
An effective sparse storage scheme for

GPU-enabled uniformization method

Beata Bylina, Jarosław Bylina, Marek Karwacki

Marie Curie-Skłodowska University, Institute of Mathematics,

Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Email: {beata.bylina,jaroslaw.bylina}@umcs.pl

Abstract—The authors developed a GPU approach to the
uniformization method for the computing transient solution of
Markov models. The authors use two techniques to reduce the
memory size of storing matrices. One of them is a modification
of a storage sparse matrix format HYB; second is to utilize two
GPU cards and the multicore CPU. The modified HYB format
is suitable for sparse Markovian transition rate matrices and
oversized matrices on single GPU, also improving computation
performance at the same time. The use of two GPUs enables
processing matrices of even bigger sizes.

I. INTRODUCTION

A
POWERFUL tool used widely for modeling a lot of

processes and systems (natural and artificial ones) are

Markov chains.

In [2], we provided details of a heterogeneous (CPU-GPU)

implementation of the uniformization method [6], [11], [12]

for solving Markov chains. Markov chains transition rate

matrices (which are very sparse) were stored with the use

of the HYB format which is a hybrid of other well-known

sparse formats (ELL and COO). The HYB format was chosen

because it gave the best results in experiments described in [1].

However, matrices in question are usually very large and do

not fit into one GPU memory. Thus, in [3], we presented an

implementation of uniformization for many GPU. Notwith-

standing, the communication between GPUs was slow and

the results were not satisfactory. Hence, in [4] we described

an effective storage scheme for Markov chains transition

rate matrices, namely HYBIV, which reduced the memory

requirements and the number of miss caches and thereby

improved the overall performance. That format was not studied

for uniformization though.

This work shows numerical experiments where that format

(HYBIV) is used for uniformization and tested for four groups

of transition rate matrices (from PRISM). It also compares the

HYB format with HYBIV (on 1 and 2 GPUs) and with CSR

(on CPU).

The structure of the article is following. Section II describes

the conducted numerical experiments. Section III presents the

memory usage for formats used in experiments. In Section IV,

the performance time of the experiments is analyzed. Section

V concludes the experiments and the paper.

II. METHODOLOGY OF NUMERICAL EXPERIMENTS

The memory requirements were tested and compared in this

section, as well as the time of the uniformization algorithm,

with the use of three storage schemes:

• HYB — the original format from the CUSP library;

• HYBIV — the modified format;

• the well-known CSR format (as the most common and

often the most efficient format for CPUs), on CPU, with

the use of the MKL library [13].

We were interested in studying and comparing memory

required by the original HYB format and for our modified

HYBIV format — on one GPU and on two GPUs. Also, the

times elapsed by the uniformization method with the use of

these formats for one and two GPUs were compared. The

comparison between times of these formats on GPUs with the

use of the CUSP library and the CSR format on CPU with the

use of the MKL library was done.

All the codes are written in C++. We tested the uniformiza-

tion on CPU and GPU under Linux with gcc and NVIDIA

nvcc compilers with optimization flag -O3. The experiments

were run on an Intel system with 12 cores. The Intel system

has two sockets with six-core Intel Xeon X5650 clocked at

2.67 GHz and 48 GB memory. In the performance evaluation

were used NVIDIA GPUs (2× Tesla M2050 with 3 GB

memory) and libraries: CUDA Toolkit 4.0, CUSP 0.2, MKL

10.3.

We tested the implementations on four widely used bench-

mark models: mutex [7], a Kanban system [5], a cyclic server

Polling system [9], tandem queueing network [10].

These protocols were chosen due to their scalability and

the possibility to verify their properties by numerical solving.

The first model (MUTEX) is generated by the authors, which

allowed scaling up this model. The remaining three models

were generated using PRISM [8] (unfortunately, we were

unable to generate matrices of bigger size), a probabilistic

model checker developed at the University of Birmingham.

Tables I and II present details of test matrices, where:

• name is the name of the matrix with parameters describ-

ing the model

• n is the number of rows,

• nz is the number of non-zero elements,

• nz/n represents the matrix density,

• uv is the number of unique values of matrix’ elements,

• x is the size of the ELL part,

• c is the size of the COO part.
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TABLE I
PROPERTIES OF THE MATRICES FOR THE ‘MUTEX’ MODELS

# name n nz nz/n uv x c

1 MUTEX__N_16__R_4 2517 20949 8.32 654 0 20949

2 MUTEX__N_12__R_7 3302 38966 11.80 1545 0 38966

3 MUTEX__N_12__R_8 3797 47381 12.48 1871 0 47381

4 MUTEX__N_12__R_9 4017 51561 12.84 2030 0 51561

5 MUTEX__N_12__R_10 4083 52947 12.97 2078 0 52947

6 MUTEX__N_12__R_11 4095 53223 13.00 2081 0 53223

7 MUTEX__N_20__R_4 6196 52596 8.49 1259 5 21616

8 MUTEX__N_16__R_5 6885 68997 10.02 2008 6 27687

9 MUTEX__N_20__R_5 21700 223140 10.28 5067 6 92940

10 MUTEX__N_16__R_6 14893 173101 11.62 4943 17 0

11 MUTEX__N_20__R_9 431910 7222550 16.72 132862 21 0

12 MUTEX__N_20__R_16 1047225 21972345 20.98 225590 21 0

13 MUTEX__N_24__R_10 4540386 86052066 18.95 329608 25 0

14 MUTEX__N_24__R_12 9740686 211067278 21.67 364622 25 0

15 MUTEX__N_24__R_13 12236830 278463166 22.76 379255 25 0

16 MUTEX__N_24__R_14 14198086 335339590 23.62 392677 25 0

TABLE II
PROPERTIES OF THE MATRICES FOR THE ‘KANBAN’, ‘POLL’ AND

‘TANDEM’ MODELS

# name n nz nz/n uv x c

17 kanban_sm-1 160 776 4.85 73 0 776

18 kanban_sm-2 4600 32720 7.11 142 5 9845

19 kanban_sm-3 58400 504800 8.64 191 9 25910

20 kanban_sm-4 454475 4434325 9.76 200 10 245084

21 kanban_sm-5 2546432 27006448 10.61 200 11 1268920

22 poll17_sm 3342336 34537472 10.33 51 11 1730158

23 poll18_sm 7077888 76677120 10.83 45 12 2653722

24 tandem_sm-2047 8386560 37724163 4.50 14 5 0

We divide matrices into the COO and ELL parts with the

HYB format using CUSP. With very small matrices format

COO is faster, therefore the ELL part remains empty. In Table

I, there are matrix properties describing MUTEX model; the

matrices differ in size and also in the proportion of COO

and ELL. Six matrices with empty ELL part were chosen,

three matrices with not empty COO and ELL parts and seven

matrices with empty COO part.

In Table II we describe properties of the matrices from three

remaining models: ‘kanban’, ‘poll’ and ‘tandem’. Among the

describe matrices only one has an empty COO part, and only

one an empty ELL part. The other have not empty COO and

ELL parts.

III. GPU MEMORY REQUIREMENTS

Memory usage was checked by the function

cudaMemGetInfo. This function returns the total GPU

memory and free GPU card memory which gives us

information about memory occupation by the application.

The method of the measurement is not precise enough to

enable comparison of such small matrices. It prints total GPU

memory usage, not only of matrices but also all additional

values. The ‘basic’ value of 63 MB consists of not only

explicitly allocated data but also the inner CUDA variables.

It is visible that minimal, constant size is about 63 MB

(for n = 13). The memory usage depends directly on nz.

With small differences in nz it may happen that the memory

use will be smaller for a bigger matrix. It is difficult to

find dependencies of n because the matrices have different

sparsity patterns.

Tables III and IV show the memory usage in MB on

one and two GPUs (respectively) for the ‘kanban’, ‘poll’

and ‘tandem’ models. This memory was counted by function

TABLE III
EXPERIMENTAL MEMORY USAGE (IN MB) ON ONE GPU FOR THE

‘KANBAN’, ‘POLL’ AND ‘TANDEM’ MODELS (Mexp =
HYB

HYBIV
)

# name HYB HYBIV Mexp

17 kanban_sm-1 64.45 65.45 0.98

18 kanban_sm-2 64.45 64.45 1.00

19 kanban_sm-3 69.70 67.82 1.03

20 kanban_sm-4 118.45 95.20 1.24

21 kanban_sm-5 402.60 254.58 1.58

22 poll17_sm 509.73 315.46 1.62

23 poll18_sm 1075.04 621.11 1.73

24 tandem_sm-2047 542.49 334.46 1.62

TABLE IV
EXPERIMENTAL MEMORY USAGE (IN MB) ON TWO GPUS FOR THE

‘KANBAN’, ‘POLL’ AND ‘TANDEM’ MODELS

# name HYB2 HYBIV2

gpu1 + gpu2 gpu1 + gpu2

17 kanban_sm-1 64.45 + 64.45 64.45 + 64.45

18 kanban_sm-2 64.45 + 65.45 64.45 + 64.45

19 kanban_sm-3 69.70 + 68.70 67.57 + 67.57

20 kanban_sm-4 103.95 + 99.32 89.82 + 86.32

21 kanban_sm-5 301.97 + 280.59 217.84 + 197.09

22 poll17_sm 375.61 + 349.98 265.46 + 239.96

23 poll18_sm 757.91 + 703.91 507.37 + 453.37

24 tandem_sm-2047 526.49 + 462.49 406.48 + 342.48

cudaMemGetInfo and therefore we call this memory ex-

perimental. Basing on Tables III and IV we can say that:

• The HYBIV format on larger matrices required almost

twice less memory than HYB which results from exper-

imental data.

• Memory usage per GPU was smaller in HYB2 and

HYBIV2 than in HYB and HYBIV but it was higher by

half because some variables were stored on each GPU.

• The number of non-zeros (nz) and the number of unique

elements (uv) had the biggest influence on the memory

occupation.

IV. TIME

All the processing times are reported in seconds. The time is

measured with an MKL function dsecnd. Computations were

made in double precision. Let us assume that pt = π(0) =
[1, 0, . . . , 0]T . The choice of e1 as the starting vector may

seem too special, but it reflects the fact that we order the state

space by reachability and that the Markov chain starts in the

first state before evolving into other states.

Tables V and VI show run-time on CPU (CSR format,

SpMV operation from MKL library), on one GPU (HYB

and HYBIV formats, SpMV operation from CUSP library),

on two GPUs (HYB2 and HYBIV2 formats, modified SpMV

operation from CUSP library) respectively for t = 10, t = 100
and ε = 10−10 (t and ε are parameters of the uniformization

method), for matrices from ‘MUTEX’ model with numbers:

13, 14, 15 and 16. The bold values denote the fastest compu-

tation times and ‘—’ denotes that the matrices could not be

stored in the device memory.

Figures 1–6 show SpMV run-time (in seconds) on CPU, on

one GPU, on two GPUs for the ‘MUTEX’ model.

On the basis of the charts of run-time it can be concluded

that computation on CPU on CSR format takes the longest
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TABLE V
RUN-TIME (IN SECONDS) ON CPU (CSR, SPMV FROM MKL); ON ONE

GPU (HYB AND HYBIV, CUSP); ON TWO GPUS (HYB2 AND HYBIV2,
CUSP) — THE ‘MUTEX’ MODELS FOR t = 10 AND ε = 10

−10

# name CPU HYB HYB2 HYBIV HYBIV2

13 MUTEX__N_24__R_10 635.18 290.60 213.88 272.15 207.79

14 MUTEX__N_24__R_12 1844.90 — 552.48 757.49 536.78

15 MUTEX__N_24__R_13 1910.35 — — 1048.57 724.38

16 MUTEX__N_24__R_14 3420.17 — — 1314.93 891.61

TABLE VI
RUN-TIME (IN SECONDS) ON CPU (CSR, SPMV FROM MKL); ON ONE

GPU (HYB AND HYBIV, CUSP); ON TWO GPUS (HYB2 AND HYBIV2,
CUSP) — THE ‘MUTEX’ MODELS FOR t = 100 AND ε = 10

−10

# name CPU HYB HYB2 HYBIV HYBIV2

13 MUTEX__N_24__R_10 6293.35 2923.13 2073.12 2758.9 2001.43

14 MUTEX__N_24__R_12 15206.1 — 5386.58 7647.88 5212.61

15 MUTEX__N_24__R_13 20242.1 — — 10628.6 7076.16

16 MUTEX__N_24__R_14 33267.8 — — 13396.4 8767.05
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time, while GPU application speedup the run-time consider-

ably.

The value of the variable l depends on t variable value.

For ‘MUTEX’ model it is worth using two GPUs. Clearly,

computations were done faster for proposed HYBIV format

than for HYB format.

Tables VII and VIII show the time in seconds for the double

precision uniformization method using the HYB and HYBIV

storage formats on one GPU and two GPUs and the CSR
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TABLE VII
SPMV RUN-TIME ON CPU (CSR, SPMV FROM MKL); ON ONE GPU
(HYB AND HYBIV, CUSP); ON TWO GPUS (HYB2 AND HYBIV2,

MODIFIED CUSP) — THE ‘KANBAN’, ‘POLL’ AND ‘TANDEM’ MODELS,
t = 1, ε = 10

−10)

name CPU HYB HYB2 HYBIV HYBIV2

kanban_sm-1 0.01 0.02 0.02 0.01 0.02

kanban_sm-2 0.01 0.02 0.07 0.02 0.07

kanban_sm-3 0.03 0.04 0.12 0.02 0.12

kanban_sm-4 0.25 0.19 0.59 0.06 0.72

kanban_sm-5 1.58 1.04 3.40 0.24 5.98

poll17_sm 21.10 3.75 11.39 2.10 10.73

poll18_sm 35.70 8.37 26.26 4.59 24.59

tandem_sm-2047 1410.19 121.03 482.84 88.31 466.98

storage format from the MKL library on CPU for ε = 10−10,

t = 1 and t = 10 for the other three models - ‘kanban’, ‘poll’

and ‘tandem’. The bold values denote the fastest computation

times.

Run-times on two GPUs are slower than on one GPU for

matrices which nz

n
< 16 (for all matrices ‘kanban’, ‘poll’

and ‘tandem’ models and matrices number from 1 to 10 for

‘MUTEX’ model). There are too few computations to sensibly

use two GPUs. For ‘poll’ and ‘tandem’ models we achieve

considerable computation speedup on one GPU.

The best storage scheme — that is, the fastest and the most

compact — for bigger transition rate matrices is HYBIV2

(HYBIV on 2 GPUs). The HYB storage format performs not

quite efficiently in many cases. It is because the granularity

(one thread per row) of the sparse matrix-vector multiplication

is not fine enough for them, so the bigger the matrix, the better

the utilization of the GPU. The performance of HYBIV was a

TABLE VIII
SPMV RUN-TIME (IN SECONDS) ON CPU (CSR, SPMV FROM MKL); ON

ONE GPU (HYB AND HYBIV); ON TWO GPUS (HYB2 AND HYBIV2)
— THE ‘KANBAN’, ‘POLL’ AND ‘TANDEM’ MODELS, t = 10, ε = 10

−10)

name CPU HYB HYB2 HYBIV HYBIV2

kanban_sm-1 0.01 0.04 0.05 0.01 0.06

kanban_sm-2 0.02 0.05 0.26 0.05 0.26

kanban_sm-3 0.06 0.08 0.30 0.06 0.31

kanban_sm-4 1.06 0.36 1.14 0.20 1.24

kanban_sm-5 6.84 1.80 5.20 0.85 7.90

poll17_sm 197.15 25.98 73.42 18.82 68.49

poll18_sm 330.33 56.86 151.52 40.85 137.82

tandem_sm-2047 14475.40 1220.19 4873.97 898.60 4716.94

little better than HYB, because in HYBIV less data is stored

in slow global memory. Using two GPUs we almost doubled

the performance in comparison to single GPU. For smaller

matrices, HYBIV and splitting data across two GPUs were

not useful.

V. CONCLUSION

In this article, we investigated the use of a modified sparse

memory format on the GPU in a practical problem, namely

calculating probabilities from Markov transition matrices. Our

results showed that in the case of small size matrices, we

did not achieve high performance in the HYBIV format or

significant memory savings. However, the proposed method

reduces the memory size for storing larger matrices. In addi-

tion, the use of HYBIV does not degrade performance and the

use of two GPUs allows the processing of larger matrices than

one GPU. In our future work, we try to transfer codes to the

CUDA version beyond 4 and use streams to optimize overall

performance.
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