
 

 

 

 

Abstract—Looking at the end-to-end processing, typical 

software-intensive systems are built as a system-of-systems 

where each sub-system specializes according to both the 

business and technology perspective. One challenge is the 

integration of all systems into a single system – crossing 

technological and organizational boundaries as well as 

functional domains. To facilitate the successful integration, we 

apply the system design process Simulation Driven 

Development (SDD). The basic idea is the application of 

realistic simulation models in parallel to existing software 

engineering procedures to enable testing and validation from 

day one. In this article we discuss the coupling of sub-systems 

implemented as virtual simulation models with sub-systems 

implemented as real sub-systems to enable unit tests against 

system level. Two approaches are presented: loose coupling and 

tight coupling. 

I. INTRODUCTION 

HE ever-increasing complexity of software-intensive 

systems is an ongoing challenge to the tools and 

methods used in system engineering [1]. The building blocks 

of software-intensive systems or even systems-of-systems are 

often already systems themselves – either as commercial-off-

the-shelf software used with ‘minor’ adaptations or custom-

made software. This reuse of existing and proven solutions 

allows for the rapid construction of large systems. In the 

system development process, the engineering practices 

typically address – successfully – the scope of a single, 

independent system: The requirements are (and can be) 

defined, the system is modeled, implemented, tested and put 

into operations. 

What started as the ‘waterfall model’ [2] has been adapted 
to mitigate the risks of failing to deliver a system in time, in 

budget and in quality. The software engineering models 

address the risk of failure in several ways: Using formal 

rather than natural language reduces misunderstandings; a 

small project scope reduces the ‘value at risk’ and testing 
assures that the intended level of quality is reached. These 

different approaches can be seen in a software engineering 

meta-model, like the V-Model XT [3] [4], a model in 

widespread use in Germany. The formal, document-oriented 

waterfall model is represented by the left side of the V, 

proceeding through the typical phases towards the 

implementation. In particular the model requires for each 

phase to define a dedicated test phase at a later time (the 

right-hand side of the ‘V’). Depending on the focus of a 
particular project the meta-model allows for modern 

approaches e.g. test-driven development [5] or agile methods 

[6]. 

Yet methods proven to deliver successful implementations 

at the level of a single system seem to be inadequate for 

large-scale systems. [7] argues that implicit assumptions – 

the development process can be controlled, decisions are 

rational, the problem can be defined and delimited – break 

down when independent systems interact. Often the behavior 

of a coalition of systems is emergent and it is difficult or 

impossible to predict. An unintended consequence could be 

the complete failure of the overall system without a clear 

software bug within any contributing system ([8] gives the 

2010 stock market flash crash as a prominent example). 

We propose extending common software engineering 

practices through the use of simulation models. At any stage 

during the system development process the current level of 

detail needs to be captured in form of an executable 

specification. The system design process SDD follows 

exactly this axiom [9]. A major challenge of SDD is the 

coupling of different simulation models, simulators and 

already implemented system components to enable unit tests 

within the expected operational context. Each requirement 

and their test cases depend on the context, i.e. reusing a 

component or integrating a system into another system will 

most probably invalidate many assumptions and test cases 

[10]. Features, performance and operational aspects need to 

be proven before a sub-system is ready for integration. The 

development of such simulation-based test environments is a 

challenging task: sub-systems can be interfaced with 

simulation models where the remaining sub-systems operate 

at a higher degree of abstraction and the technical 

performance of the simulators can be insufficient. 

In this article we discuss the possibilities and technical 

challenges regarding the coupling of simulation models with 

real world implementations. In section two we first introduce 

the SDD approach and show how modeling and simulation 

technologies can be applied to leverage specification quality 

and speed in the development of complex distributed 

systems. Section three explains the idea of loose coupling 
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and applies it in the example of the German toll system. In 

section four we explain the idea of tight coupling and apply 

it on the example of testing an electronic control unit (ECU) 

of a car. In the last section, we summarize and provide an 

outlook about future work. 

II. SIMULATION DRIVEN DEVELOPMENT 

Simulation Driven Development (SDD) is an efficient 

methodology for developing complex distributed systems. In 

contrast to conventional methodologies simulation models of 

the system to be developed are used during the entire 

development process [11]. These simulation models allow 

description of static and dynamic system properties which 

enormously improves specification quality and speed. 

Furthermore, they are used for analysis, evaluation, 

validation, verification and optimization during the course of 

the developing process. In addition to the simulation model 

of the system to be developed, SDD uses a simulation model 

of the development process itself. This simulation model 

allows automation of development steps in the form of 

workflows like optimization cycles, test cycles, revision 

controls and document sharing with component 

manufacturers. Fig. 1 shows SDD in the form of an extended 

V-Model. 

User requirements of the system to be developed are 

determined and transferred into an initial simulation model 

during the requirement analysis. It represents the dynamic 

user behavior as well as the user interaction with the system 

in form of application scenarios / use cases. The simulation 

model is the basis for future acceptance tests and allows the 

first analyses in developing the design of the system. 

In the subsequent phase of system specification, developer 

requirements (functional and not-functional) are derived and 

transferred into an executable specification. This is a 

simulation model of the whole system encompassing 

technical functions, architecture and user behavior. Each 

element of the simulation model is related to the user’s or 
developer’s requirements to ensure their compliance. The 
simulation model allows an early validation of the whole 

system against the application scenarios and allows locating 

integration problems (dynamic coupling effects between 

system components). Furthermore, it permits system-level 

optimizations and is the basis for later system integration 

tests. 

Within the component specification each system 

component is further refined in form of simulation models. 

Starting point is the present executable system specification 

with the component related requirements and parameters. 

Simultaneously the executable system specification serves as 

development environment for component validation and 

optimization against the holistic system. As a consequence of 

the refinement, the components and thus also the system 

parameters become more specific. The component 

specification forms the basis for the later unit tests and 

component integration tests. 

 

 
Fig. 1: Simulation Driven Development as a V-Model 

 

After the specification of the system and its components 

the development process proceeds with the implementation. 

Based on the previously specified test cases the 

implementation will be verified and validated (performance 

tests and endurance tests). First, component integration tests 

are performed. In this step the functionality of each 

component is viewed in isolation. Afterwards components 

are integrated to a system followed by system integration 

tests. Finally, the system is tested against the initially defined 

user requirements by an acceptance test. SDD allows the 

reuse of the previously defined test cases which exist in form 

of simulation models. To that extent, simulation models are 

attached to the system implementation by 

Hardware/Software in the Loop (SiL/HiL). 

To implement SDD a formal definition of the overall 

process is required. Figure 1 depicts the SDD approach as a 

V process model enriched by simulation-based test activities 

throughout the whole process. As in the classical V process 

model the level of detail increases when going downwards in 

the process and it is possible to go back to upstream process 

steps if it emerges that changes are required. The result of 

each process step is captured by one or more simulation 

models which provide test drivers for integration steps like 

“in-the-loop”, integration or even acceptance tests. It is 
therefore similar to the W model in software development 

[12]. Both models share the concept of “testing starts at day 
one”, i.e. that tests performed during the design stages 

prepare the integration tests and that test teams and system 

designers work together from the very beginning. A key 

improvement is that SDD features dynamic testing by the use 

of simulation models from the very beginning which directly 

supports dynamic testing in the integration phase in contrast 

to the classical W model where only static analysis is 

performed at early design phases. 

Test failures or emerging new requirements can lead to 

changes in upstream (more general) designs which in turn 

might invalidate downstream (more detailed) specifications 

and simulation models. It is therefore critical to maximize 

the overall degree of formalism, automation and 

requirements traceability within and between each of the 
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steps in the SDD process model. This in turn requires 

detailed workflows for which individual working steps can 

then eventually be executed automatically by a workflow 

engine. 

As mentioned above, SDD follows the idea of “test starts 
at day one”. A prerequisite is the presence of an executable 

system model throughout all design stages. To enable unit 

tests, the system models need to be coupled to existing 

hardware or software components (HiL and SiL) which can 

be implemented in two different ways: loose coupling and 

tight coupling [13] [14]. While loose coupling doesn’t 
consider the dynamic interaction between the sub-systems, 

tight coupling does. 

III. LOOSE COUPLING 

Loose coupling simplifies the implementation of unit tests 

of relatively independent sub-systems. The prerequisite is a 

mostly unidirectional exchange of data. e.g. lacking feedback 

or disregarding feedback that deviates from the simulation. 

This enables technically simpler test benches, since a sub-

system can be tested without real-time connectivity to the 

rest of the system. One possible implementation is to simply 

take the events passing through the simulation model and 

export those events that are relevant to a particular domain-

specific interface. The event list is a flat file with a 

chronological list of points in time and additional domain 

specific information. 

In the example of the German automatic toll system we 

use this approach to provide the temporal behavior of 1.1 

million on-board units communicating with the central 

system [15]. The event list contains all TCP/IP connections 

and their domain specific payload, e.g. the number of 

journey data files transmitted. Operational testing takes this 

temporal data, adds the domain specific content and uses 

another more technical simulator to drive the real-world data 

center applications. The example illustrates two challenges 

encountered in this approach: 

 The abstraction gap – when a high-level simulation model 

encounters a real-world system – is overcome by 

additional simulation models. Loose coupling of the 

simulation models immediately translates into loose 

coupling of the technical teams involved. 

 The simulation performance – where a real-world system 

must not be impacted by the simulation performance. 

Loose coupling allows to precompute at least parts of an 

operational test. 

 

IV. TIGHT COUPLING 

Tight coupling is used to develop and test sub-systems 

that work closely together, e.g. as parts of an embedded 

system. The entire logic of such systems is typically 

distributed across several sub-systems. These sub-systems 

need to be connected dynamically to deliver the desired 

logic/process. Each sub-system is characterized by 

interconnectivity and inter-processing to the other sub-

systems and depends strongly on them. 

Two possibilities of technical implementation can be 

distinguished: direct tight coupling using data files, shared 

memories or network protocols and indirect tight coupling 

using a central data distribution service (DDS). Fig. 2 shows 

direct coupling using TCP/IP sockets. Each participating 

simulator needs to implement an adapter to each connected 

simulator – a time-consuming and expensive task. All 

requirements regarding quality of service (real-time 

capabilities, distribution of simulators across multiple 

nodes), standardization of data types (different data types of 

simulators) and time synchronization (global clock as 

simulation time) need to be considered. These issues are 

solved using a central data management entity like DDS. 

 

 
 

Fig. 2: Direct tight coupling using TCP/IP 

 

DDS is a networking middleware that simplifies complex 

network programming and distribution of data. It implements 

a publish–subscribe pattern for sending and receiving data, 

events, and commands among the nodes. Nodes that produce 

information (publishers) create "topics" (e.g., temperature or 

pressure) and publish "samples". DDS delivers the samples 

to subscribers that declare an interest in that topic. DDS 

handles transfer chores: message addressing, data 

marshalling and de-marshalling (so subscribers can be on 

different platforms from the publisher), delivery, flow 

control, retries, etc. Any node can be a publisher, subscriber, 

or both simultaneously. 

The DDS publish-subscribe model virtually eliminates 

complex network programming for distributed applications. 

The key benefit is that applications that use DDS for their 

communications are decoupled. Little design time needs be 

spent on handling their mutual interactions. In particular, the 

applications never need information about the other 

participating applications, including their existence or 

locations [16] [17]. Fig. 3 shows the basic architecture of a 

DDS solution. 
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Fig. 3: Indirect tight coupling using DDS 

 

We have developed an ECU test environment which 

couples three different simulation tools (MSArchitect, 

Matlab/Simulink and LabVIEW). It is used to validate and 

test the function and performance of the interface between 

the three simulation tools. The coupling between those 

systems is accomplished by using TCP/IP sockets achieving 

a high data transfer rate.  

In this example MSArchitect takes the server role while 

Matlab/Simulink and LabVIEW are the clients. During the 

initialization phase of the simulation the server is waiting for 

incoming connections. Once all clients have been connected 

to the TCP/IP sockets the simulation starts.  

The tight coupling example caused several challenges 

which have to be solved. The data transfer through TCP/IP 

sockets is limited to character arrays. Therefore, the different 

data types of the several simulation tools could cause issues 

because of the conversion in character arrays and the 

conversion back to the data types. For this reason, a 

definition of supported data types and a standardization of 

those data types need to be developed. Furthermore, the time 

of the connected simulators need to be synchronized, for 

example by implementing a global clock, controlled and 

distributed by one simulator. 

Fig. 4 shows the user interfaces of the test environment. 

The whole car is modelled in MSArchitect and parts of the 

model are implemented in LabVIEW or Matlab/Simulink. 

The LabVIEW model contains the entire logic of the ECU 

which is built in the car model. Matlab/Simulink provides the 

logic and behavior of the combustion engine. The 

performance of the ECU test environment is limited by the 

hardware resources of the test computer.  

In our case the desired maximum performance of the 

implemented interface could not be accomplished since all 

three models were running on the same system. In future 

work, we want to split the simulation models over three 

processing nodes to reach a significant higher performance 

of the entire simulation. At this point, the ECU test 

environment is running without any data loss or 

synchronization issues, which in fact is a great starting point 

for further development. 

 

 
Fig. 4: ECU test environment 

V. CONCLUSION 

We have shown the applicability of simulation models 

along the development process using a simulation driven 

design process. From the onset the simulation model 

provides the operational context and over time the level-of-

detail can be increased to the point where real-world sub-

systems interface with the simulation model. In the article we 

discussed how simulation models can interface with real-

world hardware or software to enable realistic unit tests. Two 

possibilities have been introduced: loose coupling and tight 

coupling. 

Next, we’re planning to extend our DDS solution and 
connect the examples mentioned above to this solution. 

Above all, securing a defined quality of service within DDS 

will be a challenging task. In addition, we’re preparing a 

guideline to select a proper coupling mechanism. 
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