench system.

the network. The embedded MCU application on the device

side responds to each host query with a predefined amount

of data. Greyed and dash-dotted components to the right in

the figure, usually present in a real systems, are omitted in

the test configuration. The USB device stack provided by the

MCU manufacturer has been streamlined by the authors to

reduce latency it introduces. It helps to focus the performance

study on the network rather than device properties.

In a real control or measurement acquisition system the host

is supposed to send to the device control values to be fed

to a control plant or parameters controlling the measurement

process. The device, on the ohter hand, sends to the host

measurement results. One can expect data size asymmetry

between write and read operations with small units of data

being sent to the device and large amounts of data being

received due to a multichannel or high speed measurements.

This expected asymmetry has been taken into account during

tests presented further in the paper.

III. USER APPLICATION POLLING SCHEDULES

Four different schedules of device nodes polling by the host

side user application are investigated in the article. They are

defined, explained and named in the following subsections.

A. Direct interleaved schedule.

Arguably the simplest and the most natural polling scheme

is presented in Fig. 3. The user application running on the

host node uses write call to send a query to a device node

and then calls read function to wait for a reply. As soon as

the data arrives, the host proceeds to the next device. Having

finished a full cycle, the host begins a subsequent one. Let

us call the duration of a single cycle the network repetition

time (NRT). It will be used for communication performance

evaluation. We will refer to the presented scheme as direct

Node 0 Node 1 Node 2 Node N

Host Devices

t t t t

write call – the user application running on the host node
commisions data to be sent to a device node.

read call – the user application running on the host node
demands data to be retrieved from a device node.

N
R

T

N
C

T

F
ir

st
 c

y
cl

e
S

ec
o

n
d

 c
y

cl
e

1

1

2

2

2

1

1

2

2

2

1

1

Fig. 3. Direct interleaved schedule – pattern of write and read I/O functions
calls by the user application running on the host node. Encircled numbers on
arrows help to match related writing and reading operations (the query and
the response corresponding to it).

interleaved schedule, as write and read calls alternate and the

scheme does not involve any distinct preparatory stage.

B. Advanced interleaved schedule

The advanced interleaved schedule shown in Fig. 4 differs

from the one presented in the previous subsection in having

a special initial stage. During this state the host in advance

writes data to all devices in turn without waiting for any

reply. Then it proceeds as with the direct interleaved schedule,

applying read and write operations pair to each device in turn

ANDRZEJ TUTAJ, JACEK AUGUSTYN: UNIVERSAL SERIAL BUS AS A COMMUNICATION MEDIUM FOR PROTOTYPE 667

MATLAB

writefwrite

readfread

System
calls

H
o

st
 U

S
B

so
ft

w
ar

e
an

d
h

ar
d

w
ar

e

Transfers
and

transactions

OUT

IN

Control and
measurement
signal routing

User
application

(M-file
scripts) E

m
b

ed
d

ed
ap

p
li

ca
ti

o
n

E
m

b
ed

d
ed

U
S

B
 s

o
ft

w
ar

e
an

d
 h

ar
d

w
ar

e

Host PC computer Device SoC MCU

FEED

ACQUIRE

USB bus

S
en

so
rs

an

d
 a

ct
u

at
o

rs

P
la

n
t,

p
ro

ce
ss

,
te

st
,

o
r

ex
p

er
im

en
t

S
er

ia
l

o
b

je
ct

Fig. 2. Relations between user application and OS API function calls and USB bus transaction types.

write call – the user application running on the host node
commisions data to be sent to a device node.

read call – the user application running on the host node
demands data to be retrieved from a device node.

Node 0 Node 1 Node 2 Node N

Host Devices

t t t t

N
R

T

N
C

T

1

1
2

3
2

1

1

2
1

2
1

3

3

2

2

F
ir

st
 c

y
cl

e
S

ec
o

n
d

 c
y

cl
e

In
it

ia
l

st
ag

e

Fig. 4. Advanced interleaved schedule. The network cycle time (NCT) equals
twice the network repetition time (NRT).

and repeating the cycle. Thus, there is a sustained excess

of writes over reads for each device. It can improve the

communication performance by taking advantage of OS USB

stack pipelining, buffering, and multithreading capabilities. A

new measure called network control time (NCT) is introduced

in Fig. 4. It is equal to the time elapsing between the beginning

of a cycle where write operation are effected and the end

of a cycle where corresponding read calls are completed

(note numbers in circles on arrows in the figure). Because

of the presence of the initial stage of the schedule, the NCT

parameter equals twice the NRT in average. The control term

in the NCT name alludes to the fact that in a closed-loop

control application, NCT rather than NRT parameter influences

the quality of control as it contributes to the net time delay in

the loop.

C. Direct aggregated schedule

An important drawback of the schedule given in the pre-

vious section is that each response received from a device

Node 0 Node 1 Node 2 Node N

Host Devices

t t t t

N
R

T

N
C

T

F
ir

st
 c

y
cl

e
S

ec
o

n
d

 c
y

cl
e

1
1

1

2

1
1

1

2

2

2

2

2

write call – the user application running on the host node
commisions data to be sent to a device node.

read call – the user application running on the host node
demands data to be retrieved from a device node.

Fig. 5. Direct aggregated schedule. The network cycle time (NCT) is equal
to the network repetition time (NRT).

corresponds to last but one query instead of the last one.

Hence, there is a one-step query–response shift or delay.

Should it be unacceptable for a particular application, one may

choose an alternative approach shown in Fig. 5. There is no

special initial stage. In every regular cycle the host aggregates

all write and all read operations in two separate groups, with

all writes executed before all reads. That approach provides the

stack with an additional time reserve for collection of device

replies and does not introduce any shift in messages exchange

order.

D. Advanced aggregated schedule.

A combination of advancing and aggregation techniques is

presented in Fig. 6 where the last proposed polling scheme

is explained. There is an initial stage comprising write calls

only while all consecutive cycles start with aggregated writes

succeeded by grouped reads. One may expect this schedule to

provide further performance improvement by a synergy effect.

668 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

Node 0 Node 1 Node 2 Node N

Host Devices

t t t t

N
R

T

N
C

T

F
ir

st
 c

y
cl

e
S

ec
o

n
d

 c
y

cl
e

In
it

ia
l

st
ag

e

1
1

1

2
2

1

2
2

2

1

1

2

3
3

3

write call – the user application running on the host node
commisions data to be sent to a device node.

read call – the user application running on the host node
demands data to be retrieved from a device node.

Fig. 6. Advanced aggregated schedule. The network cycle time (NCT) equals
twice the network repetition time (NRT).

IV. EXPERIMENTAL RESULTS

A. Test conditions and performance measures

A lot of tests have been conducted for various experimental

conditions gathered in Tab. II. Four different polling schedules,

proposed in the previous sections, have been investigated in

turn. Device nodes number N as well as the data length

SIN for a single IN transfer (read call) have been varied,

while the OUT transaction size SOUT (write operation) has

been kept constant. A long data series of 10 000 samples

have been collected for each experiment in order to compute

several statistical performance measures. Four such quantities

are used to compare performances of individual scheduling

policies, based on network timing or throughput character-

istics (see Tab. III). Timing is characterised by NRT and

NCT parameters defined in the previous section. They are

computed on the host side based on timestamps added to trans-

ferred data by device nodes employing hardware peripheral

timers. Throughput corresponding to data transferred by IN

transactions (read operations) is characterised by two related

measures: total network stream (TNS) and stream per node

(SPN), satisfying the equation TNS = N × SPN (as long as

mean values are considered) where N is the number of active

device nodes. For all four quantities their average values (avg)

have been computed. For timing related NCT parameter its

standard deviation (std) has been also determined. Time series

and histograms of timing parameters obtained in selected

experiments are presented in the next subsection in Fig. 7–

10. Statistics computed from all tests results are gathered in

Tab. IV. Discussion of results is also provided. The amount

TABLE II
EXPERIMENTS CONDITIONS AND PARAMETERS

Parameter or condition Value or variant

polling schedule direct interleaved, advanced interleaved, di-
rect aggregated, advanced aggregated

number of active device
nodes in the network

1, 2, 3, 4, 5, 6

data length for a single IN
transfer (read call)
SIN, B

48 B, 100 B, 200 B, 500 B, 750 B, 1000 B,
1250 B, 2000 B, 4000 B, 6000 B, 8000 B

data length for a single
OUT transaction (write

call)
SOUT, B

16 B

TABLE III
NETWORK PERFORMANCE MEASURES

timing
NRT, ms network repetition time
NCT, ms network control time

throughput
TNS, kB/s total network stream
SPN, kB/s stream per node

of data presented in the table may seem to be intimidating

for the reader. However, authors decided to include all results

because they share a view expressed in [21]: It is understood

that real time systems are not tested with a single analysis

that pronounces them correct. Testing of real time systems is

a proof by exhaustion.

B. Presentation and discussion of experimental results

Fig. 7 presents time series and histograms of the NCT

parameter obtained for the direct interleaved schedule in an

experiment with four active device nodes and IN transfer

size of SIN = 100 B. For a direct schedule, NCT = NRT

equality holds. The average (avg) NCT value is equal to

38ms (see Tab. IV) and approximately matches performances

observed by other authors for USB systems with a single

device [7]. Minimum (min) and standard deviation (std) of

NCT equal 11 ms and 21 ms, respectively. Large discrepancy

between avg and min value as well as large std/avg ratio

reveals a large room for improvement, since the min value

estimates the best case scenario. From Tab. IV one can deduce

that NCT is approximately proportional to the device nodes

number N . That seems to be a natural behaviour for the

schedule that executes two-way data exchange witch every

devices in turn and does not employ any kind of parallelism.

A relation between SIN and NCT is approximately affine with

a considerable y-intercept and relatively small slope (NCT

increases merely by 60% for SIN increasing over 160 times).

It suggests that software components rather than a physical

data exchange channel form a communication bottleneck and

again suggests a potential for performance improvement by

an appropriate polling schedule selection. The TNS is roughly

proportional to SIN and almost independent on N . It shows

the advantage of using large size transfers and reveals that the

available throughput is equally shared by all device nodes.

Time series of NCT and NRT as well as NCT histograms for

the advanced interleaved schedule, N = 4, and SIN = 100 B

ANDRZEJ TUTAJ, JACEK AUGUSTYN: UNIVERSAL SERIAL BUS AS A COMMUNICATION MEDIUM FOR PROTOTYPE 669

0 20 40 60 80 100
0

20

40

60

80

100

time, t, s

N
C

T
,

m
s

(a) NCT time series

90 92 94 96 98 100
0

20

40

60

80

100

time, t, s

N
C

T
,

m
s

(b) NCT time series, enlarged

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

NCT, ms

(c) Normalised NCT histogram

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

NCT, ms

(d) Envelope of normalised NCT cumulative histogram

Fig. 7. Results of an experiment for the direct interleaved schedule with N = 4 active nodes and IN transfer size of 100 B. Time series and histograms of
the network control time (NCT) parameter.

0 2 4 6 8 10
0

5

10

15

20

25

30

35

time, t, s

N
R

T
,

N
C

T
,

m
s

(a) NRT and NCT time series

9 9.2 9.4 9.6 9.8 10
2

4

6

8

10

12

time, t, s

N
R

T
,

N
C

T
,

m
s

(b) NRT and NCT time series, enlarged

0 10 20 30 40
0

0.2

0.4

0.6

0.8

NCT, ms

(c) Normalised NCT histogram

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

NCT, ms

(d) Envelope of normalised NCT cumulative histogram

Fig. 8. Results of an experiment for the advanced interleaved schedule with N = 4 active nodes and IN transfer size of 100 B. Time series and histograms
of network repetition time (NRT, blue) and network control time (NCT, green) parameters.

670 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

are presented in Fig. 8. Timing and throughput statistics for

various conditions are gathered in Tab. IV. An enormous

performance improvement can be observed compared to the

direct interleaved scheme. The NCT is reduced five times from

38ms to 7.5ms. The NRT reduction is even more impressive –

about ten times from 38ms to 3.7ms. Consequently, both TNS

and SPN increase tenfold from 10kB/s to 110kB/s and from

2.6 kB/s to 27 kB/s, respectively. The huge improvement is

achieved exclusively by introduction of the initial, preparatory

stage at the beginning of the cyclic polling schedule (compare

Fig. 3 and 4). The one-step shift (and resulting time delay)

introduced by the advancing technique is by far compensated

by the timing performance improvement, revealed by the con-

siderable reduction in both NCT and NRT measures. One can

observe that the performance gain is more prominent for small

SIN values. Apparently, when the data stream increase, the

hardware limitations play more and more important role and

diminish benefits brought by the polling scheme modification.

Results for the direct aggregated schedule are presented

in Fig. 9 and in Tab. IV. For N = 4 and SIN = 100 B,

NCT and NRT become reduced over 6 times (from 38 ms to

6ms) compared to the direct interleaved schedule while TNS

and SPN increase about 6.5 times (from 10 kB/s to 67 kB/s
and from 2.6 kB/s to 17 kB/s, respectively). Comparison

of two improved polling schemes, the advanced interleaved

schedule and the direct aggregated schedule, reveals that the

former performs generally better as long as NRT, TNS, and

SPN mean values are considered. However, for the average

NCT, the latter scheme shows advantage for most N and SIN

combinations. Consequently, for data acquisition systems, the

advanced interleaved schedule is the preferred one while for

the closed-loop control systems the choice should be made

based of the number of nodes and IN transfers sizes.

Results of experiments for the advanced aggregated sched-

ule are shown in Fig. 10 and in Tab. IV. They reveal a large

improvement compared to the direct interleaved scheme. On

the other hand, the table shows that the performance of this

combined schedule is comparable to that obtained for the

advanced interleaved one. Apparently, the advancing approach

takes advantage of USB stack pipelinign, multithreading, and

parallel computing capabilities to an extent that cannot be fur-

ther intensified by incorporation of the aggregating technique.

C. Sporadic timing spikes

One can observe sporadic spikes on NCT and NRT time

series presented in Fig. 7–10. They are several times higher

than the average value of the considered timing parameter.

They may result from an occasional lengthy or prolonged

preemption of the USB stack or the user application by

an unrelated time-consuming task, like hard disk servicing

routine. One can expect such behavious since the Windows 7

is not a real-time OS. For a production system such a lack of

determinism would be probably a prohibiting factor. For rapid

prototyping purposes, however, it may be acceptable, since is

far outweighed by development and testing benefits brought
by RCP engineering tools like MATLAB or LabVIEW hosted

by general-purpose OS-es.

V. CONCLUSIONS

The solution presented in the paper is intended for pro-

totype rather than production systems and mainly for rapid

prototyping approach. It allows to obtain high performance

of a USB-based network despite the application of standard

USB stack available in a general-purpose operating system.

The dramatic communication improvement is achieved by

employment of an appropriately modified read and write

function call schedule on the user application side. It takes

advantage of a multithreading, parallel computing, buffering

and pipelining in the USB stack drivers to streamline the data

exchange processes and improve data rate as well as timing

characteristics. In a production real-time system designed for

data acquisition or distributed control, one may expect protocol

stacks to be adapted to the intended applications. That leaves

less space for improvement with methods like those proposed

in the paper.

All results included in the article have been obtained for a

multinode system with several USB devices. However, some

proposed methods and schedules can be used as well for

a system comprising a single device communicating with a

single host. Application of the advancing technique for such

a system have been presented in authors’ previous work [9].

The paper proves effectiveness of advancing and aggregat-

ing techniques in case of a network based on the USB bus tech-

nology. However, the authors expect that similar approaches

may succeed also for other communication networks and

protocols, provided that they make use of a similar software

architecture.

The methods given in the article can be beneficial mainly for

data acquisition systems, where data throughput maximization

rather than closed loop latency (delay) minimization is the

main objective. However, to a limited extent, they can also be

employed in closed loop control applications as in some cases

they also allow reduction of the round trip delay.

ACKNOWLEDGEMENTS

This work was funded by the AGH University of Science

and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland,

grant No. 11.11.120.396.

ANDRZEJ TUTAJ, JACEK AUGUSTYN: UNIVERSAL SERIAL BUS AS A COMMUNICATION MEDIUM FOR PROTOTYPE 671

0 5 10 15
0

10

20

30

40

time, t, s

N
C

T
,

m
s

(a) NCT time series

14.5 14.6 14.7 14.8 14.9 15
3

4

5

6

7

8

time, t, s

N
C

T
,

m
s

(b) NCT time series, enlarged

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

NCT, ms

(c) Normalised NCT histogram

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

NCT, ms

(d) Envelope of normalised NCT cumulative histogram

Fig. 9. Results of an experiment for the direct aggregated schedule with N = 4 active nodes and IN transfer size of 100 B. Time series and histograms of
network control time (NCT) parameter.

0 2 4 6 8 10
0

10

20

30

40

50

60

time, t, s

N
R

T
,

N
C

T
,

m
s

(a) NRT and NCT time series

9 9.2 9.4 9.6 9.8 10
0

5

10

15

20

25

30

35

time, t, s

N
R

T
,

N
C

T
,

m
s

(b) NRT and NCT time series, enlarged

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

NCT, ms

(c) Normalised NCT histogram

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

NCT, ms

(d) Envelope of normalised NCT cumulative histogram

Fig. 10. Results of an experiment for the advanced aggregated schedule with N = 4 active nodes and IN transfer size of 100 B. Time series and histograms
of network repetition time (NRT, blue) and network control time (NCT, green) parameters.

672 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

TABLE IV
RESULTS OF EXPERIMENTS – TIMING AND THROUGHPUT MEASURES STATISTICS FOR DIFFERENT POLLING SCHEDULES AND VARIOUS TEST CONDITIONS.

ALL DATA ROUNDED TO TWO SIGNIFICANT DIGITS. RESULTS FOR N = 4 AND SIN = 100 B MARKED IN BOLD.

direct interleaved schedule advanced interleaved schedule
SIN= 48 100 500 2000 8000 48 100 500 2000 8000

NCT
avg
ms

N = 1 10 8.3 9.1 13 17 3.6 3.5 4.2 8.8 23
N = 2 18 20 25 27 34 4.9 4.9 6 8.8 28
N = 3 31 30 38 43 52 6.2 6.3 7.1 11 31
N = 4 37 38 49 57 69 7.4 7.5 7.8 10 28
N = 5 54 52 63 70 86 9 9.1 9.4 11 29
N = 6 62 57 77 85 100 11 11 11 12 32

NCT
std
ms

N = 1 7.6 6.6 7.9 6.9 5.6 1.1 1 1.7 5.2 8.2
N = 2 12 12 13 11 8.3 1.1 1.5 0.78 4 9.9
N = 3 16 16 17 13 11 1.5 4 1.4 4.4 11
N = 4 21 21 22 16 13 1.1 1.5 5 2.7 9.5
N = 5 24 25 26 19 15 1.2 1.9 4.6 2.6 8.7
N = 6 29 29 28 22 17 1.2 1.6 1.9 3 6.4

NRT
avg
ms

N = 1 10 8.3 9.1 13 17 1.8 1.7 2.1 4.4 12
N = 2 18 20 25 27 34 2.5 2.5 3 4.4 14
N = 3 31 30 38 43 52 3.1 3.1 3.6 5.3 15
N = 4 37 38 49 57 69 3.7 3.7 3.9 5.1 14
N = 5 54 52 63 70 86 4.5 4.6 4.7 5.4 14
N = 6 62 57 77 85 100 5.4 5.4 5.5 6.1 16

TNS
avg
kB/s

N = 1 4.8 12 55 160 460 26 58 240 450 680
N = 2 5.2 10 40 150 460 39 81 330 900 1100
N = 3 4.7 10 39 140 460 46 95 420 1100 1500
N = 4 5.2 10 41 140 460 52 110 520 1600 2300
N = 5 4.5 9.6 40 140 460 53 110 530 1900 2800
N = 6 4.6 11 39 140 460 54 110 550 2000 3000

SPN
avg
kB/s

N = 1 4.8 12 55 160 460 26 58 240 450 680
N = 2 2.6 5.1 20 74 230 19 41 170 450 560
N = 3 1.6 3.4 13 47 150 15 32 140 380 520
N = 4 1.3 2.6 10 35 120 13 27 130 400 570
N = 5 0.89 1.9 8 29 93 11 22 110 370 560
N = 6 0.77 1.8 6.5 23 77 9 19 91 330 500

direct aggregated schedule advanced aggregated schedule
SIN= 48 100 500 2000 8000 48 100 500 2000 8000

NCT
avg
ms

N = 1 8.8 7.3 8.1 12 18 3.3 3.4 4 8.7 24
N = 2 3.3 4.4 9.3 12 20 4.4 4.6 5.1 7 25
N = 3 5.2 5.2 6.8 15 23 6.1 6.2 6.2 7.7 24
N = 4 6 6 6.7 13 25 7.6 7.9 8 8.5 20
N = 5 7 7.1 7.5 10 26 9.5 9.9 9.6 10 20
N = 6 7.1 7.3 8.3 11 30 11 12 12 12 27

NCT
std
ms

N = 1 6.6 5.8 7.2 7.5 7.6 1.4 1.6 1.5 5.1 9.5
N = 2 2.5 4.2 7.4 7.8 7.3 1.7 2 3.4 2.5 9.8
N = 3 3.4 3.2 5 8.9 9.4 2.6 2.5 3.8 3.8 9.4
N = 4 2.2 2.3 3.3 8.5 8.9 2.2 2.7 4.2 2.6 4.6
N = 5 3.1 3 3.7 4.8 9.6 2.5 3.1 2.6 2.6 4.9
N = 6 3.4 2.9 3.4 3.9 8.3 2.6 3 2.6 3 3.3

NRT
avg
ms

N = 1 8.8 7.3 8.1 12 18 1.6 1.7 2 4.3 12
N = 2 3.3 4.4 9.3 12 20 2.2 2.3 2.5 3.5 13
N = 3 5.2 5.2 6.8 15 23 3 3.1 3.1 3.9 12
N = 4 6 6 6.7 13 25 3.8 3.9 4 4.3 9.8
N = 5 7 7.1 7.5 10 26 4.8 4.9 4.8 5.1 9.9
N = 6 7.1 7.3 8.3 11 30 5.7 5.8 5.8 6.1 13

TNS
avg
kB/s

N = 1 5.5 14 62 170 430 29 59 250 460 660
N = 2 29 46 110 340 780 43 87 390 1100 1300
N = 3 28 58 220 400 1000 48 97 480 1500 2000
N = 4 32 67 300 600 1300 51 100 500 1900 3300
N = 5 34 71 330 1000 1500 50 100 520 2000 4000
N = 6 41 83 360 1100 1600 51 100 520 2000 3500

SPN
avg
kB/s

N = 1 5.5 14 62 170 430 29 59 250 460 660
N = 2 14 23 54 170 390 22 44 200 570 630
N = 3 9.2 19 74 130 340 16 32 160 520 660
N = 4 8 17 75 150 320 13 25 120 470 810
N = 5 6.8 14 67 200 310 10 20 100 400 800
N = 6 6.8 14 60 190 260 8.5 17 87 330 590

ANDRZEJ TUTAJ, JACEK AUGUSTYN: UNIVERSAL SERIAL BUS AS A COMMUNICATION MEDIUM FOR PROTOTYPE 673

REFERENCES

[1] M. A. Ahmad, A. N. K. Nasir, N. S. Pakheri, N. M. Ghani, M. A.
Zawawi, and N. H. Noordin, “Microcontroller-based input shaping for
vibration control of flexible manipulator system,” Australian Journal of

Basic and Applied Sciences, vol. 5, no. 6, pp. 597–610, 2011.
[2] C. Qiong, P. Zhuo, and C. Hui, “The communication design

of simulation and measurement for excitation system based on
USB2.0,” in 2nd International Workshop on Intelligent Systems

and Applications (ISA), Wuhan, China, 22-23 May 2010. doi:
10.1109/IWISA.2010.5473535 pp. 1–4. [Online]. Available: https:
//doi.org/10.1109/IWISA.2010.5473535

[3] T. Baohua and Q. Shuhai, “A high speed data acquisition card
based on USB bus,” in International Conference on Machine Vision

and Human Machine Interface (MVHI), Kaifeng, China, 24-25 April
2010. doi: 10.1109/MVHI.2010.179 pp. 357–360. [Online]. Available:
https://doi.org/10.1109/MVHI.2010.179

[4] A. Kumar, I. P. Singh, and S. K. Sud, “Energy efficient and
low cost indoor environment monitoring system based on the IEEE
1451 standard,” IEEE Sensors Journal, vol. 11, no. 10, pp. 2598–
2610, 2011. doi: 10.1109/JSEN.2011.2148171. [Online]. Available:
https://doi.org/10.1109/JSEN.2011.2148171

[5] G. Wang, X. Cheng, and Z. Wang, “Terminal design of the
intelligent data acquisition system based on USB interface,” Applied

Mechanics and Materials, vol. 380-384, pp. 3629–3632, 2013. doi:
10.4028/www.scientific.net/AMM.380-384.3629. [Online]. Available:
https://doi.org/10.4028/www.scientific.net/AMM.380-384.3629

[6] L. Ramadoss and J. Y. Hung, “A study on universal serial bus latency
in a real-time control system,” in 34th Annual Conference of the

IEEE Industrial Electronics Society, vol. 1-5, Orlando, Florida, USA,
10-13 November 2008. doi: 10.1109/IECON.2008.4757930 pp. 19–24.
[Online]. Available: https://doi.org/10.1109/IECON.2008.4757930

[7] R. P. Gomez, J. J. E. Rodriguez, G. A. Hemandez, and A. M. Sibaja,
“USB bulk transfers between a PC and a PIC microcontroller for
embedded applications,” in 5th Electronics, Robotics and Automotive

Mechanics Conference Proceedings (CERMA), Cuernavaca, Mexico,
30 September - 3 October 2008. doi: 10.1109/CERMA.2008.21 pp.
559–564. [Online]. Available: https://doi.org/10.1109/CERMA.2008.21

[8] J. Augustyn and A. Bieñ, “Real time performance of USB interface
in embedded control and measurement systems,” Przegląd Elektrotech-

niczny, vol. 85, no. 7, pp. 1–7, 2009.
[9] J. Augustyn and A. Tutaj, “Evaluation and optimisation of

communication performance in a hybrid measurement and control
system,” Studies in Informatics and Control, vol. 23, no. 4, pp.
341–351, 2014. doi: 10.24846/v23i4y201404. [Online]. Available:
https://doi.org/10.24846/v23i4y201404

[10] A. Depari, A. Flammini, D. Marioli, and A. Taroni, “USB
sensor network for industrial applications,” IEEE Transactions on

Instrumentation and Measurement, vol. 57, no. 7, pp. 1344–

1349, July 2008. doi: 10.1109/TIM.2008.915487. [Online]. Available:
https://doi.org/10.1109/TIM.2008.915487

[11] Y. S. Kim, H. S. Kim, , and C. G. Lee, “The development of
USB home control network system,” in 8th International Conference

on Control, Automation, Robotics and Vision (ICARCV 2004), vol.
1-3, Kunming, Peoples Republic of China, 6-9 December 2004.
doi: 10.1109/ICARCV.2004.1468839 pp. 289–293. [Online]. Available:
https://doi.org/10.1109/ICARCV.2004.1468839

[12] C. P. Young, M. J. Devaney, and S. C. Wang, “Universal serial bus
enhances virtual instrument-based distributed power monitoring,” IEEE

Transactions on Instrumentation and Measurement, vol. 50, no. 6,
pp. 1692–1697, December 2001. doi: 10.1109/19.982969. [Online].
Available: https://doi.org/10.1109/19.982969

[13] P. P. Stang, S. M. Conolly, J. M. Santos, J. M. Pauly, and
G. C. Scott, “Medusa: A scalable MR console using USB,”
IEEE Transactions on Medical Imaging, vol. 31, no. 2, pp.
370–379, 2012. doi: 10.1109/TMI.2011.2169681. [Online]. Available:
http://dx.doi.org/10.1109/TMI.2011.2169681

[14] P. E. Guerrero, I. Gurov, A. Buchmann, and K. V. Laerhoven,
“Diagnosing the weakest link in wsn testbeds: A reliability and cost
analysis of the USB backchannel,” in Proceedings of the 37th Annual

IEEE Conference on Local Computer Networks (LCN 2012), Clearwater,
Florida, USA, 22-25 October 2012. doi: 10.1109/LCNW.2012.6424085
pp. 934–942. [Online]. Available: https://doi.org/10.1109/LCNW.2012.
6424085

[15] J. Dvorak and J. Havlik, “Data synchronization for independent USB
devices,” in 2011 International Conference on Applied Electronics (AE),
Pilsen, Czech Republic, 7-8 September 2011, pp. 1–3.

[16] P. Foster, A. Kouznetsov, N. Vlasenko, and C. Walker, “Sub-
nanosecond distributed synchronisation via the universal serial bus,”
in IEEE International Symposium on Precision Clock Synchronization

for Measurement, Control and Communication (ISPCS 2007), 1-3
October 2007. doi: 10.1109/ISPCS.2007.4383772 pp. 44–49. [Online].
Available: https://doi.org/10.1109/ISPCS.2007.4383772

[17] E. J. Bueno, A. Hernandez, F. J. Rodriguez, C. Girón, R. Mateos, and
S. Cobreces, “A dsp- and fpga-based industrial control with high-speed
communication interfaces for grid converters applied to distributed
power generation systems,” IEEE Transactions on Industrial Electronics,
vol. 56, no. 3, pp. 654–669, 2009. doi: 10.1109/TIE.2008.2007043.
[Online]. Available: https://doi.org/10.1109/TIE.2008.2007043

[18] U. Saranli, A. Avci, and M. C. Ozturk, “A modular real-time
fieldbus architecture for mobile robotic platforms,” IEEE Transactions

on Instrumentation and Measurement, vol. 60, no. 3, pp. 916–
927, 2011. doi: 10.1109/TIM.2010.2078351. [Online]. Available:
https://doi.org/10.1109/TIM.2010.2078351

[19] Universal Serial Bus Specification, Rev. 2.0, 27 April 2000.
[20] J. Axelson, USB Complete. Everything you need to develop Custom USB

peripherals, 3rd ed. Lakeview Research LLC, 2005.
[21] M. Hall, “Windows CE 5.0 for real time systems,” Embedded Computing

Design, vol. 3, no. 6, pp. 37–43, 13 November 2005.

674 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

