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Abstract—In this work we present a method for using Deep
Q-Networks (DQNs) in multi-objective environments. Deep Q-
Networks provide remarkable performance in single objective
problems learning from high-level visual state representations.
However, in many scenarios (e.g in robotics, games), the agent
needs to pursue multiple objectives simultaneously. We propose
an architecture in which separate DQNs are used to control
the agent’s behaviour with respect to particular objectives.
In this architecture we introduce decision values to improve
the scalarization of multiple DQNs into a single action. Our
architecture enables the decomposition of the agent’s behaviour
into controllable and replaceable sub-behaviours learned by
distinct modules. Moreover, it allows to change the priorities of
particular objectives post-learning, while preserving the overall
performance of the agent. To evaluate our solution we used a
game-like simulator in which an agent - provided with high-level
visual input - pursues multiple objectives in a 2D world.

I. INTRODUCTION

M
ANY recent works on Reinforcement Learning focus

on single-objective methods such as Deep Q-learning

[1], [2]. As those methods provide great performance in

tasks such as playing video games, many real-life problems

require satisfying multiple objectives simultaneously. In single

objective reinforcement learning the agent receives a single

reward each time it performs an action. In multi-objective

reinforcement learning (MORL) the agent receives multiple

rewards - one for each objective. In particular, agents dealing

with complex environments, such as autonomous robots or

agents playing real-time video games, need to pursue multiple,

often conflicting objectives.

To have a real-life example, lets consider an autonomous

cleaning robot, which is able to clean floors, navigate through

obstacles and autonomously return to charging station. The

observable aggregated behaviour of such robot may be de-

composed into three sub-behaviours: collision avoidance (ca),

floor cleaning (fc) and recharging (rg). We may describe

the objectives of the robot for each identified sub-behaviour

in a multi-objective manner, or we can aggregate the sub-

behaviours and define a single objective. In the former case,

the robot-agent will receive a set of three rewards ([rca, rfc,

rrg]) after each action. If the robot collides with a wall, it

receives a negative reward related to collision avoidance (rca),

yet the rewards related to floor cleaning and recharging do not

depend on this event. However, in single-objective case, the

robot will receive only one reward value ([r]) dependent on

any of the three sub-behaviours. In case of collision, the the

single-objective robot will receive a negative reward, but it will

be indistinguishable from any negative reward provided with

respect to other sub-behaviours such as depletion of batteries.

In single objective scenarios, we may find an optimal policy

for which the sum of rewards collected by the agent is the

highest possible. Methods such as Q-learning should converge

to optimal policies [3]. However, for multi-objective problems,

many such optimal policies may exist, depending on the trade-

offs between satisfying particular objectives [4].

Autonomous agents, such as our example cleaning robot, are

not really independent - they usually have a purpose defined

by another agent: human. This aspect is often neglected in

the literature, but is significant when considering practical

applications of intelligent agents in robotics, automation or

even when designing AIs for video games (always winning AI

is not the one that many humans would like to play against).

Our cleaning robot may follow a policy for which collision

avoidance has greater importance than floor cleaning - in such

case the robot should focus on avoiding collisions even at the

cost of worse performance at floor cleaning. It is however for

the user of such robot to decide, what should be the proportion

between carefulness and cleanliness. The user may even want

to fully disable some functions (behaviours) of the robot. Yet,

state of the art reinforcement learning methods, such as Deep

Q-Learning, do not allow to modify the behaviour of the agent

after it was trained.

We see that when considering practical applications it

is desired to have a multi-objective reinforcement learning

method with the following features available post-learning:

1) ability to select the sub-set of pursued objectives and 2)

ability to change the impact of particular objectives on the

overall policy of the agent. As we will show later, the method

presented in this paper possesses those features.

Multi-objective problems may be approached using single-

policy or multi-policy methods. The simplest single-policy

method uses a scalarization function [5], which converts

multiple objectives into a single objective. Scalarization meth-

ods utilize a weight matrix to obtain a single score from

multiple action-value functions. Some techniques assign linear

priorities to objectives [6], [7]. This allows to obtain a single

optimal policy with respect to objectives ordered by those

priorities.

In contrast to single-policy methods, multi-policy MORL

methods are used to find a set of policies. Their aim is to
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find a set of policies that contains an approximately optimal

policy for every possible user’s preference [4]. In multi-policy

methods, the preference of objectives does not need to be set

a priori as a Pareto optimal policy for any preference may be

obtained at runtime [8].

A natural approach in MORL is to use separate learning

modules for each objective [9]. Modularity allows to decom-

pose the problem into components that are to some extent

independent [10]; modularity may be required for providing

features desired in practical applications that were listed

earlier. Some works deal with transforming complex single-

objective problems to many simpler objectives [11]. Such

methods may be used to benefit from modular approach while

solving single-objective problems.

Although Deep Q-Networks gained much attention in recent

years, not many works consider the use of DQNs in multi-

objective problems. Recently authors of [12] proposed a multi-

policy learning framework that utilizes Deep Q-Networks.

Learning behaviours in embodied agents, such as robots,

is a problem well suited for reinforcement learning methods.

In embodied artificial intelligence, the idea of parallel, loosely

coupled processes [13] is proposed as a principle for designing

embodied agents. It states, that the control logic for embod-

ied agents should consists of many independent components

dedicated for particular aspects of the agent’s behaviour. The

aggregated behaviour of an agent emerges from cooperation

or competence among those components.

In this work we will present a method for combining mul-

tiple Deep Q-Networks for solving multi-objective problems.

We will introduce decision values used for more advanced

scalarization of multiple Q-functions. Furthermore we will

combine decision values with user define priorities, to have

an architecture that can dynamically adapt its behaviour with

respect to user’s preferences.

In section II we will briefly describe single- and multi-

objective reinforcement learning. Next, in section III we will

describe how many separate DQNs may be used together

and we will define decision values. In section IV we will

present a simple 2D game - a virtual environment including

an autonomous agent that has a local (situated) sensory inputs

and may pursue different objectives. Finally in the last section

we will evaluate our solution and present the results of our

experiments.

II. BACKGROUND

A. Single Objective Reinforcement Learning

In the single-objective reinforcement learning an agent

interacts with the environment by perceiving the state st ∈ S

and performing an action at ∈ A for each step t. The actions

are chosen by the agent according to some policy π. After

performing an action, the agent receives a reward rt. Then

the agent observes the next state st+1 and the process repeats.

The goal of the agent is to maximize the expected discounted

reward Rt =
∑

∞

k=0 γ
krt+k, where γ ∈ [0, 1] is the discount

factor.

In Q-learning actions are selected based on Q(s, a), which

represents the expected discounted reward for performing

action a in state s. For given state s, at = argmax
a

Q(s, a)

is the optimal action. The policy of an agent, denoted by π,

is the probability of selecting action a in state s. If the agent

always selects the optimal action, then we say that it follows

an optimal policy π⋆. Knowing the Q(s, a) allows to create an

optimal policy simply by selecting the action with the highest

Q-value. Deep Q-learning utilizes Deep Neural Networks for

approximating Q(s, a) values, thus enabling this method to be

used in many real-world applications. Deep Q-Networks [2]

may be used used with high-level visual inputs such as those

provided by video games.

B. Multi-Objective Reinforcement Learning

We may consider a more complex reinforcement learning

scenario in which multiple objectives are pursued by the agent.

Let O be the set of objectives of an agent. We may assign a

priority p to each objective o ∈ O such that ok will have lower

priority than oj when p(ok) < p(oj). For further analysis we

will assume that ∀o∈Op(o) ≥ 0, so that priorities may be

interpreted as weights.

The agent, instead of a single reward, receives a vector of

rewards at each time-step t with respect to each objective

oi, i.e: ~rt = [r1,t, r2,t, . . . rn,t], where ri,t corresponds to

objective oi. For each objective oi and step t we may define

the discounted return as:

Ri,t =
∞
∑

k=0

γkri,t+k (1)

Moreover, for each objective oi there is a Q-function Qi(s, a)
that represents the expected discounted return Ri,t, i.e:

Qi(s, a) = E [Ri,t | st = s, at = a].
We may define a vector of Q-functions, which includes

Q(s, a) for each objective oi:

~Q(s, a) = [Q1(s, a), Q2(s, a), ..., Qn(s, a)] (2)

The function Qi(s, a) may be used by the agent to determine

the optimal action with respect to objective oi at time-step t,

given state st:

ai,t = argmax
a

Qi(st, a) (3)

The vector ~at = [a1,t, a2,t, ..., an,t] consists of actions

optimal with respect to particular objectives at a given time-

step t. Because at each step, the agent may perform only a

single action, a method of reducing ~at to a single action is

required.

A common method for selecting a single action is the

scalarization [5] of ~Q(s, a) using some scalarization function

and a weight vector ~w. Typically a linear scalarization is

applied, so that:

SQ(s, a) =

N
∑

i=1

wiQi(s, a) (4)
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Then SQ(s, a) may be used as in equation 3 to select an

action. The weight wector in this case corresponds to priorities

assigned to particular objectives.

In the further sections of this paper, we will show how to

apply scalarization in Deep Q-Networks and we will intro-

duce Decision Values to dynamically adjust the weights for

improved performance of the agent. For simplicity, further in

the text we will use the index i to note that a particular value

or function is defined for any objective oi, and by N we will

define the number of objectives.

III. USING MULTIPLE DQNS

We have considered an agent that have multiple objectives,

receives rewards with respect to those objectives and has a

separate Q-function for each objective. In this section we

will describe how to merge q-values obtained from Deep

Q-Networks for different objectives and how the impact of

particular DQNs on the behaviours of the agent may be

controlled by using Decison Values. Finally we will describe

the learning process utilizing DQNs with Decision Values.

We will refer to our method as to Multi-Objective Deep Q-

Network with Decision Values (MODQN-DV).

A. Combining Q-values

In case of multi-objective agent, we may use a separate

DQN as an approximator for each Qi(s, a) in the ~Q(s, a)
vector. Such agent would be controlled by multiple Deep Q-

Networks working in parallel. Each DQN provides a list of

q-values and we want to use q-values from all DQNs to select

a single action a that will be performed by the agent

Let us define a vector ~qi that consists of q-values provided

by Qi(s, a) for each possible action a ∈ A and a single

objective oi, i.e.:

~qi = [Qi(s, a0), Qi(s, a1), ..., Qi(s, aj)] (5)

In the single-objective case the optimal action a would be

equal to aj for such j that ~qi,j = max ~qi. For multi-objective

case we can use scalarization to sum up all ~q vectors and

then select the action corresponding to the maximal value of

such scaled q-value vector. In this approach, q-values may

be interpreted as votes of certain DQN, which are summed-up

and the highest-voted action is selected. We need to stress here

that simply adding the vectors does not produce a meaningful

result yet. The q-values produced by different Q-functions are

not scaled. In general q-values may be any real numbers. If

we want them to represent votes for particular actions, each ~qi
vector needs to be rescaled to [0, 1] ⊆ R. Many approaches for

scaling the vector may be applied. In our experiments we use

the following scaling function for which min(~qi) is mapped

to 0 and max(~qi) to 1:

scale(~x) =
~x−min(~x)

max(~x−min(~x))
(6)

The scalarized q-vector is then defined as:

~qs =
N
∑

i=1

wiscale(~qi) (7)
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Fig. 1: Three Deep Q-Networks are working in parallel based

on the same sensory input. Each DQN corresponds to different

task pursued by the agent. Each DQN has an additional

decision value output which acts as a dynamic weight used

while summing up q-vectors from particular DQNs. User

defined priorities are also used for weighting the decision from

particual DQNs.

Now, using the rescaled ~qi vectors we can sum them up and

select one action with the highest total q-value. For example,

let have actions a1, a2, a3, weight vector ~w = [1, 1, 1], ob-

jectives o1, o2 and corresponding q-vectors ~q1 = [0, 0.6, 1]
and ~q2 = [1, 0.5, 0]. Adding them will result in vector

[1, 1.1, 1], for which the second element is the maximal, thus

the corresponding action a2 should be selected.

B. Decision Value

The scalarization allows to combine outputs from multiple

DQNs. However, such a combination does not guarantee a

meaningful action selection. Let us return to previous ex-

amples and consider a vacuum cleaner approaching a wall;

actions a1, a2, a3 correspond to turning left, going straight,

and turning right respectively. If the vacuum cleaner perform

the action proposed in q1 it will turn right, alternatively if

it uses q2 then it will turn left. Using the sum will however

lead to going straight forward and hitting the wall. So while

both DQNs suggested a meaningful action, their sum is not

meaningful at all. We see that using constant weights while

summing q-values does not provide a solution for this problem.

To solve this issue, we would need to dynamically choose

which q-value vectors are more important in a particular state.

In other words, we would like to have a meta-policy for

choosing the actual policy of the agent. However, as the agent

pursues many objectives, it is hard to define this meta-policy

with respect to all objectives. To overcome this problem we

propose to indicate the value of the decision provided by each
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DQN with respect to corresponding objective pursued by the

agent.

The proposed decision values may be indicated indepen-

dently by each DQN based on the current state and used as

additional weights while summing up q-value vectors. Going

back to the previous example: let assume that q1 is the output

from DQN associated with collision avoidance and q2 is the

output from DQN associated with cleaning. As the robot

approaches a wall, the decision regarding collision avoidance

is clearly more important than the decision regarding cleaning.

This is because if the robot does not make any decision, it

will collide with the wall and receive a negative reward with

respect to collision avoidance objective. However, not making

the decision will not affect cleaning objective (assuming that

the cleanliness of the floor in front of him is not different than

in other places). Thus, at this particular state the value of q1
is higher than the value of q2 and q1 should be summed with

a higher weight.

We may define the decision value signal d ∈ [0, 1] ⊆ R,

and by di denote the decision value associated with DQNi.

Now the scalarized q-vector would use decision values instead

of constant weights:

~qd =
N
∑

i=1

discale(~qi) (8)

We may additionally include the external preferences in-

dicated by values of priorities pi assigned to objectives as

introduced in II-B. This way the q-values will be scaled both

by dynamic decision values and static priorities. Moreover,

for technical reasons, we need to add ~µ, which is a vector

containing very small random values. This will ensure that in

a rare cases when all decision values are equal to 0, a random

action will be chosen. Finally the scaled, decision value- and

priority- weighted q-value vector denoted by ~qσ is equal to:

~qσ = ~µ+
N
∑

i=1

dipiscale(~qi) (9)

C. Acquiring values of decisions

Now, as we have a method of applying decision values in

the scalarization of multiple objectives, let us explain in more

details how decision values are defined and how they can be

learned by reinforcement learning.

First we should consider how objectives of an agent are

defined. Again let us refer to the vacuum cleaning robot ex-

ample. If the agent had only two objectives: a) to seek dirt and

b) to avoid colliding with obstacles, then we could define two

reward/terminal states: state A - state in which dirt is collected,

state B - state in which the robot is colliding with something.

There is a notable difference between those two states. In the

first case, the agent should be rewarded positively, but in the

latter case, it should be rewarded negatively. Moreover, if the

agent is not in any of those states, it should be not rewarded

at all. We can describe the first objective as being attractive

(as it attracts the agent by positive rewards) and the second as

being repulsive (as it repulses the agent by negative rewards).

Many problems in robotics, games or other fields of AI may

be presented using a set of attractive or repulsive objectives. In

particular some problems may be decomposed into such set of

objectives to promote more granular learning and control. Such

decomposition is usually simpler and more intuitive compared

to more advanced reward shaping techniques.

Let us consider an agent moving in a state-space with

attractive and repulsive states. As the agent approaches one

of those states, it becomes more critical to perform an action

that will either move the agent towards such state or away

from it. The value of the decision made with respect to an

objective near a rewarding state rises as the distance to this

state becomes shorter. This is a simple and intuitive heuristic:

if an agent pursues multiple equally weighted objectives, then

it probably should focus most on the objective that is already

very close to being accomplished.

We can thus create a decision reward - the reward provided

to the agent for performing a decision - which would be simply

the absolute value of the reward provided with respect to an

objective: ρi = abs(ri). Now we can define the decision value

as a state-value function [3], returning the value of the state

s under policy π, with respect to the decision rewards of a

particular objective:

Di(s) = Eπ

[

∞
∑

k=0

γk ρi,t+k+1

∣

∣

∣

∣

∣

st = s

]

(10)

Such defined decision value will provide high values around

rewarding states (either positive or negative) and low values

in states which are far from rewarding states. In any state, the

decision value will provide the importance of particular objec-

tive. The proposed decision value function will hence provide

values representing the chances of achieving a rewarding state

(with respect to some objective o) given the current state s and

following policy π. Where policy π is the policy provided by

the Q-function for a particular objective.

It is important to note, that the decision value, as defined,

can not be directly used for scalarization, because its value

may be any positive number. Moreover, the range of the

values provided for different objectives may be very broad. To

overcome this problem, the decision value needs to be scaled

to be in range [0, 1] as noted in section III-B. However, the

unscaled decision value is needed during learning as it will

be shown in the next section. We will therefore denote the

unscaled decision value by Di and define the scaled decision

value by di as follows:

di = σ

(

(Di − αi)

βi

)

(11)

Where σ is the sigmoid function; αi and βi are derived

during learning: αi is an approximation of the mean value of

Di, while βi is an approximation of the standard deviation of

Di.
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D. Learning

Having defined decision values, we may move to the method

of learning such values along with learning policies for par-

ticular objectives. We use Deep Q-Networks to approximate

the values of Q-functions. Following the state-of-the-art in this

field a DQN provides the approximated function Q(s, a; θ),
where θ are the learnable parameters of the neural network.

As in our model we use multiple DQNs, there is a function

Qi(s, a; θi) for a DQNi related to objective oi. Each DQNi

is optimised iteratively, using the following loss function for

each iteration j:

L
Q
i,j(θi,j) = E(s,a,ri,s′)∼U(Mi)[(ri+

+ γmax
a′

Qi(s
′, a′; θ−i,j)−Qi(s, a; θi,j))

2]
(12)

As introduced in [1], there are in fact two neural networks

involved in the learning process of a single DQN. The on-line

network Qi(s, a; θ) is updated at each iteration, while the tar-

get network Qi(s
′, a′; θ−) is updated only each K iterations.

Moreover experience replay is used to further improve the

learning process. The agent stores experienced states, actions

and rewards in a replay memory Mi for each DQNi respec-

tively. Then at each iteration, each DQNi is trained using a

sample of past experiences selected uniformly at random from

the corresponding replay memory Mi. Those samples are used

as mini-batches for gradient descent optimization.

The Decision Value may be updated using TD-learning [3]

similarly as for any state value function, by using the following

update rule:

Di(st)← Di(st) + α [ρi + γDi(st+1)−Di(st)] (13)

As we use a neural network for approximating Di(s), we may

define the loss function as follows:

LD
i,j(θi,j) = E(s,ρi,s′)∼U(Mi)[(ρi+

+ γDi(s
′; θ−i,j)−Di(s; θi,j))

2]
(14)

The decision value is provided by an additional output of the

DQN and the learning procedure is analogical to Q-function.

Moreover the decision value requires scaling, for which the

parameters α and β need to be learned. If we include α and

β in the neural network parameters θ, then the additional loss

function for the decision value scaling would be defined as:

Ld
i,j(θi,j) = E(s)∼U(Mi)[(0.5− σ(Di(s; θi,j)))

2+

+ (1−max
s

(Di(s; θi,j)) + min
s

(Di(s; θi,j)))
2]

(15)

The neural network is optimized using a combined loss func-

tion for Q-values, decision values and scaling of the decision

values:

Li,j(θi,j) = L
Q
i,j(θi,j) + LD

i,j(θi,j) + Ld
i,j(θi,j) (16)

Decision values of 

particular DQNs

Representation of 

agent’s visual input

Wall

Agent

Dirt

Recharge area

Obstacle

Fig. 2: Cleaner - a game-like virtual environment with agent

pursuing multiple-objectives. The environment consists of the

agent, walls, obstacles, recharge area and dirt. The agent

perceives the environment by a visual input (a view from the

top limited to a square located in the front of the agent). Agent

may move forward and turn; its area of movement is limited

by walls. Agent has three objectives: avoid walls, consume

dirt and recharge.

IV. EVALUATION

A. Cleaner - a 2D game-like virtual environment

To evaluate the solution presented in this paper we created

Cleaner - a simple game-like virtual environment, simulating

the behaviour of an autonomous vacuum cleaner. The envi-

ronment consists of an agent, walls, recharge areas and dirt

consumable by the agent. Cleaner is presented in Figure 2.

The agent is a circular object that may move around the map

by performing one of three actions: move forward, turn left

and turn right. The map is a continuous space. The agent

perceives the environment only by visual sense, i.e. a W x

H pixel (width and height) rectangle situated in front of him.

This visual input is converted to gray-scale (8bit). Agent’s

world (white) is surrounded by walls and filled with obstacles

(black rectangles) which agent can not pass. Agent may pick

up dirt and recharge itself. Dirt is indicated by three small

coaxial circles (black), while recharging field is indicated by

a gray rectangle. Dirt re-spawns at random positions on the

map after being consumed by the agent. The quantity of dirt,

recharge fields and obstacles is constant during the episode.

Cleaner is a simplified simulation of a mobile robot moving

on a flat surface (e.g. floor) with a video camera attached at

the top of the robot pointed towards the floor.

The agent has a battery level E ≤ Emax, which is decreased

at each time step by Estep. The battery level may be increased

when the agent enters the recharging area by (1−E) ·0.1 each

step. An episode ends when the agent’s energy level drops to

0 or when 2000 steps pass. The agent starts each game with

initial battery level E = Estart. The position of dirt, recharge
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TABLE I: MODQN-DV learning hyperparameters

Parameter Value

learning steps 1000000
replay memory size 10000

target network update rate 1000

learning rate 0.001

ǫ start value 1

ǫ end value 0.1

ǫ end step 100000
discount 0.99

batch size 32

optimizer Adam

fields and obstacles as well as the initial position of the agent

are chosen randomly at the start of the episode.

The agent has three objectives: (ca) collision avoidance, (fc)

cleaning and (rg) recharging.

The rewards for particular objectives are as follows: objec-

tive (ca): −1 for collision, 0 otherwise; objective (fc): +1 for

collecting dirt, 0 otherwise; objective (rg): −1 for for each step

when E < 0.1, (1−E) · 0.1 while charging and 0 otherwise.

In all experiments described in this chapter, the game op-

tions were as follows: Estart = Emax = 1.0, Estep = 0.001.

The size of the agent sight rectangle is W = 50 px, H = 50 px.

The quantity of dirt is 20. The number of obstacles varies

randomly from 1 to 5, and the number of charging areas varies

randomly from 1 to 3.

B. MODQN-DV implementation

Our implementation of the MODQN-DV1 was based on

the baseline DQN implementation [14] developed by Ope-

nAI using TensorFlow[15]. We expanded the standard DQN

with additional decision value outputs and mechanism for

scalarizing q-values from multiple DQNs. Each single DQN

in a MODQN-DV consists of a convolutional network with

three convolution layers and no pooling layers, followed by

a fully connected layer and the output layer. Dueling [16]

and double q-learning [17] were used. The additional decision

value output is a single neuron linear layer connected to the

state score layer used for dueling.

The parameters of the convolution network were kept de-

fault as provided in the baselines implementation. The size

of the fully connected layer in our models is set to 128, and

the size of the input image is our case is 50x50x1, thus the

q-values are provided based only on an image input from a

single state. The memory replay was modified to store rewards

with respect to all objectives separately. The prioritized ex-

perience replay[18] was not used in our implementation. The

hyperparameters used for training DQNs during evaluation are

presented in Table I.

During training of the MODQN-DV, loss functions are used

as specified in section III-D. DQNs for all objectives are

trained simultaneously and scaled decision values are used for

scalarization during learning.

Fig. 3: The sum of rewards (smoothed) collected by MODQN-

DV in cleaner over episodes of training. The plot shows data

from 6 different runs.

C. Experiments

To evaluate our method we conducted a series of exper-

iments utilizing MODQN-DV and the cleaner environment.

In particular we compared the performance of multiple Deep

Q-Networks for case a) where decision values were enabled

for scalarization and case b) where the decision values were

disabled. This comparison gave us a clear indication of the

impact of decision values on the performance. We will refer

to case (a) as MODQN-DV (b) as to MODQN.

The experiment for both cases (a) and (b) were conducted as

follows. First the DQNs were trained using the implementation

and parameters as provided in section IV-B and table I. In (a)

the decision values were trained and used for scalarization.

In (b) the decision values were disabled during training and

their values were forcefully set to 1. During training, the user

defined priorities for objectives were set to 1 in all cases (all

objectives were weighted equally during scalarization). For

each case the training procedure was repeated 6 times and

all trained neural networks were saved. As show in figure 3,

the learning of MODQN-DV is stable over time.

Next, the trained MODQN-DV and MODQN networks were

used for evaluation with 10 different sets of user-defined

priorities (pca, pfc, prg) as provided in tables IIa and IIb.

In a single evaluation, 100 episodes were played. The same

sequence of randomly generated map layouts were used for

each run. The sum of collected rewards were recorded for

each run. For each set of priorities, 6 runs performed by 6

separately trained MODQN-DV and MODQN instances were

averaged.

D. Results

The results presented in the tables IIa and IIb are averaged

sums of collected rewards with respect to each objective,

namely: Σrca for objective (ca) - collision avoidance, Σrfc for

objective (fc) - cleaning and Σrrg for objective (rg) - recharg-

ing. ΣΣri is the sum of the sums of rewards - it indicates

1Source code available: https://github.com/ttajmajer/morl-dv
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TABLE II: Evaluation results - sums of collected rewards for experiments with different priorities assigned to objectives with

either enabled or disable decision values. Each case is compared against the baseline agent with all priorities set to 1.0.

Values in bold denote objectives with the highest priority assigned. Green/red colour of the cell indicates whether a score is

higher/lower compared to a corresponding score with opposite decision values configuration (enabled/disabled).

(a) decision values enabled

pca pfc prg Σrca Σrfc Σrrg ΣΣri

1 1 1 -88.4 47.6 -35.0 -75.9
∆baseline — — — —

1 0 0 -51.9 24.0 -46.2 -74.1
∆baseline 41.4% -49.6% -32.0% 2.37%

0 1 0 -303.0 50.0 -40.3 -293.3
∆baseline -242.7% 5.1% -15.2% -286.74%

0 0 1 -311.8 20.6 -35.9 -327.2
∆baseline -252.6% -56.7% -2.7% -331.32%

0.5 0.3 0.2 -45.7 42.9 -39.2 -42.1
∆baseline 48.4% -9.9% -12.2% 44.55%

0.5 0.2 0.3 -68.4 38.3 -39.5 -69.6
∆baseline 22.7% -19.5% -12.9% 8.27%

0.2 0.5 0.3 -143.7 51.3 -33.2 -125.6
∆baseline -62.5% 7.9% 4.9% -65.63%

0.3 0.5 0.2 -90.0 50.2 -34.7 -74.4
∆baseline -1.7% 5.6% 0.9% 1.93%

0.2 0.3 0.5 -140.6 45.2 -34.7 -130.1
∆baseline -59.0% -4.9% 0.6% -71.54%

0.3 0.2 0.5 -123.1 42.4 -33.8 -114.5
∆baseline -39.2% -10.9% 3.3% -51.01%

(b) decision values disabled

pca pfc prg Σrca Σrfc Σrrg ΣΣri

1 1 1 -61.0 51.3 -28.8 -38.5
∆baseline — — — —

1 0 0 -77.6 32.0 -45.0 -90.6
∆baseline -27.2% -37.6% -56.6% -135.26%

0 1 0 -518.2 33.3 -58.5 -543.4
∆baseline -749.1% -35.0% -103.4% -1310.52%

0 0 1 -126.9 31.4 -27.8 -123.3
∆baseline 108.0% -38.7% 3.3% -220.12%

0.5 0.3 0.2 -35.7 47.7 -35.7 -23.7
∆baseline 41.6% -7.0% -24.1% 38.54%

0.5 0.2 0.3 -40.3 45.2 -32.6 -27.7
∆baseline 34.0% -11.9% -13.4% 28.08%

0.2 0.5 0.3 -236.2 49.8 -37.8 -224.2
∆baseline -287.0% -2.8% -31.5% -482.04%

0.3 0.5 0.2 -218.9 50.3 -38.7 -207.3
∆baseline -258.7% -1.8% -34.5% -438.10%

0.2 0.3 0.5 -86.7 41.9 -29.4 -74.2
∆baseline -42.1% -18.3% -2.1% -92.71%

0.3 0.2 0.5 -80.8 40.7 -29.1 -69.3
∆baseline -32.4% -20.7% -1.3% -79.83%

the total performance of the agent. Priorities (pca, pfc, prg)
correspond to objectives (ca), (fc) and (cg).

The set of priorities: (pca = 1, pfc = 1, prg = 1) was used

as the baseline for evaluation (also those priories were used

during training). For each row in the tables IIa and IIb there

is an additional row marked as ∆baseline with values showing

the percentage of gain or loss of collected rewards with respect

to the baseline value for each case. The green and red colours

of the cells indicate if the reward gain for a particular set of

priorities was better compared to the corresponding case in

the second table.

The aim of the evaluation was to test how the overall

performance of the agent changes when priorities are different

from the initial values used during training. As we can see in

table IIa on 7 of 9 cases, the use of MODQN-DV helped to

preserve (or even increased) the overall performance compared

to the baseline (all priorities set to 1). Moreover, in almost

all cases, the performance of the agent with respect to the

objective with the highest priority (marked in bold in the

tables) increased when decision values were used. On the

contrary, when decision values were not used, changes in the

priorities usually led to a decrease in the agent’s performance,

as presented in table IIb. The results show that the proposed

solution has a significant impact on the performance when

priorities are modified post-training. The average change in

the agent’s performance, calculated over all evaluation cases, is

−27.5% when using decision values and −69.1% when deci-

sion values are not used. The average change for the objective

with the highest priority is 11.3% and 4.4% respectively.

It should be noted however, that in the baseline case (all

priorities set to 1), the overall performance of the agent

was lower when decision values were enabled. A possible

explanation of this issue is that decision values introduce

additional noise to action selection. In some cases, the final q-

values associated with particular actions may be very similar

(e.g. when the agent does not perceive any objects). Then,

action selection depends heavily on the decision values; if

there is no dominating decision value, then there may be a lot

of variance in action selection, thus actions may be selected

based on different policies (from different DQNs) in each step.

This may lead to a chaotic behaviour in states that are "far"

from any rewarding states. One possible way of overcoming

this issue is providing a sequence of states as the input to

DQNs rather than a single state to stabilize the outputs.

It is also worth noticing how the decision values change

as the agent moves. As expected, the decision value for a

particular objective rises when the agent approaches a state

where it could receive a reward. For instance, the value of

collision avoidance rises significantly when the agent is very

close to a wall or an obstacle. Moreover, the decision value
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drops when the agent is in a state far from receiving a reward.

For example, if the agent does not perceive any walls or

obstacles, then the collision avoidance decision value is lower

than average. The agent thus usually selects the action, which

is related to the most promising objective at a particular state.

V. CONCLUSIONS

In this paper, we presented a method for using multi-

ple Deep Q-Networks to approach multi-objective problems

called Multi Objective Deep Q-Networks with Decision Values

(MODQN-DV). We introduced decision values to DQNs in

order to improve the scalarization of outputs from multiple

DQNs. Our method requires only slight modification of ex-

isting DQN architectures, while it introduces a number of

benefits: 1) it enables the decomposition of problems in to

smaller sub-problems, for which independent DQNs may be

trained simultaneously, 2) it provides a method for robust

manipulation of priorities after the training, which also allows

to completely disable DQNs responsible for particular be-

haviour/objective, 3) it allows to add new objectives to already

trained agent without the need of retraining and to tune their

impact on the behaviour of the agent.

In the experimental part, we shown that in most cases

MODQN-DV improves the performance of the agent, that uses

a different set of priorities compared to the training phase. The

results are promising, however more tests should be performed

using other benchmarks. Moreover, more work needs to be

done to reduce the impact of the noise in decision values on

the overall performance of the agent.

In this paper, we also introduce cleaner - a benchmark for

multi-objective reinforcement learning problems that provides

visual state representation. The authors are not aware of

any other existing multi-objective benchmark that would be

comparable to atari games benchmark or other provided by

OpenAI.

In future work we want to improve the performance of

MODQN-DV; one possible improvement is the use of common

convolutional layers for all DQNs. It is particularly interesting

to use MODQN-DV in very complex environments, such as

video games. Recently published Starcraft 2 learning environ-

ment may be a good choice for further tests of MODQN-

DV architecture as strategy games may be perceived as multi-

objective problems.
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