
A Neural Network Approach to Hearthstone

Win Rate Prediction

Jan Jakubik

Wrocław University of Science and Technology

Faculty of Computer Science and Management, Department of Computational Intelligence

Wrocław, Poland

Email: jan.jakubik@pwr.edu.pl

Abstract—This paper describes a solution to the AAIA’18 data
mining challenge, which concerns prediction of win rates for
decks in Hearthstone collectible card game. A neural network
model assigning win rate to decks is learned based on maximisa-
tion of log probability of observed match results. A representation
of deck contents is based on a second network, which performs
the role of a dual-task encoder. Two tasks learned by the encoding
networks are encoding decks in such a way that the full deck
can be reconstructed, and encoding individual cards so that their
specific properties can be decoded. Shared representation for
these tasks allows the knowledge of individual cards to be taken
into account.

I. INTRODUCTION

C
OMPETETIVE multiplayer video games have been a

thriving market in recent years, posing new challenges

in areas of artificial intelligence and data analysis. In online

game communities, the search for optimal tactics has lead to

the development of "metagaming" - an entire layer of strategy

related to the knowledge of certain playing styles and changes

in their popularity on a community level.

The collectible card game (CCG) landscape, which includes

popular and highly profitable games such as Hearthstone and

Magic: The Gathering, naturally leads to the development of a

particular type of metagame. In these games, players compete

using decks which consist of a limited number of cards

selected from a much larger pool of cards possible to collect.

In a realistic scenario, the flow of knowledge between players

leads to rapid development of popular deck types, with players

often directly copying known well-performing decks. Any

practical approach to applying artificial intelligence methods

in such an environment has to consider not only the typical

issues of moment-to-moment gameplay but also the metagame

information.

In this paper, we explore the problem of predicting win

rates for Hearthstone decks within a particular metagame

environment. The proposed approach was developed as a sub-

mission to the AAIA’18 data mining challenge organised by

Silver Bullet Labs and Knowledge Pit as part of the FedCSIS

2018 conference. The paper is arranged as follows: Section

II describes the competition and available challenge data,

Section III explains the use of external data not provided by

organisers. Neural networks which serve as core components

of the proposed approach are described in Sections IV and V.

Section VI describes how ensembling was used to improve the

results and Section VII summarises the conclusions.

II. COMPETITION DESCRIPTION

The competition posed the task of predicting deck win rates

for a set of 200 decks based on the record of 300000 games

between another set 400 decks. The decks were played by

four distinct AI agents, with the AI choice influencing win

rates significantly. The goal of the prediction model was to

compute win rates for all possible AI-deck pairs in the test

dataset. This equates to 800 test samples. The training dataset

included:

• name and the number of copies for each card present in

the deck

• basic description of games including AIs playing, decks

being played and the winning player

• detailed description of games - a recorded data of all

turns, including actions taken by respective players

The proposed solution uses the basic descriptions of games

while utilising an external dataset to represent cards present

in the test, but not training set.

During the contest, it was possible to upload solutions and

receive an evaluation of RMSE on an evaluation subset of 10%

test samples (i.e. 80 AI-deck pairs randomly sampled from all

possible 800). This influenced the chosen approach, as "over-

tuning" parameters to increase fitness on the evaluation subset

of the test set was possible. In fact, the order of top 4 results on

the competition leaderboard was reversed in the final results,

suggesting multiple submissions including the one described

here were over-tuned to some extent. The solution described

in this paper was in 2nd place on the competition leaderboard

when the submissions closed but placed 3rd in the final

evaluation. Possible causes are discussed in the Conclusions

section.

III. EXTERNAL DATA USE

The proposed solution employs a set of data from the

hearthstonejson database [1]. This database contains infor-

mation on all cards present in the training and test decks.

All numerical properties such as life and attack of minions,

weapon durability etc. are accounted for. Keywords such as

Battlecry, Taunt, Adapt etc. are recognized as binary variables

(whether the card has a keyword or does not). Full card text

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 185–188

DOI: 10.15439/2018F365

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 185



(a) Minion (b) Weapon (c) Spell (d) Quest (e) Hero

Fig. 1: Types of cards available in Hearthstone CCG [2]

for every hearthstone card present in the challenge datasets

is also available. The dataset also contains certain conditions

that need to be met to play the cards (such as "there needs to

be a valid minion target").

IV. ENCODING NETWORK

To build an encoding of hearthstone decks, first, an encoding

of a card is created. The goal of this encoding is to represent

cards present in the test, but not training data. There are 330

unique cards in all training decks, and 18 unique cards in test

decks that do not appear in training set. These cards include

both spells and minions.

Types of cards available in Hearthstone CCG are shown in

Fig. 1. Note that minions (a) and weapons (b) have informative

numerical properties of attack, health, and durability. However,

even when these properties are accounted for, card text can still

have a significant effect on the gameplay. In the case of the

presented minion, Deathwing, its battlecry ability drastically

alters the game state by destroying all minions on the game

board. In case of spells (c), the only available information is

the card text. Finally, quest (d) and hero (e) cards can alter the

overarching game strategy of the entire deck by replacing the

player’s hero or offering a powerful reward for fulfilling the

quest condition. For these cards, even card text does not offer

a sufficient explanation. However, no quests or heroes that are

not in the training data appear in the test dataset.

Taking this knowledge into account, we build the rep-

resentation of a card as a concatenation of two vectors.

First contains numeric properties, mechanics and other data

available from hearthstonejson.com. Each numeric property is

encoded as a continuous variable, each keyword is encoded as

a binary variable, and all conditions required to play a card

are encoded as binary variables. We use all properties available

in hearthstonejson descriptions, as long they actually occur in

training and test dataset.

The second vector is a word occurrence vector based on the

card text. Card text is cleaned by removing punctuation, after

which we build a dictionary of all strings that occur in the

dataset (separated by whitespace characters) and count their

occurrences in each card’s text. Word occurrence serves as a

simplified way to contain information regarding card function.

Terms such as "destroy" or "heal" describe the interactions of

a card to some extent, and can be relevant to the AI’s ability to

efficiently use the card. Without actually simulating the game

logic, this is an easy way to represent effects such as the

Deathwing battlecry mentioned above.

The representation of decks is then built by a neural network

trained on all 600 training and test decks. The encoding

network’s loss function is defined as a sum of two terms,

representing two distinct tasks. First is a standard autoencoder

[3], i.e., the loss is based on the network’s ability to reconstruct

exact input vectors from a lower-dimensional encoding in

the hidden layer. Inputs used in optimising this objective are

decks from both training and test sets, represented as simple

card occurrence vectors - each dimension in the input space

represents the count of a particular unique card in the deck.

The second task is to learn an encoding which makes

it possible to decode the properties of each card. For this

purpose, we use the matrix of card properties C, in which

each row represents hearthstonejson information of a single

card. The assumption here is that encoding a single card in

the same space as full decks can be decoded as card’s specific

properties. Given shared encoding Enc, autoencoder decoding

Dec1 and card property decoding Dec2, the combined loss for

both tasks can be calculated as:

∥Dec1(Enc(X))−X∥2F + ∥Dec2(Enc(I))− C∥2F (1)

Where X is the matrix of deck vectors, C is the matrix

of card property vectors and I is an identity matrix of a size

corresponding to the number of cards. Combining both tasks

ensures the network encodes decks in a way that retains full

information, but also encodes similar cards in a similar way.

186 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



0 2000 4000 6000 8000 10000
Training epoch

10−1

100

101

Co
st

Autoencoding
Card decoding

Fig. 2: Training curves of two objectives in the encoding

network

The latter is relevant for the cards that do not appear in training

data.

Each of the functions: Enc, Dec1, Dec2, is learned by a

single neural network layer, resulting in a network with one

hidden layer and two separate output layers. The encoding

layer uses ReLU nonlinearity [4], and decoders are linear

layers. The dimensionality of encoding was set to 200 after

preliminary tests. The number of training epochs for encoding

network was set to 10000, and the network was trained

with a gradient-based method Adadelta [5] with ρ = 0.9.

Using a Theano [6] implementation, training this network

takes approximately 3.5 seconds per 1000 epochs on a Nvidia

GTX970 GPU.

Training curves of the encoding network are presented in

Fig.1. While autoencoding objective reaches a visible plateau,

card decoding objective could still be trained beyond 10000

epochs. However, we found this did not improve the prediction

network results.

V. PREDICTION NETWORK

Features encoded by the encoding network are used as

and input to the prediction network. Prediction network is

a standard feedforward neural network [7] with three hidden

layers, respectively 300, 200 and 100 neurons. ReLU nonlin-

earity is used for activation in hidden layers. The network is

optimized with Adadelta, using ρ = 0.9. To avoid errors (loss

function can return NaN values if the output is outside of (0, 1)
interval), final layer activation was implemented as:

σ(x) = 1−ReLU(1−ReLU(x)) (2)

However, in practice, outputs do not exceed 1.0 or 0.0

during optimisation if the hyperparameters are tuned for the

task, i.e., the bias of final layer is initialised to 0.5 and other

parameters to very small values. Therefore, the final layer

effectively works as linear.

A basic loss function over all outputs, where oi denotes the

prediction for i-th deck that approximates a known win rate

yi, is defined as:

0 1000 2000 3000 4000 5000
Training epoch

101

4×100

6×100

RM
SE

Training, no card encoding
Test, no card encoding
Training, card encoding
Test, card encoding

Fig. 3: Training curves of the prediction network, with and

without using the card decoding objective in the encoding

network

∑

i

−di(yi log(oi) + (1− yi) log(1− oi)) (3)

where di represents the number of observations based on

which the yi win rate was calculated. In other words, the

solution maximises log probability of the observed sequence

of games, assuming all games by any particular deck can be

modelled as a win-loss boolean random variable. Note that

this completely ignores the two-sided nature of games and the

essential property of decks having varying win rate against

specific enemies. However, attempts to estimate matchup-

specific win rates resulted in worse performance, possibly

caused by to overfitting due to an insufficient number of games

for each specific matchup.

Additionally, decks from the test set were employed in

training of the network to counteract the positive win rate

bias which appeared when using training data. When the

number of games per deck is not distributed uniformly, it is

possible for the average win rate to be over or under 0.5, thus

creating an unwanted bias in the model. In the training set

for the competition, the average deck has a win rate of 0.517,

leading models trained on the data to overestimate win rates

of test decks. Using prediction for test games, this bias can

be removed. Assuming uj is the output for j-th test set game,

the full loss is defined as:

∑

i

−di(yi log(oi)+(1−yi) log(1−oi))+(λ−
∑

j

uj

200
)2 (4)

The second term leads the average predicted win rate over

the test set to be close to λ. This also works as regularisa-

tion for training. The λ value was chosen experimentally to

maximize performance on leaderboard evaluation. We tested

a range of values from 0.48 to 0.51, with 0.005 step size, and

set λ = 0.49.

In Fig. 3, the training curve for the prediction network

is shown. We compare the prediction network’s performance

JAN JAKUBIK: A NEURAL NETWORK APPROACH TO HEARTHSTONE WIN RATE PREDICTION 187



TABLE I: Results of the competition - top 5 submissions

Team RMSE

hieuvq 5.57339852

amy 5.6482014

jj 5.66759451

dymitrruta 5.696228

amorgun 5.8473786

using two different encodings of training data. First is using

the dual-task encoder described in Section IV, while the second

one is encoded by a standard autoencoder, with no card

decoding objective (i.e. the loss function is equal to the first

term in Eq. 1). Training-test split for these experiments was

the same, using 300 decks for training and 100 for tests. It

is noticeable that the prediction network starts on a plateau

and requires more than 1000 epochs to escape it, then rapidly

improves the results. Past 2000 epochs little improvement is

seen in test results although the minimum on the training set

is not yet reached. Because of this, we set the early stopping

point at 5000 epochs. Training time for this network was

approximately 8 seconds per 1000 epochs on a GTX970 GPU.

Moreover, the improvement from using card decoding ob-

jective can also be seen in Fig.3. Prediction network performs

better on training set but worse on test set when the card

encoding objective is ignored. This indicates worse general-

ization without using the card decoding objective.

VI. ENSEMBLING

The best performing single network achieved RMSE of

approximately 5.0 on the 10% of the test data used to

calculate leaderboard results. This result was further improved

by ensembling, averaging results over multiple deep network

models. Since throughout the competition we uploaded mul-

tiple results, models for the final ensemble were chosen from

these according to their leaderboard evaluation results. The

parameters given in sections IV and V describe the best

single-network model. Other models in the final ensemble

were variants of the described one with minor alterations,

previously tested during parameter tuning: one with a larger

number of training epochs (100000 for the encoder, 10000

for prediction network), one with added l2 regularization term

in loss function (0.01 weight), and one with card matrix

ignoring properties of cards other than word occurrence. These

four best single-network models were averaged to obtain

the final submission, resulting in approximately 0.2 RMSE

improvement on the evaluation subset of test data.

VII. CONCLUSIONS

The final result placed the proposed solution as third in the

competition. Results for other top submissions can be seen in

Table I. It is worth noting that during the competition, two

top solutions on the evalutation leaderboard reached RMSE

below 5.0.

It can be argued that the chosen approach to representing

Hearthstone decks was not sufficient to represent all intricacies

of cards present in the test, but not training data. However,

the change between results on the evaluation subset and

final leaderboard suggests another explanation of the results,

namely, that the described approach (along with some other

top submissions) was over-tuned for the evaluation subset of

test data.

While identifying the exact cause of this over-tuning is not

possible without extensive tests on full data, the most likely

explanation lies in the chosen approach to reducing positive

win rate bias. As mentioned in Section V, the bias reduction

is achieved by explicitly forcing the average win rate over

test data to be close to an experimentally chosen value. The

value 0.49 was set to maximise the performance according to

the leaderboard. This means an implicit assumption was made

that the 10% evaluation subset provides an accurate estimate

of mean win rate for the entire test set.

Additionally, the choice of models to build an ensemble

was based on the evaluation leaderboard, further contributing

to the exact fitting of the model to evaluation subset of test

data. A more refined ensemble building strategy would likely

improve the results.

Regarding future work, the possibilities of the proposed

approach are somewhat limited. The chosen model predicts

win rates given a specific opponent distribution while using

an unrealistic assumption that the test decks themselves are

not part of the metagame. In a practical setting, due to

fluctuating opponent distribution, a model that computes win

rate for a matchup between two specific decks should be more

applicable. We attempted to build such a model during the

competition, however, since its training was significantly more

computationally expensive than the prediction of win rates,

the described approach was chosen instead. Nevertheless,

predicting matchup-specific win rates remains a possible goal

for further development that would require designing a new

prediction network. The encoding network, on the other hand,

can be potentially re-used without changes for any task that

requires deck representation.

ACKNOWLEDGEMENTS

We would like to thank Silver Bullet Labs and Knowledge

Pit for providing the simulation data and a platform for the

competition.

REFERENCES

[1] https://hearthstonejson.com/docs/cards.html
[2] https://hearthpwn.com
[3] Coates, Adam, Andrew Ng, and Honglak Lee. "An analysis of single-

layer networks in unsupervised feature learning." Proceedings of the
fourteenth international conference on artificial intelligence and statis-
tics, 2011

[4] R Hahnloser, R. Sarpeshkar, M A Mahowald, R. J. Douglas, H.S. Seung,
"Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit" Nature, 405, pp. 947-951, 2000

[5] Zeiler, Matthew D. "ADADELTA: an Adaptive Learning Rate Method."
Computing Research Repository, 2012

[6] Theano Development Team, "Theano: A Python framework for fast
computation of mathematical expressions", arXiv:1605.02688 (2016).

[7] Deng, Li. "A tutorial survey of architectures, algorithms, and applica-
tions for deep learning." APSIPA Transactions on Signal and Information
Processing 3, 2014

188 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018


