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Abstract—The Mizar system provides two represen-
tations of the proofs present in its library. The syntactic
representation preserves the human-friendly rich Mizar
language, where the meaning of structures and expres-
sions is still influenced by their context. The semantic
one, on the other hand, explicitly reflects the meaning
of all elements present in the proof scripts, however
many features of the Mizar language are eliminated.

In this article, we overcome the limitations of both
representations of proofs, by proposing a method com-
bining them. We show that we can simultaneously
maintain the richness of the language and provide
access to the derived proof information. We discuss how
such combined information closer corresponds to that
present in other proof assistant languages, for example
that of Isabelle/Isar.

I. Introduction

O
NE of the most recognizable features of the Mizar
system [1] is its highly human-oriented proof en-

vironment. For over four decades the Mizar project has
developed an environment that allows to create formal rea-
soning similar to how it is done in informal mathematical
practice. Many actions at various levels have been taken
to ensure this environment:

• Linguistically motivated dependent soft type system
that closely reflects how most of the mathematicians
use mathematical objects and how they categorize
them.

• Rich expression language that provides complex sym-
bol overloading and notational constructs, e.g., the
meaning of individual symbols is strongly influenced
by the context, as in textbooks.

• The Mizar natural-deduction proof that try to ap-
proximate the way how informal proofs are written,
where the deduction is not steered by an explicate list
of rules that indicates how to match a statement to
its proof.

These possibilities are reflected in the size of one of the
largest formal libraries, the Mizar Mathematical Library
(MML) [2] that includes many domains that have not been
formalized elsewhere. However, the Mizar system is the
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only tool that can fully operate on the content of the
library written in such rich language.

a) Related works: Obviously, there have been a num-
ber of attempts to explore the content of the MML by
external tools. Most of them ensure access to the semantic
representation of MML where many proof details are
easily accessible for a human reader, starting with easy
semantic searching tools as MML Query [3], variants of
XML format [4], MMT logical framework [5] or provide
the extensive theorems database of MPTP [6] that can
be served as a tool in automated theorem proving and
machine learning [7].

The Mizar system also provides two ways of access to the
syntactic representation. These are Weakly Strict Mizar
(WSX) [8] and More Strict Mizar (MSX) [9], where MSX
is an extension of WSX. However, both human-friendly
syntactic representations are still too far from semantic
one and selecting access, we have to choose between these
two.

A lot of work has been done to cross-verify MML by
external tools that struggle with many problems such as
the Mizar logic that goes a little bit beyond the first-
order logic and the Mizar type system. Pioneering and
the largest translation of MML to the TPTP untyped
first-order language has been done by Urban [10], where
higher-order problems have been verified with an exten-
sion of TPTP language [11]. Kunčar [12] has attempted
to translate the MML as transparent higher-order logic
theories, however, his concept was not able to cover more
advanced features of the Mizar type system. Successful
attempt to extract and cross-verify higher-order problems
using higher-order automated theorem provers Satallax
and LEO-II have been done by C. Brown [13]. However,
these translations are fixed from the point of view of a
further development of the MML, i.e., they do not allow
any modification or further development.

Urban’s MizAR system [14] facilitates the search for
a given justification using machine learning and auto-
mated reasoning. It returns a list of premises needed
for the current goal, which in most cases can be di-
rectly used in the script, as in the case of justifica-
tion generated by the Sledgehammer subsystem for Is-
abelle/HOL [15]. However, in some cases to use obtained
list of premises, authors need to carefully modify the
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Mizar proof script environ and/or create manually a few
auxiliary steps.

b) Isabelle/Mizar: is a project whose goals are to: (1)
specify the Mizar foundations fully formally in the Isabelle
logical framework [16] and (2) cross-verify all the proofs
in MML in resulting fully specified logic. The work on
these can in the longer term lead to (3) the creation of a
Mizar like environment in the Isabelle logical framework,
which would provide Mizar foundations and its various
mechanisms and allow users to further develop proofs in
typed set theory using various Isabelle mechanisms.

There has been a lot of progress on the first goal. The
environment [17], [18] has an equivalent of the Mizar de-
pendent type system including Mizar-like structures [19],
as well as higher-order concepts, such as set comprehen-
sions and schemes [20]. We have recently developed an
automated translation of the statements; however, a large
gap between the syntactic and semantic Mizar represen-
tations significantly hinders work on an automatic export
of the MML proofs. The proofs should be as close to the
syntactic Mizar representation as possible, but at the same
time, we need to use the semantics, e.g., to identify objects
and reconstruct their lists of hidden arguments.

c) Contribution: This paper introduces a represen-
tation of Mizar proofs that combines the syntactic and
semantic ones. Most of the original syntax is preserved,
annotated by the information how particular constructs
have been interpreted by Mizar, which allows the pro-
cessing of the proofs by external systems. The particular
contributions are:

• An elegant presentation of Mizar proofs using implicit
types assigned to frequently used variable names. This
combines the syntactic and semantic representation of
the Mizar reserve mechanism.

• A simplification of the Mizar proof outlines to the
fix–assume–show outlines present in most declarative
proof languages, e.g., Isabelle/Isar [21]. This involves
eliminating several constructions, such as the take

steps that indicates a suitable term for instantiating
an existentially quantified thesis. In particular the
concept of the take step has no equivalent in most
other proof languages [21].

• Lists of dedicated rules that determine the reasoning
patterns for each sub-proof with the fix-assume-show

proof outline present in most declarative proof lan-
guages. We propose Isabelle/Isar rules as an example.

• A human-friendly rendering of our Mizar representa-
tion.

The paper is constructed as follows. In Section II we
discuss the Mizar proof concepts lost in the Mizar semantic
exports. In Section III we briefly describe a method that
matches syntactic and semantic representations. Then we
present a reconstruction of these concepts based on the
matched representations. In Section IV we present a way
to simplify Mizar proofs to logical framework formats
preserving reconstructed concepts. Finally in Section V

we show an example formalization created in the Is-
abelle/Mizar environment that uses a rebuilt Mizar proof.

II. Mizar Semantic Export

The scope of this paper does not allow to fully explain
the details in the Mizar system including the semantic
representation (for such details see [22], [4]). We will
point out the main problems and solutions using a single
example that states a natural basic property of the set
inclusion (Fig. 1). Additionally, the deduction used there
as the property justification is quite similar to informal
one and can be analyzed by a reader who does not have
experience with the Mizar system.

a) Hidden Types and Quantifiers: According to the
Mizar syntax each statement has first-order form where
atomic predicative formulas are combined with classical
logic connectives and quantifiers. Also note, that each
quantifier has to associate a Mizar type (types corre-
spond to first-order predicates) with all bounded variables.
However, the Mizar Analyzer can not infer this type
automatically based on the context of the variables as is
the case for most type-theory based systems, since Mizar
disambiguates the meaning of each symbol based on types
of its arguments (corresponding to type inference in an
intersection-type system). To avoid specifying explicitly
the types of all bound variables at their quantifiers, the
Mizar system provides a reservation mechanisms that
allows global associating variable names with their types.
For example, object that is the type of the variable x

is not mentioned in the sentence ex x st in Fig. 1 but is
imported from the reservation reserve x,y for object.

The type of a reserved variable can be skipped not only
in the declaration of a quantifier, but also in each Mizar
construction which requires it (compare lines 7 and 11).
Moreover, for convenience, universal quantifiers that bind
reserved variables can be implicit. Additionally, in many
systems, free variables that correspond to implicit quan-
tifiers in a given statement are automatically introduced
to a sub-deduction that justifies the statement. Obviously
such user support is welcome in the human-readable ex-
port, especially since the equivalent of the Mizar reserve

mechanism has already been provided in Isabelle/Mizar.
Unfortunately, Mizar reconstructs these quantifiers and
corresponding introduction steps very early, between WSX
and MSX representations and does not distinguish recon-
structed objects in the XML semantic representation1.
As a consequence, there is no difference in the semantic
representation between the theorem presented in Fig. 1
and Fig. 2. On the other hand, we can easily distinguish
this information in the WSX representation, but based on
this representation we can not provide enough information

1The semantic representation of the theorem presented in Fig. 1
where hidden types and quantifiers are fully reconstructed is available
in the HTMLization of the current Mizar library http://mizar.uwb.
edu.pl/version/current/html/xboole_0.html#t8
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1 reserve x,y for object,
2 X,Y for set;

3 theorem
4 X c< Y implies ex x st x in Y & X c= Y\{x}

5 proof
6 assume A1: X c< Y;

7 then consider x such that
8 A2: x in Y and A3: not x in X by Def8,TARSKI:def 3;
9 take x;

10 thus x in Y by A2;
11 let y;
12 assume A4: y in X;

13 then y<>x by A3;
14 then A5: not y in {x} by TARSKI:def 1;
15 X c= Y by A1;
16 then y in Y by A4;
17 thus then thesis by Def5,A5;
18 end;

thesis: X c< Y implies ex x st x in Y & X c= Y\{x}

thesis: ex x st x in Y & X c= Y\{x}

thesis: x in Y & X c= Y\{x}

thesis: X c= Y\{x}

thesis: y in X implies y in Y\{x}

thesis: y in Y\{x}

thesis: verum

Fig. 1. An example Mizar style theorem, originally occurring as XBOOLE_0:8 (eighth theorem in the Mizar proof scripts XBOOLE_0), with
implicit thesis explicitly shown. The theorem states that if X is a proper subset of Y (X c< Y), then there exists a member x of Y (x in Y) for
which X is a subset of the complement of the singleton {x} in Y.

1 theorem
2 for X,Y being set st X c< Y holds
3 ex x being set st x in Y & X c= Y\{x}

4 proof
5 let X,Y be set;
6 assume A1: X c< Y;

Fig. 2. An example of the semantically equivalent formulation of
the theorem presented in Fig. 1 together with a fragment of its
justification.

to explore the MML. Note that information about disam-
biguating symbols and their hidden arguments are missing
there and are very hard to reconstruct for any external
tool.

b) Normal Form: The reservation system is one of
the three main reasons why we are forced to combine
information from syntactic and semantic representations.
To simplify the grammar of the semantic representation,
the Mizar Analyzer also transforms each formula to
the Mizar normal form (MNF) which uses only selected
logical connectives, such as ¬, a generalization of ∧ for n-
arguments, the universal quantifier ∀ and ⊥. A lot of work
has been done by Urban to minimize the consequences
of normalization [4]. He built directly into the Mizar
Analyzer a hint system that is visible as an additional
attribute pid in selected nodes of the XML semantic rep-
resentation. This system should allow the reconstruction
of the original formula from the normalized one based on
pid-s, e.g., every implication α → β is replaced by the
formula ¬−4(∧−5(α, ¬−6(β))) where subscripts represent
pid–values. However, these hints are often lost in the nor-
malization process, since, e.g., the Analyzer eliminates
double negation together with the corresponding pid-s. In
consequence, there are several cases (a few percent of the

library)2, where the original formulation is different than
the HTMLization generated with the pid-support even if
we omit reconstructed hidden quantifiers.

It is important to note that equivalent reformulation
of statements in a Mizar proof script does not affect
its correctness, since most of Mizar verifier’s modules
are based on the MNF including the Reasoner which
check the applicability of Skeleton steps – discussed in
Section IV that operates on the thesis in a given proof.
For comparison, equivalent reformulation of statements is
not possible in most declarative proof languages, as all
reasoning pattern must precisely correspond to the related
statements and proofs.

c) More advanced pid–problems: The reconstruction
of the original logical conjunctions and quantifiers was one
of the additional tasks in the pid system created by Urban.
His system mainly focused on solving the conflict between
patterns and constructors, that we only sketch here (for
more details see [10]). Note that every Mizar defined
object (i.e, a function, a type, a predicate, an attribute
or a structure) together with its list of arguments with
their types (and a result type if applicable) and positions
of each visible arguments constitutes the Mizar pattern.
Mizar constructors are just absolute identifiers (in the
environment of a given article) of Mizar objects of which
the patterns are translated during their full identification
by the Mizar Analyzer. Obviously, a given overloaded
pattern can be translated into different constructors. Un-
fortunately, different patterns can be translated into the
same constructor, since, e.g., synonyms and antonyms of
predicates and adjectives inherit the constructor from their
ancestor. To ensure full control over the many-to-many

2 For example, the ZFMISC_1 article contains 139 theorems and
the differences occur in 8 cases, i.e, theorems: 6, 19, 22, 37, 53, 58,
112, 138.
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relationship, the number of constructor (nr) and pattern
(pid) should be associated with each object. However,
many pid-s are lost or arguments of patterns are incorrectly
reconstructed. We can observe this in the HTMLization
as technical constructors rather than the corresponding
patterns or as missing values in the lists of arguments3.
Such defects do not have a significant negative impact for
the rendered HTML, but are unacceptable in every cross-
verification of the MML.

III. Disambiguated Syntactic Mizar Export

The problems indicated in Section II are typical, if we
want to obtain access to the MML based only on the
semantic representation. Therefore we develop an appli-
cation that combines the semantic and syntactic infor-
mations. Obviously there are many inconveniences in this
approach, since the semantic representation is completely
rewritten by the Mizar Analyzer with respect to the
syntactic one and contains only the information that are
absolutely necessary for the checking proof steps. We
combine the information in three stages.

a) Top level: First, we match all the items from the
two representations, where often a few semantic steps cor-
respond to a single syntactic one. For example, a step that
introduces variables X, Y in Fig. 2 (see 5th line) is hidden
in Fig. 1, but for semantic comparison, both variables
are introduced in independent steps that are followed by
additional steps where the corresponding modified thesis
is formulated.

b) Logic connectives and quantifiers: Next we match
syntactic and semantic representation of each statement
to find corresponding atomic formula. For this purpose
we transform every syntactically represented statement
imitating the Mizar Analyzer process such as the nor-
malization and then we compare the obtained formula
with the corresponding semantic representation of this
statement. We transform also all formulas into a system
of abstractions and applications in meta logic

<logic id=("ball"|"hidden_ball"|"bex"|"iff"|
"impl"|"or"|"and"|"not"|"False"|"True")\>

that should be easy-to-read by external tools, since
e.g., our system directly corresponds to logical frame-
work application and abstraction. Note that the constant
hidden_ball is semantically equivalent to ball but
corresponds to a universal quantifier that is originally
hidden. Additionally, we distinguish types of variables
that are imported form reservations. For example, hidden
quantifiers that bind variables with types imported from
reservations in the statement of theorem presented in
Fig. 1 obtained the following our representation:

3 See for example http://mizar.uwb.edu.pl/version/current/html/
pboole.html#CC4 where the expression includes V8 rather than
non-empty, V9 rather than empty-yielding, and the argument A

is missing in the type ManySortedSet of A.

<proposition label="xboole_0_th_8">
<app>
<logic id="hidden_ball" type="o" args="2"

argsType="ty_abs"/>
<ReservationType id="X">
<const id="HIDDENM2" type="ty" args="0"

argsType="set"/>
</ReservationType>
<abs id="X" type="set" args="0">
<app>
<logic id="hidden_ball" type="o" args="2"

argsType="ty_abs"/>
<ReservationType id="Y">
<const id="HIDDENM2" type="ty" args="0"

argsType="set"/>
</ReservationType>
<abs id="Y" type="set" args="0">
...

where the constant HIDDENM2 corresponds to the
Mizar set that is the second type definition (called
mode in Mizar) in article HIDDEN. Note that the
name directly corresponds to the absolute constructor
name proposed in [10] and the OMDoc node
<OMS module="HIDDEN"name="M2"/> (according to
the
naming scheme proposed in [5]).

c) Atomic propositions: Matching at the atomic
proposition level is quite natural. Generally, we just match
predicates and then recursively terms and subterms to
disambiguate them. However, we have to take into account
Mizar local abbreviations that are fully unfolded in the
semantic representation. It is also important to note that
most of the Mizar objects have different numbers and
order of arguments in compared representations, since the
semantic representation contains visible arguments of each
Mizar object, but also their hidden arguments calculated
by the Mizar Analyzer. We explore these differences to
access hidden arguments at the syntactic level, and use
them just like visible arguments. Additionally, as in the
case of logic connectives, we present every object using an
application of meta-constant that corresponds to unique
pattern of the object and list of its arguments.

For example, let us consider the statement of theorem
SUBSET_1:13 presented in Fig. 3. It states that the set
difference of sets A and B is equal to the intersection of A
and the complement of B in the given universal set E.

The universal set E does not appear explicitly in the
statement, but is necessary to determine the complement
set B‘. Additionally, the difference (represented as \) and
the intersection (/\) are originally defined for arbitrary
sets, however the Mizar redefinitions (for more detail
see [22]) change types of return values in these functors
for Subset of E, if both arguments are also Subset of E.
Therefore, E is a hidden argument of these three functors
if we want to fully reflect the meaning of this statement.
The representation of the fact is presented in Fig. 4.

To provide a human-friendly access to our
representation we also build an initial system that
automatically generate pdf files that visualize our
representation as well as HTMLization of the MML
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reserve E for set,
A,B for Subset of E;

theorem :: SUBSET_1:13

A \ B = A /\ B‘;

Fig. 3. An example Mizar theorem whose statement contains hidden
arguments.

<app>
<const id="XBOOLE_0R4" type="o" args="2"

argsType="set"/>
<app>
<const id="SUBSET_1K7" type="set" args="3"

argsType="set"/>
<var id="A" type="set" args="0" argsType="set"/>
<var id="E" type="set" args="0" argsType="set"/>
<var id="B" type="set" args="0" argsType="set"/>
</app>
<app>
<const id="SUBSET_1K9" type="set" args="3"

argsType="set"/>
<var id="A" type="set" args="0" argsType="set"/>
<var id="E" type="set" args="0" argsType="set"/>
<app>
<const id="SUBSET_1K3" type="set" args="2"

argsType="set"/>
<var id="B" type="set" args="0" argsType="set"/>
<var id="E" type="set" args="0" argsType="set"/>
</app>
</app>
</app>

Fig. 4. The formula A \ B = A /\ B‘ represented in our format.
These are necessary to decode the complete information. SUBSET_1K7
corresponds to the pattern _ \ _, defined in the Mizar article
SUBSET_1 to represent the difference of sets in an universe, where
the universe is a hidden argument and is calculated by Mizar from
types of the sets. Similarly, SUBSET_1K9 and SUBSET_1K3 correspond
to patterns _ /\ _ and _‘, respectively.

visualize the semantic representation. We use a
presentation inspired by that of Isabelle rendering of its
formalizations, in particular applied to Isabelle/Mizar
that combines selected components of Isabelle/Isar and
Mizar4. In particular, the theorem presented in Fig. 3 is
expressed as follows:

mtheorem subset_1_th_13 :
∀ E : 〈 setHIDDENM2〉 .
∀ A : 〈 Subset SUBSET_1M2of E 〉 .
∀ B : 〈 Subset SUBSET_1M2of E 〉 .
A \ SUBSET_1K7〈 E 〉 B =XBOOLE_0R4

A /\ SUBSET_1K9〈 E 〉 B ‘ SUBSET_1K3〈 E 〉

where hidden quantifiers and types imported from reser-
vations are highlighted as well as hidden arguments are
visible in subscripts. Additionally, identifiers indicate ab-
solute patterns and links indicate absolute constructors in
the HTMLization of the current MML.

4 Readers can check automatically generated pdf files (gener-
ated now for 104 initial Mizar articles) at the author’s web site
http://alioth.uwb.edu.pl/~pakkarol/fedcsis2018/, stylized for the Is-
abelle/Isar language.

reserve x for object, X,Y for set;
theorem
X/\Y = X implies X c= Y

proof
assume that A1: for x st x in X/\Y holds x in X and

A2: X c= X/\Y and
A3: ex x st x in X & not x in Y;

Fig. 5. An example Mizar assumption where two predicates (equality
and inclusion) are unfolded in one skeleton step.

IV. Simplification of Mizar proofs by cut

introduction

The Mizar proof style, inspired by Jaśkowski [23], pro-
vides various natural deduction steps (called Skeleton steps
in Mizar). The steps generally modify the current part of
a given thesis that still remains to be proven. Thesis is the
same as the current goal at the beginning of every proof,
but further it becomes implicit, as is done in informal
proofs. Indeed, mathematicians do not often indicate what
has been done or what is left in the middle of proofs. It
means that Mizar authors must know the current thesis
and predict how it will be changed by a particular skeleton
step to finish a given proof. Mizar proof is finished if
the thesis is reduced to verum (true). Then the Mizar
Reasoner tries to adapt the skeleton steps proposed by
authors even if this requires unfolding the definitions of
several predicates.

A. Unfolded Predicates

An example of an implicit unfolded definition is pre-
sented in Fig. 1 in line 11. The generalization step (key-
word let) can be used if the current thesis is a universally
quantified formula, but the current thesis after line 10
is a formula (X c= Y\{x}) that becomes a universally
quantified formula if we unfold a definition of set inclusion.
Such an approach gives a lot of freedom for authors, but
is very hard to control by existing external tools. It is
important to note that the Mizar semantic representation
has been enriched by Urban with a list of definitions that
the Mizar Reasoner actually needs to unfold in every
step. Such information is sufficient to cross-verify a given
thesis modification done by Reasoner (for more detail
see, [24]). However this information is not sufficient to
determine reasoning pattern, since it does not determine
positions of unfolded predicates, or even their number.
An example of an assumption accepted by Reasoner

supported by two definitions, namely the definition of
equality as two inclusions and the definition of inclusion is
presented in Fig. 5. The equality X/\Y = X is introduced as
two inclusions, where the first one X/\Y c= X has been un-
folded, and further the indirect proof is started where the
inclusion in the indirect assumption not X c= Y has been
unfolded. Determination of a reasoning pattern for such an
assumption is a severe problem. However, combining the
syntactic and semantic information we can automatically
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eliminate the more advanced skeleton steps, generating the
corresponding reasoning patterns while introducing fewest
changes in the reasoning.

B. Procedure Overview

Note that we can transform modified thesis by a given
reasoning step back to the thesis before this step or to an
equivalent formula, if we take into account the meaning of
the definitions unfolded there (for more details see [24]). It
means that we can reconstruct an equivalent of the thesis
by analyzing the skeleton steps from the end of a given
proof, if there are only simple (i.e., without definitional
expansions) kinds of steps, such as generalizations, as-
sumptions, conclusions (or shorter let-assume-thus) that
correspond directly to the Isar fix-assume-show. Moreover,
in such cases we can indicate a list of natural deduction
rules that precisely correspond to the related created thesis
and proof. In our representation we only use implication
introduction and the following four rules (expressed in the
Isabelle syntax):

lemma impMI: (A1 =⇒ A2 −→ C) =⇒
A1 ∧ A2 −→ C

lemma conjMI: C2 =⇒ C1 =⇒ C1 ∧ C2
lemma ballI: (

∧
x. x be D =⇒ P(x)) =⇒

inhabited(D) =⇒ ∀ x:D. P(x)
lemma bexI: P(x) =⇒ x be D =⇒

inhabited(D) =⇒ ∃ x:D. P(x)

where impMI connects uncurry and impI; conjMI is a modifi-
cation of conjI; ballI, bexI are bounded quantifier introduc-
tion and elimination rules which apart from the condition
ensure that the given Mizar types are inhabited. These
correctly correspond to the Mizar foundations (see [17]).
Note that conjMI corresponds to the Mizar conclusion
where a given proposition is a conjunct of the current
thesis and impI separates a list of conjunctions in an
assumption to give them independent labels as follows:

have A ∧ B ∧ C

proof(rule conjMI,rule conjMI)
show A 〈proof〉
show B 〈proof〉
show C 〈proof〉

qed

have A ∧ B ∧ C −→ D

proof(rule impMI,rule impMI,rule impI)
assume a: A and b: B and c: C

show D 〈proof〉
qed

As shown in Fig. 5, a reconstructed thesis can not
be easily matched to a given thesis in a proof, if some
definitions have been unfolded in a let-assume-thus step.
Therefore, in our approach we introduce a cut in the
reasoning at every place where such steps occur. Let us
fix such a let-assume-thus step. We encapsulate a part of
deduction beginning from the step using the created list
of rules as a sub-deduction that proves the reconstructed
thesis (the correctness condition of such cut introduction
have been developed in [25]). Then we replace this step
by a conclusion where the original thesis is given as
the proposition and we refer to the sub-deduction and

have ∀ y : 〈 objectHIDDENM1〉 .
y inHIDDENR3 X →
y inHIDDENR3 Y \XBOOLE_0K4 {TARSKIK1 x }

proof(rule ballI,rule impI)
fix y being 〈 objectHIDDENM1〉
assume A4: y inHIDDENR3 X

hence y <>HIDDENR2 x using A3;
hence A5: ¬ y inHIDDENR3 {TARSKIK1 x }

using tarski_def_1;
have X c=TARSKIR1 Y using A1;
hence y inHIDDENR3 Y using A4;
thus y inHIDDENR3 Y \XBOOLE_0K4 {TARSKIK1 x }

using xboole_0_def_5, A5;
qed
thus X c=TARSKIR1 Y \XBOOLE_0K4 {TARSKIK1 x }

using tarski_def_3;

Fig. 6. An example of a cut introduction related to the skeleton step
located in line 11 in Fig. 1.

unfolded definitions and as the justification. An example
of such a cut introduced to our representation is presented
in Fig. 6.

C. take steps

The Mizar take is a kind of skeleton step that is a
challenge for other declarative proof languages, including
expressing the proofs in Isabelle/Mizar, as such steps
cannot be omitted. take indicates terms suitable for instan-
tiating an existentially quantified thesis. Such terms can
be constructed using any available constants in Mizar. For
comparison, there is a limitation for kinds of constants in
the Isabelle/Isar language i.e., constants introduced inside
obtain steps have to be available before a deduction where
we use them to construct such suitable term. Unfortu-
nately, the obtain step is the only equivalent of the Mizar
consider (for more detail see [21]) and most of take steps
are using consider constants. A cut introduction is one and
only one solution that we introduce in our representation.
For example, we can introduce the following cut

show ∃ t : objectHIDDENM1 .
t inHIDDENR3 Y ∧
X c=TARSKIR1 Y \XBOOLE_0K4 {TARSKIK1 t }

proof(rule bexI[of _ x ],rule conjMI)

show x inHIDDENR3 Y using A2;

have ∀ y : 〈 objectHIDDENM1〉 .
y inHIDDENR3 X →
y inHIDDENR3 Y \XBOOLE_0K4 {TARSKIK1 x }

proof(rule ballI,rule impI)...
thus X c=TARSKIR1 Y \XBOOLE_0K4 {TARSKIK1 x }

using tarski_def_3;
qed

in relation to the step take x; presented in Fig. 1.
Note that to introduce such cut we have to extract

a given term and also its type, but the type can be
implicit even in the semantic representation. Generally,
we can extract this type comparing the thesis before and
after a given take step, but not in most cases where
some definitions have been unfolded. For them we use the
following solution. Let us regard t as such take step and
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denote by f the first skeleton step after t that is not
a take step where we can not extract a type. First, we
encapsulate a part of deduction beginning from f as a sub-
deduction that proves a thesis that corresponds to f. Then
we formulate a conclusion with the original thesis of t and
as a justification we refer to the sub-deduction, unfolded
definitions in t, but also in all skeleton steps between t

and f; and a list of bexI rules substituted by terms given
in t and skeleton steps between t and f. In the case of
the take step presented in Fig. 1. proposed solution should
introduce the following cut:

show ∃ t : objectHIDDENM1 .
t inHIDDENR3 Y ∧
X c=TARSKIR1 Y \XBOOLE_0K4 {TARSKIK1 t }

proof-
have x inHIDDENR3 Y ∧

X c=TARSKIR1 Y \XBOOLE_0K4 {TARSKIK1 x }

proof(rule conjMI)...

thus ?thesis using unfolded definitions bexI[of _ x ];

qed

D. The rest of skeleton steps

The remaining Mizar skeleton steps not explained so
far are: given, hereby and also per cases steps that play
a similar role as skeleton steps, but do not modify a
considered thesis.

The given step is an abbreviation for an assume step that
as a valid proposition introduces an existential statement
and a consider step that creates a fresh constant and
provides access to the instantiated existential statement
with the constant. We replace every such step via assume,
consider/obtain.

To describe the hereby step, we must first introduce
the now concept, since hereby is a simply abbreviation
of thus now. In the Mizar language now opens a sub-
deduction where the proved statement is not written
explicitly but is reconstructed from the sub-deduction.
The sub-deduction can be conducted with the sup-
port of all kinds of skeleton steps with only one re-
striction that each take steps have to be formulated
as “take new constant=term” to indicate all terms that
should be replaced by a variable bounded by the appro-
priate existential quantifier. Weaker equivalent of the now

blocks are present in some proof languages, for example
the Isabelle/Isar {...} concept supports only deduction
via fix-assume where the last have step is chosen as the
conclusion. Therefore we replace the now blocks by normal
steps with reconstructed statements in our export.

The per cases step is a kind of step that generally reflects
the idea of the informal proof by cases, where a thesis
has to be justified under each of logically complementary
alternatives, but not necessarily with identical skeleton
steps. We encapsulate the sub-deduction in each case
as a justification of the corresponding implication “case
assumption implies reconstructed thesis”.

V. Our representation as a next stage to

cross-verify MML in Isabelle

In this section we describe possibilities of our repre-
sentation in relation to the needs of the Isabelle logical
framework and in particular Isar reasoning patterns. In
our previous work [18], we defined a unique and faithful
equivalent of the Mizar dependent type system and higher-
order concepts as an Isabelle object logic. This equivalent
has been tested so far only on a manually reformalized
part of the MML. However, the experience gained during
manual re-formalization showed directions in which we
can bring the Isar language closer to the Mizar one as
well as unattainable goals, e.g., the take step. Our manual
attempts to generate Isar reasoning patterns also showed
that with enough effort, we can indicate corresponding
lists of rules even for very intricate deductions. However,
such list are too sensitive to minor changes, even in simple
deductions. Our representation of proofs is an attempt to
solve these problems on the MML side.

Opportunities offered by this representation at the
moment have been visualized on a re-formalization of
the theorem presented in Fig. 1 created in our Isabelle
environment. The re-formalization is presented in Fig. 7
and reflects all elements contained in the automatically
generated visualization5.

The example demonstrates the usefulness of the recon-
structed reserve concept (Section III) that is welcome in
the human-readable export. Note that the reserve com-
mand is our Isabelle/Mizar equivalent of the Mizar reserve

mechanism that collects variable names with their types.
Therefore, we do not need mention the types of X, Y, x
in quantified formulas same as in the Mizar proof scripts.
Additionally, we can hide the first two quantifiers in the
statement of the theorem, since the mtheorem command
automatically binds free reserve variables, introduces them
into the sub-deduction, and adds corresponding propo-
sitions of the shape “term is type” to the background
knowledge of the proof stored by a designated theorem list
(ty). Then the knowledge, extended by some additional
informations is added to the list of premises by the proof
method mauto before auto call (more detail in our formal-
ization).

We can also observe consequences of the introduced
cuts and the simplicity of the generated reasoning pattern
described in Section IV. Note that Isabelle/Isar does not
accept a given sub-deduction as the justification of a
particular statement, even if it accepts justifications for
all the steps in a sub-deduction, since the given reasoning
pattern does not precisely correspond to the statement and
the sub-deduction.

VI. Conclusion

We have introduced a combination of the Mizar syn-
tactic and semantic proof representations and presented

5See http://alioth.uwb.edu.pl/~pakkarol/fedcsis2018/mispdf/
xboole_0.pdf
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reserve X,Y for set
reserve x for object
mtheorem xboole-0-th-8:

∀ X. ∀ Y. X c< Y −→
(∃ x. x in Y ∧ X c= Y\{x} )

proof -

have ∀ X. ∀ Y. X c< Y −→
(∃ t:object. t in Y ∧ X c= Y\{t} )

proof(rule ballI,rule ballI,rule impI)
fix X assume [ty]:X be set
fix Y assume [ty]:Y be set
assume A1: X c= Y
then obtain x where [ty]: x be object and

A2: x in Y and A3: ¬ x in X using xboole-0-th-6
by mauto

show ∃ t : object. t in Y ∧ X c= Y\{t}
proof(rule bexI[of - x],rule conjMI)

show x in Y using A2 by auto
have ∀ y : object. y in X −→ y in Y\{x}
proof(rule ballI,rule impI)

fix y assume [ty]:y be object
assume A4: y in X
hence y <> x using A3 by auto
hence A5: ¬ y in {x} using tarski-def-1

by auto
have X c= Y using A1 xboole-0-def-8

by mauto
hence y in Y using A4 tarski-def-3 by mauto
thus y in Y\{x} using xboole-0-def-5 A5

by mauto
qed mauto
thus X c= Y\{x} using tarski-def-3 by mauto

qed mauto
qed mauto

thus ?thesis by mauto
qed

Fig. 7. An example Isabelle/Mizar reasoning that exactly corre-
sponds to the combined representation of the proof script presented
in Fig. 1. Note that the highlighted part of reasoning can be removed
from the script without influence for its correctness just like in the
Mizar proof scripts (for more detail see our formalization)

a number of possibilities that such combined data offers.
We rebuild the Mizar natural deduction style to the
fix-assume-thus proof outlines present in declarative proof
modes, including that of Isabelle/Isar. The transformation
preserves all Mizar components using cut introduction.
This eliminates all the Mizar natural deduction construc-
tions for which adequate equivalent constructs do not exist
in other systems. In particular, it reduces the distance
between the Mizar and Isabelle/Isar proof styles, which
we showed in an experiment in which a transformed MML
proof could be directly cross-verified in Isabelle/Mizar.
The original and transformed proofs for the first 50 Mizar
articles are available at:

http://alioth.uwb.edu.pl/~pakkarol/fedcsis2018/

Future work could target a further reduction of the
distance between Mizar and Isabelle. The MML export
combining the syntactic and semantic representations, as
well as the Isabelle/Mizar object logic and its packages

are under active development. Many Mizar concepts are
still not completely expressed in Isabelle (e.g., the Mizar
reconsider construction) or they have not been sufficiently
verified (e.g., the Mizar structures [22] which are used
directly or indirectly in the latter 74% of the MML). We
believe that under a suitable proof translation ATPs are
strong enough to accept all justifications accepted by the
Mizar checker. However, to make the automation more
efficient and practical, it might be necessary to extract
additional knowledge from the semantic representation
used as an initial information by the checker.
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