
Parallelizing the code of the Fokker-Planck equation
solution by stochastic approach in Julia

programming language

Anna Wawrzynczak∗,†
∗Institute of Computer Sciences, Siedce Univeristy

ul.3 Maja 54, Siedlce, Poland

e-mail: awawrzynczak@uph.edu.pl
†National Centre for Nuclear Research

ul A.Soltana 7, Świerk-Otwock, Poland

Abstract—Presenting a reliable physical simulation requires
very often use of the supercomputers and models run for many
days or weeks. The numerical computing is divided into two
groups. One uses highly efficient low-level languages like Fortran,
C, and C++. The second applies high-level languages like Python
or Matlab, being usually quite slow in HPC applications. This
paper presents the application of the relatively new program-
ming language Julia, advertised as the as "a high-level, high-
performance dynamic programming language for numerical com-
puting". We employ Julia is to solve the Fokker-Planck equation
by the stochastic approach with the use of the corresponding
set of ordinary differential equations. We propose the method
of parallelizing the algorithm with use of the distributed arrays.
We test the speedup and efficiency of the given code with use of
the cluster set at the Świerk Computing Centre and show that
Julia is capable of achieving a good performance.

I. INTRODUCTION

C
HOICE of the programming language for implementa-

tion of the mathematical model is quite a key factor

for its future performance. Scientists routinely run simulations

on millions of cores in distributed environments. Moreover,

this choice is often influenced by the difficulty level of the

language and time that has to spend on code production and

its parallelization.

The main high-performance computing programming lan-

guages are statically compiled language such as Fortran, C,

and C++, in conjunction with OpenMP/MPI. The reasons are

their interoperability and efficiency regarding the ability to

use all available compute resources while limiting memory

usage. These languages are compiled off-line and have strict

variable typing, allowing advanced optimizations of the code

to be made by the compiler. Taking above into account one

can think that the choice of a programming language is

natural. However, it seems that writing HPC code is getting

more complicated because today’s projects often require a

combination of messaging (MPI), threads (OpenMP), and

accelerators (Cuda, OpenCL, OpenACC). This causes that

creating an HPC code seems to be getting more difficult

This work is supported by The Polish National Science Centre grant
awarded by decision number DEC-2012/07/D/ST6/02488

instead of more straightforward. Of course, it is acceptable

from the point of view of computer scientists or developers,

but for the scientists from other fields more imperative is to

get a relatively quick result to confirm/reject their theories or

models.

The answer to that problems are the modern interpreted

languages. In these languages, programs may be executed from

source code form, by an interpreter. The advantages of this

class are that they are often easier to implement in interpreters

than in compilers, include platform independence, dynamic

typing and dynamic scoping. The disadvantage is that they are

usually slower than the compiled one. Examples of languages

of this type are, e.g., Octave, Scilab, R, Mathematica, and

Matlab. This category of languages is also known as dynamic

languages or dynamically typed languages. In these program-

ming languages, programmers write simple, high-level code

without any mention of types like int, float or double

that pervade statically typed languages such as C and Fortran.

The overview of dynamical languages in comparison with the

more traditional languages is presented in [1].

II. JULIA PROGRAMMING LANGUAGE

In this section we would like to introduce a Julia language,

in which was implemented the algorithm presented in this

paper. This will not be a tutorial, only some functions and

issues useful in the parallel implementation of the proposed

algorithm will be presented. For a full information we refer

to [2].

Julia is a new programming language that is designed to

address the problem of the low performance of dynamic

languages [3]. In benchmarks reported by its authors,

Julia performed within a factor of two of C on a set of

standard basic tasks. Julia is advertised as a high-level, high-

performance dynamic programming language for numerical

computing. It provides a sophisticated compiler, distributed

parallel execution, numerical accuracy, and an extensive

mathematical function library. Julia’s Base library, written

mainly in Julia itself, also integrates mature, best-of-breed

open source C and Fortran libraries for linear algebra, random

Communication Papers of the Federated Conference on

Computer Science and Information Systems pp. 115–120

DOI: 10.15439/2018F253

ISSN 2300-5963 ACSIS, Vol. 17

c©2018, PTI 115

number generation, signal processing, and string processing.

Julia is a free open source language that can be downloaded

from the website [2]. The core of the Julia implementation

is licensed under the MIT license. The language can be built

as a shared library so that users can combine Julia with

their own C/Fortran code or proprietary third-party libraries.

The GitHub repository of Julia source code, packages, and

documentation can be downloaded from website [4].

Users interact with Julia through a standard REPL (real-eval-

print loop environment) such as Python, R, or MATLAB),

by collecting commands in a .jl file, or by typing directly

in a Jupyter (Julia, PYThon, R) notebook [5]. Julia syntax

is "Matlab like" and allows uncomplicated expression

of mathematical formulas. Julia uses just-in-time (JIT)

compilation [6], [7] using the Low-Level-Virtual-Machine

(LLVM) compiler framework [8]. JIT compilers attempt to

compile at run-time by inferring information not explicitly

stated by the programmer and use these inferences to optimize

the machine code that is produced.

A. Parallel Computing in Julia

Julia has some built-in primitives for parallel computing

at every level: vectorization (SIMD), multithreading, and

distributed computing. At the lower level, Julia’s parallel

processing is based on the idea of remote references and

remote calls. Remote call send a request to run a function

on another processor, while remote reference create an object

used to refer to objects stored on a particular processor. The

parallel programming in Julia is quite intuitive. Starting the

Julia in command line withjulia -p n provides n worker

processes on the local machine. It makes sense for n to

be equal the number of CPU cores on the machine. In the

script the additional n processes can by added by function

addprocs(n) and removed by rmprocs(). Number of

active processes can by listed by workers().

Consider a parallel computation of the pi value by the Monte

Carlo method. This calculation contains generating random

numbers between 0 and 1 and ultimately calculating the ratio

of the ones lying in inside the unit circle to those that don’t.

addprocs(2) #add 2 Julia worker processes

function parallel_PI(n)

in_circle = @parallel (+) for i in 1:n

work parallelizing

x = rand()

y = rand()

Int((x^2 + y^2) < 1.0)

end

return (in_circle/n) * 4.0

end

The above function execution is:

parallel_PI(10000)

@parallel is for parallelizing loops. Julia offloads task

to its worker processes that compute the desired output and

send them back to the Julia master, where the reduction is

performed. Arbitrary pieces of computation can be assigned

to different worker processes through this one-sided commu-

nication model.

The algorithm presented in section III requires using large

arrays for storing the pseudoparticles position in time of

simulation. In such cases the distribution of the array between

the workers seams to be a good solution. A distributed array is

logically a single array, but it fragments are stored on several

processors. Such approach allows making a matrix operation

the same like with local arrays, making the parallelism al-

most invisible for the user. In some cases, it is possible to

obtain useful parallelism just by changing a local array to a

distributed array. Moreover, it makes possible to use an array

of a size that wouldn’t be possible to create in memory of one

master process.

In Julia distributed arrays are implemented by the DArray

type, which from version 0.4 has to be imported as the

DistributedArrays.jl package from [9]. A DArray

has an element type and dimensions just like a Julia array,

but it also needs an additional property: the dimension along

which data are distributed. Distributed array can be created in

a following way:

julia>addprocs(4)

julia>@everywhere using DistributedArrays

julia>Tab1=drandn(8,8,4)

julia>Tab2=dfill(-1,8,8,4)

julia>Tab3=dzeros(8,8,4)

julia>Tab4=dzeros((8,8),workers()[1:4],[1,4])

In the above code, the four workers are started.

Macro @everywhere allow precompiling the

DistributedArrays on all processors. In the declaration

of Tab1, Tab2, Tab3 the distribution of this 8 x 8

arrays between four processors will be automatically picked.

Random numbers will fill Tab1, Tab2 will be filled with

number -1, and Tab3 with zeros. In the definition of the

Tab4 user can specify which processes to use, and how the

data should be distributed. The second argument specifies

that the array should be created on the first four workers.

The third argument specifies on how many pieces chosen

dimension should be divided into. In this example, the first

dimension will not be divided, and the second dimension will

be divided into 4 pieces. Therefore each local chunk will be

of size (8,2). The product of the distribution array must

equal the number of workers.

This way of parallelization is quite convenient because when

dividing data among a large number of processes, one often

sees diminishing gains in performance. Placing DArray on a

subset of processes allows numerous DArray computations to

happen at once, with a higher ratio of work to communication

on each process. Method indexes allow checking how the

array is distributed. For example output of instruction

116 COMMUNICATION PAPERS. POZNAŃ, 2018

julia>Tab1.indexes

can be following

2x2x1 2x2x1 Array{Tuple{UnitRange{Int64},

UnitRange{Int64},UnitRange{Int64}},3}:

[:, :, 1] =

(1:4,1:4,1:4) (1:4,5:8,1:4)

(5:8,1:4,1:4) (5:8,5:8,1:4)

We see that array is divided into four parts versus a number

of rows and columns.

Other useful operations on distributed arrays are:

• distribute(a::Array) converts a local array to a

distributed array,

• localpart(a::DArray) obtains the locally-stored

portion of a DArray,

• myindexes(a::DArray) gives a tuple of the index

ranges owned by the local process,

• convert(Array, a::DArray) brings all the data

to the local processor.

When a DArray is created (usually on the master process),

the returned DArray objects stores information on how the

array is distributed. When the DArray object on the master

process is garbage collected, all participating workers are noti-

fied and localparts of the DArray freed on each worker.

Since the size of the DArray object itself is small, a problem

arises as gc on the master faces no memory pressure to

collect the DArray immediately. This results in a delay of the

memory being released on the participating workers. Therefore

it is required to explicitly call close(d::DArray) after

user code has finished working with the distributed array [9].

III. THE ALGORITHM FOR NUMERICAL SOLUTION OF THE

FOKKER-PLANCK EQUATION

The Fokker-Planck equation (FPE) arises in a wide variety
of natural science, including solid-state physics, quantum
optics, chemical physics, theoretical biology and astrophysics.
The FPE was first utilized by Fokker and Planck to describe
the Brownian motion of particles e.g. [10]. In this paper we
will use this equation to describe the transport of cosmic
rays (CR) throughout the heliosphere, originating from outer
space and reaching the Earth (e.g., [11]). The transport of CR
particles is usually described by the Paker transport equation
(PTE) [12]. The difficulty of the numerical solution of this type
equations increases with the problem dimension. Reason is
the instability of the numerical schemes like finite-differences
(e.g. [13] and finite-volume in the higher dimensions. In
consequence, to ensure the scheme stability and convergence
the density of numerical grid must be improved, increasing
the computational complexity. To overcome this problem the
stochastic methods can be applied. In that case the PTE should
be rewritten in the form of the FPE (for details see, e.g. [14],
[15]), as:

∂f̂

∂t
= ~∇·[~∇·(KT

f̂)]−~∇·[(~∇K
T+U)·f̂]+

1

3

∂

∂R
[(f̂R(~∇·~U)]−L·f̂ .

(1)

Where f̂ = f̂(~r,R, t) is an omnidirectional distribution
function depending on spherical coordinates ~r = (r, θ, ϕ),
r - radial distance, θ - heliolatitudes, ϕ - heliolongitudes;

magnetic rigidity R and time t. R = Pc
q

, where P is
momentum, c speed of light, q = Ze, Z charge number of
nucleus and e unit charge; ~U is the solar wind velocity, K
is the anisotropic diffusion tensor, KT its transpose; L is the
linear factor.

Applying the Ito stochastic integral we can bring the so-
lution of the Eq. (1) to the solution of the set of stochastic
ordinary differential equations (SDEs) being the exact equiv-
alence of the FPE (e.g., [16]). Details of this procedure are
given in ([14], [15] and references therein). Accordingly, the
transport of CR in the 2D heliocentric coordinate system, in
which ~r = (r, θ), can be described by the following SDEs:

dr(t) = (
2

r
K

S
rr +

∂KS
rr

∂r
+

ctgθ

r
K

S
θr +

1

r

∂KS
θr

∂θ
+ U + vd,r) · dt

+[B · dW]r

dθ(t) = (
KS

rθ

r2
+

1

r

∂KS
rθ

∂r
+

1

r2
∂KS

θθ

∂θ
+

ctgθ

r2
K

S
θθ +

1

r
vd,θ) · dt

+[B · dW]θ

dR(t) = −
R

3
(~∇ · U) · dt. (2)

In set of Eqs. (2) ~vd the drift velocity calculated as:

vd,i = ∂KA

∂xj
, where KA is the antisymmetric part of the

anisotropic diffusion tensor of the CR particles K = KS+KA

and KT = KS − KA, containing the symmetric KS and
antisymmetric KA parts given in [18]. The stochastic terms

contain an element d ~W which is the increment of Wiener
process guiding the stochastic motion of pseudoparticles in
given dimension. Bij , (i, j = r, θ) is a matrix given in [15].
We discretize the set of Eqs. (2) with the unconditionally
stable Euler-Maruyama [17] scheme. Nevertheless, the Eqs.
(2) does not contain the linear factor L. Thus its solution is not
synonymous with a solution of Eq. 1. In numerical realization
we introduced weight W in which a linear factor L is taken
into account according to formula:

W = exp(−

∫ t

0

L(t)dt). (3)

Consequently, the f̂ function value is expressed as a weighted
average having the following form:

f̂(~r,R) =
1

Nf

Nf∑
n=1

fLIS(R) ·W =

=
1

Nf

Nf∑
n=1

fLIS(R) · exp(−

M∑
m=1

L,m ·∆t). (4)

L = − 2

3
∇ · U is the linear factor visible in Eq. 1, N is the

total number of simulated pseudoparticles, Nf is the number of

pseudoparticles reaching the position ~r and M is the number

of time steps. Function fLIS(R) denotes the f̂ value at the

boundary.

During the simulation pseudoparticles are initialized at

the region (heliosphere) boundary with the initial rigidity

drawn by the rejection sampling algorithm from fLIS(R)
distribution; then their trajectories are traced in conjunction

with changes of their rigidity R. The position and rigidity

of each pseudoparticle in every time step must be stored to

find the value of the distribution function f̂(~r,R) in each

(required) point of the region. The pseudoparticle motion is

ANNA WAWRZYNCZAK: PARALLELIZING THE CODE OF THE FOKKER-PLANCK EQUATION SOLUTION 117

terminated when it reaches the inner/outer boundary with

respect to the radial distance or when the time for simulation

finishes. As far as the probability that statistically enough

number of pseudoparticles will reach the single point is near

to zero, we use the bins instead of the points. Thus, to find

the numerical solution of FPE it is necessary to apply the

binning procedure, i.e., discretized the 3D domain over all

spatial variables: (r, θ) and R. Then for each binning unit

[r±∆r] x [θ±∆θ] x [R±∆R], we integrate the trajectories

of pseudoparticles traveling through considered bin according

to Eq. 4. The binning procedure is the most time consuming

from the computational point of view.

IV. JULIA PARALLEL CODE FOR THE SOLUTION OF FPE

The code for the numerical solution of the set of Eqs.

(2) was realized in Julia v 0.6.2 [2]. The stochastic method

solution of FPE is quite easy to parallelize versus the

number of simulated pseudoparticles, which can be simulated

independently. To do this large arrays are required for storing

the pseudoparticles position, rigidity and weight in subsequent

time steps. A natural way to obtain parallelism is to distribute

arrays between many processors. This approach combines

the memory resources of multiple machines, allowing to

create and operate on arrays that would be too large to fit

on one machine. Each processor operates on its own part of

the array, making possible a simple and quick distribution of

task among machines. A distributed array is logically a single

array, but it fragments are stored on several processors. Such

approach allows making a matrix operation the same like

with local arrays, making the parallelism almost invisible for

the user. This way was written the parallel program solving

the Eq. 1 by the method described in detail in Section III.

The proposed construction of Julia code solving FPE by

the stochastic approach described in section III is given in

Algorithm 1.

Command in first line calls the required number of CPUs.

In lines 5-9 the tables storing the pseudoparticles position

and rigidity are distributed among the processes via the

DistributedArrays package. The distribution is done

versus the second dimension, i.e. a single processor covers

array of size n x (m/WN). The simulation of pseudoparticles

motion is done by the function SEQ() given in lines 12-36.

The pseudoparticle initial position and rigidity is set in line

16-18; its position is changed accordingly to the equation 2

(lines 15-19) including the Wiener process defined in line 20-

21. The initial weight is set in line 19, while it change is set in

line 31. The simulation is performed until all pseudoparticle

meet the termination conditions (line 33). In lines 40-52

is defined the function PRL() which runs the function

SEQ() in parallel on different workers owed the parts of

the distributed arrays. The @spawnat macro evaluates the

expression in the second argument on the process specified

by the first argument. Function pmap() transform collection

out by applying fetch to each element using available

workers and tasks. The actual launch of function PRL() is

done in line 55.

Algorithm 1 Draft of Julia parallel code for FPE solution

1 a d d p r o c s (n u m b e r _ o f _ p r o c e s s o r s)

2 n= n u m b e r _ o f _ t i m e _ s t e p s ;

3 m= n u m b e r _ o f _ p s e u d o p a r t i c l e s ;

4 WN= l e n g t h (wo rk e r s ()) ;

5 @everywhere u s i n g D i s t r i b u t e d A r r a y s

6 r = d z e r o s ((n ,m) , wo rk e r s () [1 :WN] , [1 ,WN])

7 T= d z e r o s ((n ,m) , wo rk e r s () [1 :WN] , [1 ,WN])

8 R= d z e r o s ((n ,m) , wo rk e r s () [1 :WN] , [1 ,WN])

9 W= d z e r o s ((n ,m) , wo rk e r s () [1 :WN] , [1 ,WN])

10 #######################################

11

12 @everywhere f u n c t i o n SEQ(n ,m, r , T , R ,W)

13 f o r j = 1 : m

14 # d e f i n i n g p s e u d o p a r t i c l e s

15 # i n i t i a l c h a r a c t e r i s t i c s i n t =0 ;

16 r [1 , j] = . . . ;

17 T [1 , j] = . . . ;

18 R[1 , j] = . . . ;

19 W[1 , j] = 1 ;

20 dWr=Wiener (n) ; # g e n e r a t i n g t h e Wiener

21 dWt=Wiener (n) ; # p r o c e s s e s

22 f o r i = 1 : n−1

23 # c a l c u l a t i o n o f t h e dr , dT ,

24 #dR , dW a c c o r d i n g t o Eqs . 2

25 . . .

26 # c a l c u l a t i o n o f new p s e u d o p a r t .

27 # c h a r a c t e r i s t i c s

28 r [i +1 , j]= r [i , j]+ d r [i , j] ;

29 T[i +1 , j]=T [i , j]+ dT [i , j] ;

30 R[i +1 , j]=R[i , j]+dR [i , j] ;

31 W[i +1 , j]=W[i , j]∗ exp(−Lf∗ d t) ;

32 boundary c o n d i t . v e r i f i c a t i o n ;

33 t e r m i n a t i o n c o n d i t . v e r i f i c a t i o n ;

34 end

35 end

36 end

37

38 #######################################

39

40 f u n c t i o n PRL (n ,m, r , T , R ,W)

41 P= l e n g t h (p r o c s (r))

42 N l o c a l =[s i z e ((r . i n d e x e s) [w] [1] , 1)

43 f o r w=1 :P]

44 Mloca l =[s i z e ((r . i n d e x e s) [w] [2] , 1)

45 f o r w=1 :P]

46 o u t = [(@spawnat (p r o c s (r)) [w]

47 SEQ(N l o c a l [w] , Mloca l [w] ,

48 l o c a l p a r t (r) , l o c a l p a r t (T) ,

49 l o c a l p a r t (R) , l o c a l p a r t (W)))

50 f o r w=1 :P]

51 pmap (f e t c h , o u t)

52 end

53 ######################################

54

55 @time PRL (n ,m, r , T , R ,W) # a c t u a l ru n

56 @time PRLBin (n ,m, r , r _ b i n , T , T_bin , R , R_bin ,W)

118 COMMUNICATION PAPERS. POZNAŃ, 2018

10
0

10
1

10
2

10
3

Number of CPUs

10
2

10
3

10
4

10
5

10
6

ti
m

e
[s

]

PRL()

PRLBin()

Computing time

time for initialization & results collecting

Fig. 1. The time of the FPE solution in Julia ver 0.6.2 on CIŚ cluster. Figure
in log-log scale.

To obtain the value of the distribution function we have to

run the function PRLBin() which search for pseudopartices

falling into the bins [r ± ∆r] x [θ ± ∆θ] x [R ± ∆R] and

apply the Eq. 4 to get the f(~r,R) value in each bin. The

macro @time measures the performance of the function run

by returning the calculation time and amount of allocated

memory.

The launching, management, and networking of

Julia processes into a cluster can be done via

ClusterManager.jl package [19]. It supports different

job queue systems commonly used on computer clusters as

Slurm, Sun Grid Engine, and PBS. However, this package

doesn’t support the Torque system installed on CIŚ cluster

used to perform simulations presented in this paper. In

such case, the distribution can be done directly via the

machinefile. The sample .PBS file that is send to the

queue can have a form:

! / b i n / bash

#PBS −N task_name

#PBS − l nodes=N : ppn=P

#PBS −q queue_name

cd $PBS_O_WORKDIR

j u l i a −−m a c h i n e f i l e $PBS_NODEFILE

/ mnt / home / u s e r _ c a t a l o g u e / t a s k _ c o d e . j l

In above-presented script the number of required nodes is

equal to N , and number of CPU’s per node to P . Thus the

N ∗ P workers will be allocated to the job. The names of all

nodes the job has allocated, with an entry for every CPU will

be saved to the nodefile. Thus Julia will read the number

of workers from that file, so calling the adprocs() in the

first line of Algorithm 1 should be omitted.

A. Julia performance

The presented algorithm complexity is O(n) and depends

on the number of pseudoparticles and number of time steps. To

obtain the reliable results and achieve the satisfactory statistics

10
0

10
1

10
2

10
3

Number of CPUs

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
,

S
p

linear speedup

computation time

whole time (with initialization)

Fig. 2. The calculated speed-up of the FPE solution in ver Julia 0.6.2 on CIŚ
cluster. The black line shows the case of ideal speed-up. Figure in log-log
scale.

in each 2D heliosphere bin we have to run at least 2 millions of

pseudoparticles from the heliosphere boundary. In this paper

we do not focus on the results of the physical model, interested

reader we refer to the following papers [14], [15]. Here we

would like to test the performance of above presented parallel

Julia code on the HPC cluster. We have employed the CIŚ

machine with characteristic given in Table I.

We have run series of simulations changing the number

of CPUs in the range from 1 up to 960. Used model was

simplified, as far as it should be run on the one CPU. We

assumed the simulation time to be equal to t = 225 days

with a time step ∆t = 1 hour and a number of simulated

pseudoparticles m = 7200.

We have analyzed the results accordingly to Amdahl’s model

[20] that assumes the problem size does not change with the

number of CPUs and wants to solve a fixed-size problem as

quickly as possible. The model is also known as speedup,

which can be defined as the maximum expected improvement

to an overall system when only part of the system, is improved.

We have used for evaluating the performance of the parallel

code the parallel runtime, the speedup Sp calculated as:

Sp =
Ts

Tp

, (5)

where Ts is sequential runtime using one CPU, and Tp is

runtime using p-number of CPUs. We have also estimated the

efficiency Ep as:

Ep =
Ts

p ∗ Tp

. (6)

We have run calculations assuming the job distribution over

the 1, 10, 20, 40, 80, 120, 240, 360, 480, and 960 CPUs.

The number of used CPU has a direct impact on number

of pseudoparticles simulated on single CPU, i.e. 7200, 720,

360, 180, 90, 60, 30, 20, 15 and 7, respectively. The results

of parallel runtime for the computing the whole simulation,

particular functions and the time required for initialization and

data collecting present Fig. 1. The computing time includes

ANNA WAWRZYNCZAK: PARALLELIZING THE CODE OF THE FOKKER-PLANCK EQUATION SOLUTION 119

TABLE I
THE USED CIŚ MACHINE CHARACTERISTICS.

Feature Specification

Model Intel S2600TP
CPU Intel Xeon(R) CPU E5-2680v2
CPU frequency 2.8Hz, up to 3.6GHz in turbo mode
CPUs per node 40
RAM per node 128 GB, DDR3
Interconnect 1 x Ethernet (1Gbit/sec per port)

0 200 400 600 800 1000

Number of CPU

0

10

20

30

40

50

60

70

80

90

100

E
ff

ic
ie

n
c
y
 E

 [
%

]

PRL()

Calculation time

Whole Time (with initialization)

Fig. 3. The efficiency of the FPE solution in ver Julia 0.6.2 on CIŚ cluster.

both the PRL() and PRLBin() functions parallel execu-

tion times. The binning procedure has the most substantial

contribution to computing time. We see that the execution time

decreases with CPUs number quite steady, simultaneously,

the time for initialization and collecting the data increases,

because more communication between the nodes is required.

The Fig. 2 presents the speedup. We can see that the presented

method of parallelization gives a good sublinear speedup. The

speedup is behaving very stable and follows a straight line

starting from 1 node (40 CPU). Up to one node, the line

declines from a straight line. The reason might be that the other

tasks overloaded the free CPUs consuming large memory.

The corresponding efficiency rate presents the Fig. 3. The

efficiency curve shows a negative gradient as the efficiency

reduces with an increased number of processors. It stabilizes

starting from 80 CPUs up to 480 CPUs at level of 28%, then

decreases up to 21%. This metric measures the effectiveness

of parallel algorithm concerning the computation time. These

results show also that the application of the parallelization

based on the distributed arrays is quite efficient in Julia.

V. SUMMARY

We have implemented the proposed method in the new

high-level Julia programming language. Parallelization of the

code is based on decomposing the problem into a subset

of independent tasks versus the number of simulated pseu-

doparticles. We recognized Julia as a very suitable intuitive

tool for parallel implementation. We have analyzed the HPC

performance of Julia as the speedup and efficiency with the use

of the CIŚ cluster. We can conclude that the performance of
Julia code utilizing the distributed arrays is quite good. More-

over, application of the Julia built-in parallelization methods

based on remote references and remote calls does not require

from the user much effort or additional work/knowledge on

serialization and message passing between workers. These

features allow recommending Julia in HPC calculations in the

cases when results should be archived relatively quickly and a

small amount of time can be taken for the code parallelization.

ACKNOWLEDGMENT

Calculations were performed at the Świerk Computing Cen-

tre being a part of the National Centre for Nuclear Research.

REFERENCES

[1] Rei, L., Carvalho, S., Alves, M., Brito, J., A look at dynamic languages,
Tech. report, 2007, Faculty of Engineering University of Porto.

[2] The Julia Language https://julialang.org/
[3] Bezanson J. et. al., Julia: A Fresh Approach to Numerical Computing,

SIAM Review, vol. 59, 1 (2017) 65-98
[4] GitHub https://github.com/JuliaLang/julia
[5] The Jupyter Project, http://jupyter.org/
[6] J. Bezanson, Abstraction in Technical Computing, Ph.D. thesis, Mas-

sachusetts Institute of Technology, MA, 2015.
[7] Bezanson J., S. Karpinski, V. B. Shah, and A. Edelman, Julia: A Fast

Dynamic Language for Technical Computing, preprint, arXiv:1209.5145
[cs.PL], 2012.

[8] Lattner C., Adve V., LLVM: A compilation framework for lifelong
program analysis & transformation. In: Proceedings of the international
symposium on Code generation and optimization: feedback-directed and

runtime optimization. IEEE Computer Society, 2004, 75
[9] Distributed Arrays Packadge https://github.com/JuliaParallel/

DistributedArrays.jl
[10] Risken,H., The Fokker–Planck Equation Method of Solution and Appli-

cations, SpringerVerlag,Berlin,Heidelberg, 1989
[11] Moraal H , Cosmic-Ray Modulation Equations, Space Science Re-

views,2013, vol.176, 299–319 doi:10.1007/s11214-011-9819-3
[12] Parker E. The passage of energetic charged particles through interplan-

etary space, Planetary and Space Science, 1965, vol.13, 9-49
[13] Wawrzynczak A., Alania M.V., Numerical Solution of the Time and

Rigidity Dependent Three Dimensional Second Order Partial Differential
Equation, Lecture Notes in Computer Science, 2010, vol.6067, pp. 105–
114, doi: 10.1007/978 − 3− 642 − 14390 − 812

[14] Wawrzynczak A, Modzelewska R and Gil A, Stochastic approach
to the numerical solution of the non-stationary Parker’s transport
equation, Journal of Physics: Conference Series, 2015, vol. 574,
012078,doi:10.1088/1742-6596/574/1/012078

[15] Wawrzynczak A, Modzelewska R and Gil A, The algorithms for forward
and backward solution of the Fokker-Planck equation in the heliospheric
transport of cosmic rays, Lecture Notes in Computer Science,2018, vol.
10777, 14–23, doi:10.1007/978-3-319-78024-5-2

[16] Gardiner C.W., Handbook of stochastic methods. For physics, chemistry

and the natural sciences, Springer Series in Synergetics, 2009
[17] Kloeden P E, Platen E, Schurz H , Numerical solution of SDE through

computer experiments, Springer–Verlag Berlin Heidelberg, 1992
[18] Alania M. V., Stochastic Variations of Galactic Cosmic Rays, Acta

Physica Pol. B, 2002, vol.33(4), 1149–1166
[19] Cluster Manager Packadge https://github.com/JuliaParallel/

ClusterManagers.jl
[20] Amdahl, G.M., Validity of the single-processor approach to achieving

large scale computing capabilities, in: Proc. Am. Federation of Infor-
mation Processing Societies Conf., AFIPS Press, (1967) 483-485.

120 COMMUNICATION PAPERS. POZNAŃ, 2018

