
Mining e-mail message sequences from log data

Paweł Weichbroth

Faculty of Management, WSB University in Gdansk,

Grunwaldzka 238A, 80-266 Gdansk, Poland

pawel.weichbroth@hotmail.com

Abstract—Communication by electronic mail (e-mail), once
extravagant, is now the usual way to exchange data and in-
formation. Widely accepted by Internet users, business and
governments, it is claimed to be the key part of the e-revolution.
E-mail systems have been successfully implemented in almost all
computer-aided domains of human interest, providing efficient,
effective and permanent mechanisms of transmission. However,
to date, the capability to exhibit an ordered list (sequence)
of e-mail message senders and recipients, with the respective
duration time between receiving and answering is still lacking.
To fill this gap, in this paper we introduce the SOMF algorithm
for mining such sequences from server log data. We specified
a three-stage approach to comprehensively target the problem.
The first stage concerns a data preparation task in order to
assemble the input for the algorithm. The second, known as data
mining, is the automatic analysis of data input performed in an
unsupervised model by the SOMF algorithm. The third embraces
output (knowledge) visualization, interpretation and evaluation.
The given case study is based on the log data from an operational
STMP server. By design, this simplified example brings about
a better understanding of the solution, indicating one of its
potential applications to identify and eliminate deadlocks in the
realization of business processes. We also tested the efficiency
of the implementation of the algorithm in five independent
experiments on seven datasets, ranging in size. The results show
that mining even 1 million rows is performed in approximately
less than 6 minutes.

I. INTRODUCTION

I
N THE last decade, we have observed that the approach to

information system design is evidently shifting from data to

processes. Effective identification, construction, evaluation and

deployment of mission-critical processes can give a competi-

tive and strategic advantage to an organization [1]. Some argue

that knowledge is still the most important asset to influence

overall performance and the ability to innovate [2], [3], [4].

Knowledge workers utilize information technologies and

their productivity depends on particular computer applications.

The McKinsey Global Institute (MGI), through interviews

with 4200 managers from companies in different businesses,

in July 2012, reported that 28 percent of total work includes

time reading, writing or responding to e-mails [5]. In 2015,

the number of business e-mails sent and received per business

user per day totalled 122 e-mails, and by the end of 2019 is

expected to average 126 messages [6]. Today, there is rising

concern that for some workers the volume of e-mail has grown

to the size which in turn has negative effects on well-being

and performance [7]. The perception of an individual being

unable to find, organize or process his/her e-mails effectively

is defined as the feeling of e-mail overload [8].

Knowledge management has long been a valuable part of

business process architectures and models of various complex

and collaborative domains [9]. A business process can be

defined as a sequence of activities located and bounded in

the frame of a particular organization [10], describing steps

and corresponding tasks assigned and performed by particular

participants (humans or other physical beings), the objective

of which is to achieve a desired result [11]. Speaking from

the margins, Adam Smith’s theory of labour division is still

up-to-date.

Business process design presents assumptions and beliefs

in compliance with specified goals [12]. However, in real-

life scenarios, an empirical business process can suffer from

the following burdens: (1) some participants may not respect

assumptions, their roles or tasks, and in consequence, act in

a different way; on the other hand, even if they do, (2) some

of them may delay performing assigned tasks, intentionally or

not (for instance due to e-mail overload). Thus, one can ask

for an objective method that provides data-driven evidence that

shows how the process is empirically achieved.

In this paper, we investigate one particular activity which

concerns e-mail correspondence between participants, and the

primary focus is to introduce an algorithm, namely SOMF, for

discovering e-mail message sequences from server log data.

In this narrow extent, the obtained knowledge can be used for

conformance checking, which aims to detect inconsistencies

between the model of processes and their corresponding exe-

cution. In particular, it can be a way to detect communicated

burdens on the one hand, and act as a starting point to discuss

possible improvements on the other.

We devote our contribution in the field of data mining

algorithms, to extracting sequences from data. From a broader

perspective, the elaborated approach can be seen as an au-

tonomous component of competitive intelligence [13], which,

being a strategic tool producing actionable intelligence, in

turn supports organizations in the decision-making process

[14], improves their performance [15], and eventually fosters

a competitive advantage [16].

The rest of the paper is organized as follows. The next

section provides the problem statement for mining sequences

from data. In Section III, the knowledge discovery process is

outlined and specified in the frame of the research agenda, and

divided into three subsections. In the next section, the process

is exemplified by the case study. The last section closes the

paper by presenting and discussing the obtained results from

testing the efficiency of the algorithm.

Preroceedings of the Federated Conference on

Computer Science and Information Systems pp. 751–754

c©2018 751

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 845–848

DOI: 10.15439/2018F325

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 845

II. THE PROBLEM STATEMENT

As stated in the previous section, this research study in-

troduces the concept of mining e-mail message sequences

from server log data. The problem can be epitomised by three

main aspects: (1) data preparation, (2) data mining, and (3)

knowledge visualization, interpretation and evaluation.

This study mainly focuses on solving the first and second,

by explicitly formulating algorithms devoted to each one. To

achieve this goal, firstly, we formulate and provide all the

relevant definitions.

Definition 1. A dataset D = {t1, t2, . . . , tn} is a set of

transactions, where each transaction is described by four

attributes: message-id, time, sender and recipient.

Definition 2. A message mi is an abstract term that may

represent a document or e-mail uniquely identified by the

message-id.

Definition 3. The time of the transaction tti is the recorded

execution time of the performed action by the sender.

Definition 4. A set P = {p1, p2, . . . , pm} is the finite

collection of participants, which can be both message senders

or recipients.

Definition 5. An event e is a pair (x → y) of the sender x and

the participant y, where x 6= y.

Definition 6. A weight wi is the difference between execution

times tti and tti−1 of two subsequent transactions, where

w1 = 0, and for i = 1, 2, . . . , n.

Definition 7. A sequence s ≤ (e1) : w1, (e2) : w2, . . . , (ek) :
wk) of events is an ordered list of nonempty events; for each

integer k = 1, 2, . . . , n; a sequence of the length k is called a

k-sequence.

Definition 8. A directed, weighted and labelled graph G is a

tuple (V , E, w) consisting of a finite set V , together with a

subset E ⊆ V xV xR. The elements of V are the vertices of

the graph, and the elements of E are the arrows of the graph.

An arrow of a graph is an ordered pair [x, y], where x and

y are the vertices of the graph, and w is the associated real

number of the pair, called its weight, where x 6= y. The labels

for vertices are a subset L of P .

To visualize knowledge, a user can use any application

capable of processing data, which as a result, displays the

adequate drawing. The remaining two tasks are usually asso-

ciated with the specific context of the problem domain, and

therefore should not be generalized.

III. THE KNOWLEDGE DISCOVERY PROCESS

In our approach, the process of knowledge discovery is di-

vided into three stages, followed one by one and independently

performed (1→ 2→ 3), in a similar way to well-recognized

and accepted models, such as KDD or CRISP-DM.

A. Data preparation

The data preparation stage concerns sorting objects. In the

first step, a new message list is initiated. Next, a data set D is

scanned, and the total number of rows n is determined. In the

body of the loop (4−6), where n is the termination condition,

four attributes are selected from each row and form a new

object, inserted into the message list. Next, a message list is

grouped by the message-id, and sorted in ascending order by

a time stamp. The corresponding pseudocode is given below.

Input: D

1 Initiate New List(Message-List);

2 Read(D);

3 for i := 1 to n

4 select MessageId, Time, Sender, Recipient from D;

5 create Object(Object-Message);

6 insert to List(Message-List);

7 end;

8 group List(Message-List) by MessageId and

9 sort ASC List(Message-List) by Time;

Output: a Message-List.

B. Data mining

The message list is now the input with no parameters for

the SOMF algorithm. The pseudocode below shows the main

idea lying behind its construction.

Input: List(Message-List)

1 while i < Count List(Message-List) do

2 CheckMessage:= read Object.MessageId[i];

3 MessageTime:= read Object.Time[i];

4 for each unique object from List(Message-List)

5 MessageTime:= read Object.Time[i];

6 add vertex(sender) to Sender List(Adjacency-

List[0]);

7 add vertex(sender) to Sender List(Adjacency-

List[1]);

8 weight:= (MessageTime[i] – MessageTime[1]);

9 add vertex(recipient) & weight to Recipient

List(Adjacency-List[0]);

10 end;

11 for each object from List(Message-List)

12 if vertex(sender) exists in List(Adjacency-List[i]) then

13 weight:= (MessageTime[i] – MessageTime[1])

14 add vertex(recipient) & weight to Recipient-

List(Adjacency-List[i+1]);

15 if vertex(sender) does not exist in List(Adjacency-

List[i] then

16 add vertex(sender) to Sender-List(Adjacency-

List[i+1]) and

17 weight:= (MessageTime[i] – MessageTime[1])

18 add vertex(recipient) & weight to Recipient

List(Adjacency-List[i+1]);

19 if vertex(recipient) does not exist in List(Adjacency-

List[i]) then

20 add vertex(recipient) to Sender-List(Adjacency-

List[i+1]);

21 end;

22 if Object.MessageId[i] 6= Object.MessageId[i+1] then

23 create Graph(MessageId);

24 i++
25 end.

Output: A set of graphs.

752 PREROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018846 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

In the body of the first loop (2–9), for each unique object

from the message list, the time of the first sent message

is determined; next, a new vertex, representing the message

sender, is created and added to the adjacency list on the left

side; a new vertex, representing a message recipient, is created

and added to the adjacency list on the left side; the weight

between the top vertex and the vertices one level down equals

zero.

In the body of the second loop (12–22), if the vertex

of the sender exists in the adjacency list, then the weight

is calculated, and a new vertex, representing a recipient, is

created and added along with the weight to the adjacency

list on the right side; if the vertex representing the sender

does not exist, then a new vertex is created and added to the

adjacency list on the left side; the weight is calculated and

a new vertex for each recipient is created and added along

with the weight to the adjacency list on the right side; if the

vertex representing a recipient does not exist, then a new vertex

for each recipient is added to the adjacency list on the left

side. Finally, if the identifier of the next object is different,

then a graph representing a unique e-mail message sequence

is created.

We used an adjacency list as the graph representation. This

was the most suitable form for us to use. Our goal is neither to

prove its appropriateness or efficiency nor to investigate differ-

ent representations. Having said that, however, if we take into

account the results obtained from implementation feasibility

and performance testing of the algorithm, the correctness of

choice should not be a subject for long discussion.

C. Knowledge visualization, interpretation and evaluation

Knowledge visualization aims to use visual representation

to facilitate the understanding of discovered complex data

structures [17]. Knowledge interpretation is an arbitrary con-

struct of the information perceived by an individual who

aims to specify its meaning by incorporating context, logic

and experience [18]. Knowledge evaluation is a subjective

judgment on its applicability and validity to solve a particular

problem [19]. These three tasks are wider discussed in the next

section, having the input, i.e. visualized knowledge, already

generated.

IV. CASE STUDY

Let us consider a dataset D = {t1, t2, t3, t4, t5} of five

transactions and a dataset U = {a, b, c, d, e} of five users

that are both senders and recipients, whose e-mail account

names equal their names in the gdansk.com domain. Let

M = {m1} be a set of one message m1, represented by the

unique identifier m.1. Each transaction is described by four

attributes, i.e. message-id, time stamp, sender and recipient.

The first transaction t1 of the input for the data preparation

stage is shown below.

Message-ID: <m.1@gdansk.com> Date: Fri, 19 Aug 2016

11:30:00 From: =?ISO-8859-2?Q?a?=<a@gdansk.com> To:

=?ISO-8859-2?Q?b?= <b@gdansk.com>

To simplify the log data, on the same day, in the one

message domain, for the first user, it takes 5 minutes to pass

over the message, and for each subsequent user, five minutes

more. The message list is depicted in Table 1. Each transaction

can be interpreted analogously to the first one: “at 11:30 a.m.

the user a (sender) sends the e-mail to the user b (recipient)”.

In the second stage, the algorithm scans the message list,

and for the first transaction t1 determines the execution time

of the message sent; next, the sender vertex a and recipient

vertex b are added respectively to the first and second position

on the left side of the adjacency list; only for t1 the weight is

not calculated and equals zero; the sender vertex b is added to

the first position on the right side of the adjacency list and the

weight (0) is assigned. The sender vertex b exists on the list;

the weight is calculated and the vertex recipient c is added

with the weight (5) assigned. The sender vertex c is added

to the third position on the left side of the adjacency list; the

weight is calculated, and vertices d and e are added on the

right side with the weight (10) assigned. The sender vertex e

is added to the fourth position on the left side; the weight is

calculated and the recipient vertex a is added on the right side

with the weight (15) assigned. The sender vertex a exists, the

weight is calculated and the recipient vertex e is added as the

second on the right side with the weight (20) assigned.

a

b

c

d e

0

5

10 10

20 15

a - b 0

b - c 5

c - d 10 −→ e 10

d - null

e - a 15

a - d 20

Figure 1. The graph G and the adjacency list

The discovered graph G can be interpreted literally as the

following sequence of events:

• (e1): at a given time, a message was sent from participant

a to b;

• (e2): five minutes later, a message was sent from partic-

ipant b to c;

• (e3): ten minutes later, a message was sent from partici-

pant c to d and e;

• (e4): fifteen minutes later, a message was sent from

participant e to a;

• (e5): twenty minutes later, a message was sent from

participant a to d;

PAWEŁ WEICHBROTH: MINING E-MAIL MESSAGE SEQUENCES FROM LOG DATA 753PAWEŁ WEICHBROTH: MINING E-MAIL MESSAGE SEQUENCES FROM LOG DATA 847

TABLE I. THE MESSAGE LIST

transaction (ti) time stamp (hh:mm) sender (name) recipient (name)

t1 11:30 a b

t2 11:35 b c

t3 11:45 c d, e

t4 12:00 e a

t5 12:20 a d

TABLE II. THE ALGORITHM EFFICIENCY ACCORDING TO DATASET SIZE

D file size test1 test2 test3 test4 test5

no. of rows (KB) (mm:ss.ms) (mm:ss.ms) (mm:ss.ms) (mm:ss.ms) (mm:ss.ms)

10 2 01.00 01.00 01.03 01.01 01.01

100 18 01.01 01.01 01.01 01.02 01.01

1 000 182 01.06 01.06 01.06 01.06 01.07

10 000 1827 01.59 01.59 01.59 01.59 01.61

100 000 18262 07.52 07.44 07.43 07.50 07.51

500 000 91309 38.96 46.19 40.30 38.99 39.49

1 000 000 182618 05:51.89 05:32.95 05:32.75 05:32.95 05:24.26

V. EFFICIENCY EVALUATION

The SOMF algorithm has been implemented in C#. Firstly,

to verify its correctness, we prepared and used a dataset in such

a manner that allowed us in advance to determine the output.

Secondly, we implemented and executed a stand-alone script

which randomly generated seven datasets, ranging in size from

10 to 1 million records. Finally, we separately performed five

tests on each dataset, using a mobile computer equipped with

an Intel Core I5 (3230M @ 2,6 GHz) processor, 4 GB (DDR3)

RAM, and Microsoft Windows 8.1 (x64). The obtained results

are summarized in Table 2.

If we take into account only the first four datasets, then the

mining duration does not exceed 2 seconds and is comparably

the same. Differences can be noticed in the last two datasets;

however, the standard deviation is again relatively low, respec-

tively 2,87 and 8,95 seconds. Now, if we consider the largest

dataset, such a total number of rows cannot represent one hy-

pothetical message sequence because it is simply too complex

to be realized in any real-life scenario. Yet, conversely, in our

opinion, the duration of less than 6 minutes is relatively low,

if compared to other typical domains of the application of data

mining algorithms. To sum up, the algorithm efficiency is at

an acceptable level.

REFERENCES

[1] L. Mancilla-Amaya, C. Sanin, C., and E. Szczerbicki, "Using Human
Behavior to Develop Knowledge-Based Virtual Organizations". Cyber-

netics and Systems: An International Journal, 41(8), pp. 577–591, 2010.
[2] M. Owoc, and K. Marciniak, "Knowledge management as foundation

of smart university". Federated Conference on Computer Science and
Information Systems. IEEE, pp. 1267–1272, 2013.

[3] M. Hernes, "Knowledge Integration Method for Supply Chain Man-
agement Module in a Cognitive Integrated Management Information
System". In: International Conference on Computational Collective
Intelligence, pp. 81–89. Springer, 2016.

[4] M. Pondel, and J. Korczak, "A view on the methodology of analysis and
exploration of marketing data", 2017 Federated Conference on Computer
Science and Information Systems. IEEE, pp. 1135–1143, 2017.

[5] M. Chui et al., "The social economy: Unlocking value and productivity
through social technologies". McKinsey Global Institute, pp. 46, 2012.

[6] The Radicati Group. A Technology Market Research Firm. "Email
Statistics Report 2015-2019", p.3. London (UK) 2015.

[7] K. Reinke, and T. Chamorro-Premuzic, "When email use gets out of
control: Understanding the relationship between personality and email
overload and their impact on burnout and work engagement". Computers
in Human Behavior, 36, pp. 502–509, 2014.

[8] L. A. Dabbish, and R. E. Kraut, "Email overload at work: An analysis
of factors associated with email strain". In Proceedings of the ACM
conference on computer supported cooperative work (CSCW), pp. 431–
440. New York, ACM Press 2006.

[9] P. Wang, C. Sanin, and E. Szczerbicki, "Prediction based on integra-
tion of decisional DNA and a feature selection algorithm RELIEF-F".
Cybernetics and Systems, 44(2–3), pp. 173–183, 2013.

[10] A. Przybyłek, "The Integration of Functional Decomposition with UML
Notation in Business Process Modelling". In: Advances in Information
Systems Development, pp. 85–99. Springer 2007.

[11] B. Marcinkowski, and M. Kuciapski, "A business process modeling
notation extension for risk handling". In: A. Cortesi, N. Chaki, K. Saeed,
and S. Wierzchoń (Eds): Computer Information Systems and Industrial
Management, pp. 374–381, Springer 2012.

[12] A. Przybyłek, "A Business-Oriented Approach to Requirements Elici-
tation". In: 9th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE’14), Lisbon, Portugal, 2014.

[13] R. Pellissier, and T. E. Nenzhelele, "Towards a universal competitive
intelligence process model". South African Journal of Information
Management, 15(2), 1–7, 2013.

[14] D. Heppes, and A. Du Toit, "Level of maturity of the competitive
intelligence function: Case study of a retail bank in South Africa". Aslib
Proceedings: New Information Perspectives 61(1), 48–66, 2009.

[15] B. Huijbrechts, M. Velikova, S. Michels, and R. Scheepens, "Metis1: An
integrated reference architecture for addressing uncertainty in decision-
support systems". Procedia Computer Science, 44, 476–485, 2015.

[16] R. Brody, "Issues in defining competitive intelligence: An exploration",
Journal of Competitive Intelligence and Management 4(3), 3–16, 2008.

[17] J. Korczak, H. Dudycz, and M. Dyczkowski, "Design of financial
knowledge in dashboard for SME managers". In: Computer Science and
Information Systems, pp. 1123–1130, IEEE 2013.

[18] M. Owoc, P. Weichbroth, and K. Żuralski, "Towards better understanding
of context-aware knowledge transformation". In: Computer Science and
Information Systems, pp. 1123–1126, IEEE 2017.

[19] M. L. Owoc, "Wartościowanie wiedzy w inteligentnych systemach
wspomagających zarządzanie". Prace Naukowe Akademii Ekonomicznej
we Wrocławiu. Seria: Monografie i Opracowania. Wrocław 2004.

754 PREROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018848 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

