
Model Driven Architecture and Agile

Methodologies: Reflexion and discussion of their

combination

Imane ESSEBAA

Computer Science Laboratory of Mohammedia,

Faculty of Sciences and Technics Mohammedia,

Hassan II university of Casablanca, Mohammedia

Email: imane.essebaa@gmail.com

Salima CHANTIT

Computer Science Laboratory of Mohammedia,

Faculty of Sciences and Technics Mohammedia,

Hassan II university of Casablanca, Mohammedia

Email: salima.chantit@gmail.com

Abstract—Model Driven Architecture (MDA) and Agile Meth-
ods (AM) are two principal domains that are in the way of
improvement and evolution in order to facilitate the development
of IT projects. However, these areas evolve separately despite
the great number of research that focuses on improving project’
development techniques. Thus, our proposal aims to provide a
method describing how can Agile Methodologies benefits from
MDA, and how MDA can automate activities within AM. In this
paper, we present a state of the art of existing works that combine
a Model Driven Architecture approach and Agile Methodologies.
Then we present our analysis of this combination to identify
with which Agile methods, the MDA approach is more adequate.
We also propose our vision about how to combine MDA with
the selected Agile Methodologies and evaluate the strengths and
weaknesses of each methodology during its combination with
MDA and finally we present a case study of Rental Car Agency.

I. INTRODUCTION

T
HE constant evolution of information system leads com-

panies to search how to improve their productivity, their

effectiveness and their profit margins in order to stay compet-

itive. They are in a permanent quest for reliable tools that will

cover the maximum of features.

In this context, two major domains have emerged in recent

years and made an important place in companies’ business:

Model Driven Architecture and Agile Methodologies. On one

hand, MDA has emerged as a new paradigm of software

development that tends to use models as main artifacts in

a higher level of abstraction, as well as the separation of

the functional and technical specification. Indeed MDA has

changed the view of software development: while classic

methods concentrate on writing code, the MDA proposes a

new method that focuses on analysis phases.

On the other hand, Agile Methods focus on the definition of

best practices of information systems programming and their

integration in the development process. It is an approach that

defines a disciplined management of software development

projects: Agility recommends an iterative and incremental

method to develop software systems.

Agility puts the customer at the center of the development

process of a project [1] and aims to develop software projects

in the shortest possible time that satisfies all customer require-

ments and take into account requirements change, which is a

fundamental principle of Agility.

Several works have been made on these two domains that

help them to evolve and improve but separately. However, few

of them focus on how to combine MDA and Agility.

The main idea in this paper is to present a state of the art of

previous studies made in the context of combination of MDA

and Agility.

We propose in this paper an analysis of Agile methodologies

to define which are more appropriate to combine with MDA.

We also give propositions on how to combine MDA and

some Agile methodologies that we find appropriate to this

combination.

This paper is organized as follows: after this introduction,

the second section contains an overview of concepts in which

this work is based, namely: MDA, Agile Methodology and

RUP. Section 3 presents related works made in the context

of combination of MDA and different agile methodologies. In

section 4 we describes our analysis and proposed approach to

combine MDA with V lifecycle in Scrum sprints. Section 5 is

reserved to some perspectives of our future works, and finally

we finish by a conclusion.

II. OVERVIEW OF CONCEPTS

A. Model Driven Architecture

The MDA (Model Driven Architecture) is an initiative of

the OMG (Object Management Group) released in 2000 [2]

The basic idea of the MDA approach is the separation of the

functional system specifications and its implementation on a

particular platform.

The MDA approach lies in the context of the Model Driven

Engineering which involves the use of model and meta-

models in the different phases of development lifecycle of an

application[3], MDA defines three viewpoints:

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 939–948

DOI: 10.15439/2018F358

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 939



• CIM (Computation Independent Model): the objective of

this model is to represent the application in their envi-

ronment independently of any computation information.

• PIM (Platform Independent Model): the role of the PIM

is to give a static and dynamic vision of the application

regardless of the technical conception of it.

• PSM (Platform Specific Model): This model depends on

technical platforms, it represents a template of code that

facilitates code generation.

B. Agile Methodologies

The ’ Agile Manifesto ’ published in in February 2001 [4]

based on analysis of previous experiences that allow to propose

good practices to developers, The agile principle introduced by

the agile manifesto is related to time invested in analysis and

design.[5]

Agility, a paradigm for a new vision of an organization,

asserts itself as an alignment and coherence tool between

internal forces and external challenges that give dynamism

to an enterprise [6]. Agile methodology is a loom to project

management, classically used in software development to

manage IT projects development. It helps teams to respond

to the changeability of building software through incremental,

iterative work cadences, known as iterations.

III. STATE OF THE ART

The basic idea behind both Model Driven Engineering and

Agile Methodologies is to create systems that can respond

quickly to frequent changes, they propose different approaches

resolve mentioned requirements; the agility focus on a method-

ological aspects that concerns an individual product, while

Model Driven Engineering is more concerned by an architec-

tural aspect defined by its specific variant MDA (Model Driven

Architecture) that aims to separate system features from its

implementation in technical platform.

Being aware of the importance of the agility and MDA in the

development of software system, many works were focused on

combining these areas, in this section we present some works

previously made on this context.

In their paper [7] S.Hansson and al. collects different works

made in practice on the context of the Model driven Agile

Development and analyse the result of each approach, this

approach consider that the basic idea behind the Model Agile

Development approach is to benefit from practices proposed

by agile methodologies, authors of this paper summarize the

empirical literature made in the MAD context in order to

extarct the lacks of this domain.

P.Cáceres and al. proposes in their paper [8] a case of study

of an Agile Model Driven Development integrated in MIDAS

framework which combines Model Driven Architecture ap-

proach and Agile practices based on eXtreme Progrming (XP).

MIDAS is a model driven methodology for Web Information

Systems (WIS) agile development, the architecture of MIDAS

combines both MDA and n-tiers architecture, this combination

is in order to propose a model of a WIS respecting the

independence of the platform according to the MDA and in

the same time take account of a middleware architecture of the

Web services development platforms, while the process of the

MIDAS methodology framework is based on Agile Modeling

Driven Development practices that aims to write code progres-

sively in agreement with the model. We mention that authors

in this paper details the architecture of the MIDAS framework

while it does not explain how the Agility is integrated in the

process of MIDAS tool, moreover we note that the XP practice

is dedicated specifically to the development phase during the

software system development, which allows us to note that

this approach does not implement all the aspect of the MDA

approach.

In their paper [9] M.B.Nakicenovic presents an Agile Model

Driven Development process developed in consideration of

lean and agile practices, the paper aims to provide an approach

that shows that MDD and agility can work together exploiting

the benefits of each domain, the approach is applied on both

forward and reverse engineering in order to respond to two

issues; accelerating the re-engineering process of the MDD

solution, how benefit from agility and lean while producing

MDD solution within a short time frame. The paper describes

an approach that combines MDD and agility based on lean,

the implementation of the approach was made on the Mar-

ket Server Capabilities (MSC) project proposed by SunGard

company.

F.P.Basso and al. presents an approach that combines a

Model Driven Architecture approach and Agility in the context

of Rapid Application Prototyping (RAP) [10]; RAP allows

the validation of software requirements before acceptance tests

which in order to obtain a quick feedback from clients. This

approach aims to take account of the agility principles in the

context of MDA based on RAP methodology to generate front

end and models based on MVC pattern, the implementation

of this approach was applied on the generation of the Web

Information System based on scrum methodology and MDE

practices. The authors aims to ensure several benefits within

this approach; better organization of source code, simplicity of

changing the source code, simple and rapid design of models,

and they still expecting to benefits from reuse of designed

models. We note that this approach can’t be generalized to

all types of software systems, indeed it was dedicated to

develop Web Information System, we also mention that in

this approach authors do not detail how to integrate the MDA

and scrum, i.e. they do not propose where to use each level

of MDA in scrum methodology.

V.Kulkarni and al. discuss and argue in their paper [11]

why agile methodology can’t be used with Model Driven

Engineering, then they propose a modification to make on agile

methodologies in order to combine them with MDE. Indeed

this paper describes a new Software Development process that

combines Scrum and MDE, in this approach authors proposed

the use of Meta-Sprints that run in parallel to Sprints in

order to validate models, they suggest two to three months

as timescales for meta-sprints where clients must provide

feedback on models and prototyping , which is opposite to

agility principles; indeed agility recommends that the feedback

940 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



of clients must be in period less than what was proposed in

this approach.

H.Alfraihi in its paper [12] analyses the challenge of

combining Agility and Model Driven Development, the paper

describes an approach that aims to increase the adaptability

of these domains by proposing a framework that facilitate

Agility and MDD, this approach proposes recommendations,

guidelines, and procedure to can use Agile MDD in practice.

We note that even if this approach proposes some practices

to implement the Agile MDD it does not take account of

the architecture of the MDD, Model Driven Architecture, and

how to benefit from the different abstraction levels to produce

sustainable software systems.

In the paper, H.Wegener [13]presents a study made on

the context of the combination of agility and Model Driven

Development, then to propose issues that show how this

combination affect organizations, process and architecture, this

paper presents a comparison of different approaches proposed

to use Agility and Model Driven Development.

In their paper [14] V.Mahe and al. presents their first

reflections about the fusion of the MDA and Agility in order

to have a combination with improved properties than the

additions of the two approaches, they propose a canvas based

on processes and agile practices in both modeling and meta-

modeling level.

V.Nikulsins and al. propose an implementation of the MDA

into RUP as presented in figure bellow:

• CIM covers the Business Model and requirements as well

as planning for the development of the PIM metamodels.

• Elaboration is the main phase impacted by the MDA

project, which is covered by PIM.

• PIM also cover part of the construction.

• In the construction phase the transformation of PIM

model to PSM model starts.

• PSM covers transition phase

Burden et al. [15] have conducted a systematic literature

review by proposing two research questions with the goal

to investigate the empirical evidence of the state of art of

integration of agile and MDD approaches and what is lacking

in that area. The study shows that Agile MDD is still in its

early stages and there is a need for detailed experience reports.

In their paper [16], H.Alfraihi and al. presented a systematic

literature review to complement the results of [15] where

fifteen primary studies were reviewed. The main characteristics

of Agile MDD approaches besides their benefits and problems

are highlighted. Both systemic literature review studies provide

broader coverage, but they are less in-depth than interview

study.

Eliasson and Burden [17] have conducted an exploratory

study at Volvo Car Corporation (VCC). At VCC, individual

teams adopt Agile practices with MDD while the organisa-

tion at large still use plan-driven process. The aim of this

exploratory study is to investigate how Agile practices can

be extended to the organisation level. In specific, it aims to

answer the following question: Which are the challenges and

possibilities for a more Agile software development process on

a system level?. They interviewed 17 engineers to identify the

challenges of the current process at VCC and how to improve

it. The results of the interviews revealed two main challenges:

first, the developers have to wait long before getting feedback

which forced them to make premature assumptions leading

to unwanted side-effects and faults; second, the use of MDD

tools force developers to employ a waterfall process. The

main finding of this study is that there is a need for a more

Agile way of working to obtain earlier and faster feedback.

They conclude that Agile MDD can be useful in automotive

development. However, their study is context specific to VCC

to examine its case and limited to automotive domain which

is difficult to be generalised.

IV. OUR PROPOSITIONS

To ensure the good combination of MDA and agility we

have to answer four questions:

• What are the reasons that motivate integrating Agile

practices and MDD processes?

• How are Agile practices and MDD integrated?

• What are the benefits of integrating Agile and MDD on

development process?

• What are the challenges of integrating Agile and MDD?

In their paper R.Matinnejad [18] defined that the integration

of Agile in MDD process can be developed by:

• MDD-based: introducing Agile method to a current MDD

process which is called.

• Agile-based: applying MDD process to an agile method.

• Assembly-based: integrating some fragments from Agile

and other from MDD to develop the process

Although, both Agile and MDD processes have been intro-

duced for more than a decade, the basic principles on how to

integrate them together are not well-known. In this regard, the

use of agile and MDD do not follow a well-defined process

or systematic guidelines to guide through development. As a

consequence, development teams introduce practices of Agile

and MDD in an ad-hoc manner or based on their personal

experiences.

In following, we discuss our reflection and analysis about

different software methodologies and also agile ones and the

possibility of their combination with MDD depending on each

methodology criteria. To this end, we choose the most popular

and used methodologies:

• eXtreme Programing

• 2TUP

• RUP

• V Life Cycle

• Scrum

A. eXtreme Programing

eXtreme Programming is a discipline of software develop-

ment based on values of simplicity, communication, feedback,

and courage. It works by bringing the whole team together

in the presence of simple practices, with enough feedback to

enable the team to see where they are and to tune the practices

to their unique situation.

IMANE ESSEBAA, SALIMA CHANTIT: MODEL DRIVEN ARCHITECTURE AND AGILE METHODOLOGIES 941



The eXtreme Programming is a software development dis-

cipline that organize people to develop higher quality software

system and be more productive. XP defines four activities that

are performed with software development process: Coding,

testing, listening and designing. [19]

Analysing the definition and principles of the eXtreme

Programming we deduce that this process is more appropriate

to development phase in the process of software development.

According to XP and MDA approaches principles we de-

duce that it is not possible to combine both of these domains

taking into account the fact that XP is dedicated to manage

the development phase while MDA approach is an architecture

based on different level of conception using models to finally

generate automatically the source code.

B. 2TUP: Two Track Unified Process

2TUP is an instantiation of the UP (Unified Process) pro-

posed by Valtech company, it takes into account constraints of

rapid business changes of software system.

The fundamental principle of the 2TUP is to decompose

and treat at the same time the business requirements, following

two axis; functional one and technical one. At the end of the

evolutions of the functional model and technical architecture,

software development phase consists on combining the results

of these two branches of the process as described in the figure

bellow.

Fig. 1: 2TUP methodology

Analyzing 2TUP methodology we conclude that it can’t be

combined with MDA, indeed the MDA approach proposes

to generate technical conception from functional one through

model transformations which are the core of MDA approach.

There are two types of model transformations; Model to Model

(CIM to PIM and PIM to PSM) , and Model to Text (PIM to

source code), while in 2TUP methodology the functional and

technical conception work in parallel to finally combine their

results in the development phase.

C. RUP: Rational Unified Process

The Rational Unified Process is a Software Engineering

Process. It provides a disciplined approach to assigning tasks

and responsibilities within a development organization. Its goal

is to ensure the production of high-quality software that meets

the needs of its end-users, within a predictable schedule and

budget. [20][21]

It is closely related to the Unified Modeling Language

(UML); this model proposes to manage the IT developments

using a model of activities divided in 4 categories described

in table 1:

TABLE I: Description of RUP phases

Phase Description

Inception
• Establish a business case of the system
• Define different actors and use case

Elaboration
• Analyze the problems of the domain
• Establish the system architecture
• Define the project plan

Construction
• Develop, test and integrate the components of
the project

Transition • Forward the project to users

The general architecture of the Rational Unified Process is

characterized by two dimensions:

• The horizontal axis represents time and shows the

progress of the lifecycle of the process; this first di-

mension reflects the dynamic aspects of the process that

is expressed in terms of cycles, phases, iterations and

milestones.

• The vertical axis represents major patterns of activities

which include activities according to their nature; this

second dimension reports the static aspect of the process

that is expressed in terms of components, processes,

activities, artifacts and workers.

Analyzing the RUP method and its structural phases, we

conclude that it is possible to combine it with MDA approach,

in the following part of this section we propose our view of

implementation of MDA into RUP that consists on:

• CIM level covers the inception phase, this level is mod-

eled by Use Case diagram to represent a static and

functional aspect, and Activity diagram to represent a

dynamic aspect.

• The elaboration phase is covered by the PIM level ob-

tained from a vertical transformation of CIM model, this

level is presented by Class Diagram representing a static

view while a dynamic one is represented by a Sequence

Diagram.

• PSM level covers a construction phase after enriching

a PIM models and transform them using vertical trans-

formation into Design Class Diagram and Interaction

Diagram.

• Transition phase is covered by a code obtained with

Model to Text transformation.

We summarize our approach in the following table:

942 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



TABLE II: Description of RUP phases

RUP/MDA Inception Elaboration Construction Transition

CIM
• Use Case diagram
• SBVR

PIM

• "Business" Class
Diagram
• "System" Sequence
Diagram

PSM

• "Design" Class
Diagram
• "Detailed" Sequence
Diagram

Code • Source Code

D. Scrum

The Scrum method is an agile method, founded in 2002,

It relies on the Division of project into iterations still named

"sprints". A sprint can have a duration which varies generally

between two weeks and a month.

The estimation of task in time and complexity is made

before each sprint using several methods, in order to plan

the deliveries and also estimate the cost of each task for the

customer.

Features called user stories are the subject of the sprint that

constitute a "sprint backlog" that can be a deliverable product

at the end of the sprint.

There is difference between the sprint backlog "product

backlog", corresponding to all of the features expected for

the product on all of the sprints.

The Scrum method is also characterized by a "melee"

daily, called "morning" or "stand up", in which employees

(project managers, developers and functional managers) in turn

indicate tasks that they have performed the day before, the

difficulties and finally this whereupon they will continue their

work the next day. This allows to evaluate the progress of

the project, resources where they are most needed, but also

to provide assistance to workers facing difficulties when these

have already been encountered previously by other members

of the team.

To combine MDA and Scrum we can use in each sprint

of the project the MDA principles, i.e. in each sprint we

apply our approach of generating source code from business

requirements, in scrum we have a sprint backlog that describes

system’ features, the combination can be described as follow:

• As first step we model the requirements in sprint backlog

by the UseCase Diagram and OMG standard SBVR to

represent the CIM level.

• After modeling the CIM level, these models are trans-

formed automatically to PIM level which is modeled

by "Business" Class Diagram and "System" Sequence

Diagram.

• Models in PIM level are also transformed into "Design"

Class Diagram and "Detailed" Sequence Diagram in the

PSM level

• The last step is the automatic generation of Source Code

from PSM level.

This combination of MDA in every sprint of Scrum method-

ology have many advantages:

• Reduce the duration of the sprint that influence also the

total duration of the project.

• Facilitate the management of requirements’ changes of

the system view that models and code are generated

automatically.

E. Combination of MDA and V lifecycle in Scrum

As known scrum methodology proposes best practices to

develop a qualitative software system respecting Agility prin-

ciples, most of time developers prefer to combine scrum with

life cycles to ensure the good management of the project

development; in each sprint of Scrum, V life Cycle is used to

define steps of the development of system, in this part of this

section we will propose a combination of MDA and Scrum+V

life Cycle.

V model means Verification and Validation model. Just like

the waterfall model, the V life cycle is a sequential path of

execution of processes. Each phase must be completed before

the next phase begins; based on the requirement document that

contains specifications of the system, developer team started

working on the design and after completion on design start

actual implementation and testing team starts working on test

planning, test case writing, test scripting. Both activities are

working parallel to each other.

Before presenting the combination of MDA and V lifecycle

in scrum we present our MDA approach that consists on :

• Describing system requirements in CIM level by a struc-

tured English using SBVR.

• Transforming automatically Business Vocabulary and

Business Rules of SBVR into Use Case Diagram (UCD)

in CIM level [22]

• Applying transformation rules to generate Business Class

Diagram (BCD) and System Sequence Diagram (SSD)

from SBVR and UCD of CIM level to represent the PIM

level [23].

• Generating PSM level of MVC architecture represented

by Detailed Class Diagram (DCD) and Detailed Sequence

Diagram (DSD) from PIM level using automatic transfor-

mation rules.

• Generating application source code from PSM level.

We mention that the automation of the two last steps of the

approach will be implemented as an eclipse plugin which is

the continuity of the previous one.

Choosing previous diagrams to model MDA levels is de-

pending on different aspects that each level should cover

according to OMG specifications:

• For CIM level, we define three aspects; Static and Dy-

namic that are covered by SBVR, while the Functional

aspect is covered by UCD.

• For PIM level, we define two aspects; Structural aspect

covered by BCD and Dy-namic one covered by SSD.

• For PSM level, we define in our approach 4 aspects; Static

aspect covered by Model classes of DCD, Structural one

covered by Class Diagram, Dynamic aspect covered by

Controller classes and Behavioural one represented by

DSD.

IMANE ESSEBAA, SALIMA CHANTIT: MODEL DRIVEN ARCHITECTURE AND AGILE METHODOLOGIES 943



In this approach, we automate the two types of transforma-

tions Model-to-Model (M2M) and Model-to-Text (M2T). For

M2M, we use QVT language while for M2T we use Acceleo

transformation language. Transformation rules between the

different levels of MDA are implemented as an Eclipse plugin

to ensure automation and traceability of transformation rules.

The figure below describes an overview of our approach:

Fig. 2: Overview of our MDA transformation approach

Combining MDA and V life cycle in Scrum can be de-

scribed as follows:

• Covering Requirements and functional specifications

steps in V life cycle by CIM level of MDA which is

represented in our approach by SBVR. The UCD and

Business Rules generated at the CIM level are then used

generate "Validation tests" to validate if the developed

system responds to described requirements.

• Generating the High-level design represented in our ap-

proach by the PIM level which is generated automatically

from CIM level (To generate PIM level from CIM one, we

use our approach defined in our previous works (Essebaa

and al, 2017). This step is represented by BCD and SSD

for each use case element. We then generate "Integration

tests" from these diagrams (BCD and SSD) to test the

correct functioning between different elements of the

system.

• Generating the low-level design represented by PSM level

which is modelled by CD and DSD (The approach we

propose to automate transformations between PIM and

PSM levels will be discussed in our future works). We

generate "Unit tests" from this level to test the generated

code.

The figure 4 below describes the presented approach:

Fig. 3: Combination of MDA and V life cycle

To generate tests from Models in our approach, we defined

three main rules that are detailed in our previous work [24];

Rule 1: Generate Validation tests from CIM level: Validation

tests are generated from SBVR and Use Case Diagram. Rule

2: Generate Integration tests from PIM level: Integration tests

are generated from PIM level which is represented using Class

Diagram and System Sequence Diagram. Rule 3: Generate

Unit tests from PSM level: Unit tests in our approach are

generated from PSM level using Detailed Sequence Diagram

and Detailed Class Diagram. The table 3 below summarize

these rules:

TABLE III: Test generation rules

Rule Model Target

SBVR&UCD2VT
Use Case Element

Requirement to
validate

Fact Type Sub feature to test
Business rules of
a fact type

Validation tests

BCD&SSD2IT

Actor and
DataObject lifecycle

Classes to test

Relationship
between classes

Integration tests

DCD&DSD2UT
Messages Operation to test
Operation in classes Unit tests

In the previous part we present how we automate trans-

formations in MDA and combine with V lifecycle to generate

different type of tests, in this part we will present our approach

of managing system’ requirement using MDA inside a V

lifecycle in scrum method. Our proposal is divided into 5 main

steps:

• Step 1: Defining system requirement by Backlog Product.

• Step 2: Planning features in a RoadMap.

• Sprint to Begin:

– Step 3: Apply our approach that combine V lifecycle,

MDA and MBT presented in parts 3.1 and 3.2 of

section 3.

– Step 4: Adding code missing parts manually preced-

ing them with "@added" annotation.

• Step 5: Validation and planning of following sprints. In

this step we define two cases:

– If there is no system evolution:

∗ Restart from step 3 for the next sprint

– If there is an evolution:

∗ Restart from step 1 and keep the old code except

the parts preceded by "@added" annotation of

features that still exist in the system (added code

of deleted features is deleted automatically after

the new execution)

In the figure 5 below we describe an overview of the

presented approach in this paper:

944 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



Fig. 4: Overview of a combination of MDA, MBT, V lifecycle

in scrum

V. IMPLEMENTATION OF OUR APPROACH

To automate defined transformation rules in our approach,

we need tools that allow to create input elements (UML

Diagrams), and tools that support the generation of output

elements (UML diagrams for PSM level and Source code).

After analysing and testing existing tools, we decided to use

Eclipse platform with different needed plugins to implement

our approach, for example we choose Papyrus Modelling plu-

gin because it supports all UML diagrams elements. According

to this we choose to implement our solution as an eclipse

plugin that will be a continuity of the previous developed

plugin presented in [23] that automate transformations from

CIM to PIM. Implementing our approach as an eclipse plugin

is in order to facilitate the use of our transformation approach

by designers and developers, and also to benefit from existing

plugin in Eclipse.

To implement our transformations, we have to use a trans-

formation language; there exist many models of transforma-

tions language for both types of transformations M2M and

M2T, in our case we chose to use QVT language for M2M

transformations and Acceleo language for M2T transforma-

tions.

These transformation rules are automated in our Eclipse

plugin that take in an input a CIM level and generate PIM,

PSM and source code.

The figure 6 shows "Transforms" menu that contains differ-

ent items that allow the automation of rules:

Fig. 5: Transforms menu of our plugin

VI. CASE STUDY

To well illustrate our approach and transformation rules

defined, we present in this section their application on a Rental

Car Agency system. The case study must provide the following

features:

• Visualization of available cars.

• Customers subscription.

• Cars booking.

• Visualization of reservations.

• Management of reservations (accept/decline) by a man-

ager.

• Management of cars.

• Management of customers’ accounts.

• Management of Managers’ accounts.

The application has three users’ profiles that have different

privileges:

• Customer: A person who can view the cars available in

the agency, rates and promotions and may subscribe. A

client must register and authenticate in the system to

search for available cars and book a car by indicating

the reservation date and time.

• Manager: A Manager must also authenticate to view all

cars, add, edit or remove cars. He can also view the

bookings made by customers waiting for validation to

decide to accept or refuse them.

• Administrator: Once authenticated into the system, the

administrator has the privilege of modifying and delet-

ing a customer account, as well as the management of

managers account (add, change or delete)

We can also define some management rules as below:

• A customer can rent at least 1 car.

• A car can be rented by at least 1 customer.

• A manager can manage at least 1 car.

• A car is managed by at least 1 manager.

• An administrator can manage at least 1 customer account.

• An administrator can manage at least 1 manager account.

In the following part we present an application of our ap-

proach’ steps on Rental Car Agency System example:

1) Defining a Backlog product by system requirements:

After analyzing system requirements, the first step in our

approach is to define the backlog product of the project then

plan the RoadMap that describes different sprints of first

project’ requirement before any evolution, in this example we

plan three sprints to develop the system, we define 3 sprints

where each one takes 2 weeks. The figure 7 below describes

the roadmap of Rental Car Agency system:

Fig. 6: Scrum RoadMap of Rental Car Agency System

IMANE ESSEBAA, SALIMA CHANTIT: MODEL DRIVEN ARCHITECTURE AND AGILE METHODOLOGIES 945



2) Modelling user stories of the first sprint by SBVR and

UCD to cover CIM level of MDA: The next step after

dispatching features on sprints is to describe CIM level of

first sprint by Business Vocabulary and Business Rules using

SBVR standard as described in following figure 8.

Fig. 7: Examples of SBVR of the first sprint of Rental Car

agency

In the same level of MDA, we apply horizontal transforma-

tion rules, implemented as an eclipse plugin, to automatically

generate UCD from SBVR. The figure 9 below represents

the generated UCD of the first sprint for Rental Car Agency

system.

Fig. 8: UML Use Case Diagram of the first sprint of Rental

Car Agency System

3) Generating Validation tests from CIM: As in our ap-

proach we use V lifecycle process combined with MDA, after

defining CIM level, we can generate Validation tests from this

level as described for "Logs-into" feature in table 4 below:

TABLE IV: Validation tests generation from PSM level

Source Target

Use Case element Fact Type Business rule Requirement sub feature validation test

Logs_into

System requests
user credential

It is obligatory
that the system
requests
user credential
if customer logs into
system

The system must
allow the customer
to logs_into the
system

Requests
user credential

The system must
request user credential
if a customer
try to logs into the
system

customer sends
user credentials

It is necessary
that customer sends
user credentials
if system requests
user credential

sends
use credentials

The system must
allow customer
to send user credential

System verifies
user credentials

It is obligatory that
the system verifies
user credentials if
customer sends
user credential

verifies
user credential

The system must
be able to check
user credential

System accepts
user credentials

It is possible that
system accepts
user credential

accepts
user credential

The system must
be able to accept
user credential

4) Applying transformation rules on CIM to generate BCD

and SSD of PIM level: Generating PIM level is the first verti-

cal Model-to-Model transformation that aims to automatically

generate BCD and SSD from CIM level for Sprint 1 using

our Eclipse plugin that implements transformation rules, the

figure 10 below represents a BCD of PIM level of Rental Car

Agency system:

Fig. 9: Generated BCD of PIM level of the first sprint of Rental

Car Agency System

The dynamic aspect of PIM level in our approach is

represented also by different System Sequence Diagrams, the

figure 11 describes System sequence diagram of "logs_into"

feature in rental car agency.

Fig. 10: Generated SSD of PIM level of the first sprint of

Rental Car Agency System

5) Generating Integration tests from PIM: According to V

lifecycle used in our approach, Integration Tests are automat-

ically generated from PIM level that covers high level design

of V lifecycle, the table 5 below describes Integration test for

"logs_into" feature in sprint 1:

946 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



TABLE V: Integration test generation form PIM level

Source Target

Requirements SD Connection Classes Integration tests

Logs_into
The operation requires
connection between
"Customer" and "Account

Customer Customer owns 1 account

Account
Account belongs
to 1 customer

6) Applying transformation rules to generate DCD and

DSD of PSM level from PIM: The last level before code is

PSM level, which is the result of M2M transformations applied

on PIM level to automatically generate DCD and DSD, the

figure 12 below defines DCD of PSM level of sprint 1:

Fig. 11: Generated DCD of PSM level of the first sprint of

Rental Car Agency System

The dynamic aspect of PIM level in our approach is

represented also by different System Sequence Diagrams, the

figure 12 describes Detailed sequence diagram of "logs_into"

feature in rental car agency.

Fig. 12: Generated DSD of SIM level of the first sprint of

Rental Car Agency System

7) Generating Unit tests from PSM: Unit tests in our

approach are generated from low level design step of V

lifecycle covered by PSM level, the table below describes

example of Unit test of "logs_into" feature in sprint 1:

TABLE VI: Unit tests generation from PSM level

Source Target

Requirements SD Messages Operation to test Unit tests

Logs_into

System requests
User_credential

Request(User_credential) Test "requests" operation

Customer sends User_credential Sends(User_credential) Test "sends" operation
System verifies User_credential Verifies(User_credential) Test "verifies" operation
System accepts User_credential Accepts(User_credential) Test "accepts" operation

8) Generating application source code: The last transfor-

mation in our approach is automatic code generation which

is the result of M2T transformations that takes as an input a

DCD and DSD of PSM to generate as an output source code

for MVC web application.

9) Adding missing parts of code manually: The last step

in each sprint is to add manually the missing parts of code to

complete the system’ feature, this code must be preceded by

"@adding" annotation.

Evolution of Rental Car Agency system’ requirements

In this section we will make some evolutions to the system

(addition, deletion and modification of features) in order

to visualize the process of models’ transformation and test

generation in V lifecycle combined in scrum, the evolution

will be as follow:

• Modifications: "View car catalogue" feature will be avail-

able for all users not only customers, this modification en-

gender a new actor "User" that it will be a generalization

of "Customer" actor, this modification requires changing

the actor of "register" method too.

• Addition: In the new system, "Customer" will be able

to validate its rental by "payment", The addition of a

feature may engender some modifications to old ones, for

example the verification of car availability will be made

automatically by a system.

• Deletion: The addition of "payment" feature requires to

delete "Manage rental" feature of "Manager" that allowed

him to accept or reject the rental, in the new system the

customer can validate its rental from the system, before

proceeding to payment option the system must be able to

check if the chosen car is available for date specified by

the customer.

After studying system requirements’ evolution, we have to

make another feature dispatching on next sprints as presented

in figure 14:

Fig. 13: Scrum RoadMap of Rental Car Agency system after

requirements’ changes

The next step is to develop the second sprint following same

steps previously presented in an example for the first sprint

even test cases that will be automatically generated.

IMANE ESSEBAA, SALIMA CHANTIT: MODEL DRIVEN ARCHITECTURE AND AGILE METHODOLOGIES 947



VII. PERSPECTIVES AND FUTURE WORKS

This paper is an introduction to our future works on which

we aim to combine MDA and Agility in order to propose an

new method to develop software systems.

To combine MDA and Agility we aim in our future works

to:

• Ensure the traceability between levels to manage require-

ments changes, as we know among agility principles is

the adaptation to changes

• Propose an approach of Agile Model Driven Develop-

ment appropriate to different types of Software systems

(Web, Desktop,...)

• Propose a new Agile methodology that regroup all best

practices proposed by other methodologies.

VIII. CONCLUSION

The basic idea in this paper is to combine the MDA

approach and Agility in order to propose a new software

development method, to well identify and situate the idea in

the context, we describe in this paper a state of art of previous

approach made in this context.

After analyzing previous works we conclude that proposed

methods wasn’t implemented to be applied to all types of

software systems, we also present our analysis and reflexion

on some existing agile methodologies in order to choose those

more appropriate to be combined with MDA.

In this paper we propose to combine MDA and Scrum agile

methodology in order to improve sprints of scrum and benefit

from MDA principles, in this work we proposed to use V

life cycle in each sprint of the project where we combine

another variant of MDE, to generate automatically different

tests applying MBT principles.

As previously mentioned this paper is an introduction to our

future works on which we aim to propose a new methodology

base on Agility and MDA.

REFERENCES

[1] A. Przybylek and M. Zakrzewski, “Adopting collaborative games into
agile requirements engineering,” in Proceedings of the 13th International

Conference on Evaluation of Novel Approaches to Software Engineering

- Volume 1: ENASE,, INSTICC. SciTePress, 2018, pp. 54–64.
[2] J. Miller and J. Mukerji, “Mda guide version 1.0.1.” 2003.
[3] R.Soley, “Model driven architecture (mda),” in

http://www.omg.org/cgibin/doc?omg/00-11-05,, 2000.
[4] K.Beck and al., “Agile manifesto,” 2001–2015.
[5] T.Dyba and T.Dingsoyr, “What do we know about agile software

development?” vol. 46, no. 5. Software, IEEE, 2009, pp. 6–9.
[6] J. P. Vickoff, “Agile why not?” in www.entreprise-agile.com, 2001.
[7] a. H. B. S. Hansson, Y. Zaho, “How mad are we? empirical evidence

for model-driven agile development,” in Proceedings of XM 2014, 3rd

Extreme Modeling Workshop. CEUR, 2014.

[8] P. Cáceres, F. Díaz, and E. Marcos, “Integrating an agile process
in a model driven architecture,” in INFORMATIK 2004 - Informatik

verbindet, Band 1, Beiträge der 34. Jahrestagung der Gesellschaft für

Informatik e.V. (GI), Ulm, 20.-24. September 2004, 2004, pp. 265–270.
[9] M. B. Nakićenović, “An agile driven architecture modernization to a

model-driven development solution,” International Journal on Advances

in Software, vol. 5, no. 3,4, 2012.
[10] F. P. Basso, R. M. Pillat, F. Roos-Frantz, and R. Z. Frantz, “Combining

mde and scrum on the rapid prototyping of web information systems,”
Int. J. Web Engineering and Technology, vol. 10, no. 3, 2015.

[11] V. Kulkarni, S. Barat, and U. Ramteerthkar, “Early experience with agile
methodology in a model-driven approach,” in Model Driven Engineering

Languages and Systems, 14th International Conference, MODELS 2011,

Wellington, New Zealand, October 16-21, 2011. Proceedings, 2011, pp.
578–590.

[12] H. Alfraihi, “Towards improving agility in model-driven development,”
in Joint Proceedings of the Doctoral Symposium and Projects Showcase

Held as Part of STAF 2016 co-located with Software Technologies:

Applications and Foundations (STAF 2016), Vienna, Austria, July 4-7,

2016., 2016, pp. 2–10.
[13] H. Wegener, “Agility in model-driven software development? impli-

cations for organization, process, and architecture,” in OOPSLA 2002

Workshop on Generative Techniques in the Context of Model Driven

Architecture,, 2002.
[14] V. Mahe, B. Combemale, and J. Cadavid, “Crossing model driven engi-

neering and agility – preliminary thoughts on benefits and challenges„”
2010.

[15] H. Burden, S. Hansson, and Y. Zhao, “How MAD are we? Empirical
Evidence for Model-driven Agile Development,” in Proceedings of XM

2014, 3rd Extreme Modeling Workshop, vol. 1239. Valencia, SPain:
CEUR, September 2014, pp. 2–11.

[16] H. Alfraihi and K. Lano, “The integration of agile development and
model driven development - a systematic literature review,” in Proceed-

ings of the 5th International Conference on Model-Driven Engineering

and Software Development - Volume 1: MODELSWARD,, INSTICC.
SciTePress, 2017, pp. 451–458.

[17] U. Eliasson and H. Burden, “Extending agile practices in automotive
MDE,” in XM@MoDELS, ser. CEUR Workshop Proceedings, vol. 1089.
CEUR-WS.org, 2013, pp. 11–19.

[18] R. Matinnejad, “Agile model driven development: An intelligent
compromise,” in Proceedings of the 2011 Ninth International

Conference on Software Engineering Research, Management and

Applications, ser. SERA ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 197–202. [Online]. Available: https://doi.org/10.
1109/SERA.2011.17

[19] K. Beck and C. Andres, Extreme Programming Explained: Embrace

Change (2Nd Edition). Addison-Wesley Professional, 2004.
[20] V. Jacobson, G. Booch, , and J. Rumbaugh, “Unified software develop-

ment process.” Addison-Wesley, 1992.
[21] P. Kurchten, “Rational unified process – an introduction.” Addison-

Wesley, 1999.
[22] I. Essebaa and S. Chantit, “Tool support to automate transformations

from sbvr to uml use case diagram,” in Proceedings of the 13th

International Conference on Evaluation of Novel Approaches to Software

Engineering - Volume 1: MDI4SE,, INSTICC. SciTePress, 2018, pp.
525–532.

[23] ——, “Tool support to automate transformations between cim and
pim levels,” in Proceedings of the 12th International Conference on

Evaluation of Novel Approaches to Software Engineering - Volume 1:

MDI4SE,, INSTICC. SciTePress, 2017, pp. 367–378.
[24] ——, “A combination of v development life cycle and model-based

testing to deal with software system evolution issues,” in Proceedings

of the 6th International Conference on Model-Driven Engineering

and Software Development - Volume 1: MODELSWARD,, INSTICC.
SciTePress, 2018, pp. 528–535.

948 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018


