

Abstract—Looking at the end-to-end processing, typical

software-intensive systems are built as a system-of-systems

where each sub-system specializes according to both the

business and technology perspective. One challenge is the

integration of all systems into a single system – crossing

technological and organizational boundaries as well as

functional domains. To facilitate the successful integration, we

apply the system design process Simulation Driven

Development (SDD). The basic idea is the application of

realistic simulation models in parallel to existing software

engineering procedures to enable testing and validation from

day one. In this article we discuss the coupling of sub-systems

implemented as virtual simulation models with sub-systems

implemented as real sub-systems to enable unit tests against

system level. Two approaches are presented: loose coupling and

tight coupling.

I. INTRODUCTION

HE ever-increasing complexity of software-intensive

systems is an ongoing challenge to the tools and

methods used in system engineering [1]. The building blocks

of software-intensive systems or even systems-of-systems are

often already systems themselves – either as commercial-off-

the-shelf software used with ‘minor’ adaptations or custom-

made software. This reuse of existing and proven solutions

allows for the rapid construction of large systems. In the

system development process, the engineering practices

typically address – successfully – the scope of a single,

independent system: The requirements are (and can be)

defined, the system is modeled, implemented, tested and put

into operations.

What started as the ‘waterfall model’ [2] has been adapted
to mitigate the risks of failing to deliver a system in time, in

budget and in quality. The software engineering models

address the risk of failure in several ways: Using formal

rather than natural language reduces misunderstandings; a

small project scope reduces the ‘value at risk’ and testing
assures that the intended level of quality is reached. These

different approaches can be seen in a software engineering

meta-model, like the V-Model XT [3] [4], a model in

widespread use in Germany. The formal, document-oriented

waterfall model is represented by the left side of the V,

proceeding through the typical phases towards the

implementation. In particular the model requires for each

phase to define a dedicated test phase at a later time (the

right-hand side of the ‘V’). Depending on the focus of a
particular project the meta-model allows for modern

approaches e.g. test-driven development [5] or agile methods

[6].

Yet methods proven to deliver successful implementations

at the level of a single system seem to be inadequate for

large-scale systems. [7] argues that implicit assumptions –

the development process can be controlled, decisions are

rational, the problem can be defined and delimited – break

down when independent systems interact. Often the behavior

of a coalition of systems is emergent and it is difficult or

impossible to predict. An unintended consequence could be

the complete failure of the overall system without a clear

software bug within any contributing system ([8] gives the

2010 stock market flash crash as a prominent example).

We propose extending common software engineering

practices through the use of simulation models. At any stage

during the system development process the current level of

detail needs to be captured in form of an executable

specification. The system design process SDD follows

exactly this axiom [9]. A major challenge of SDD is the

coupling of different simulation models, simulators and

already implemented system components to enable unit tests

within the expected operational context. Each requirement

and their test cases depend on the context, i.e. reusing a

component or integrating a system into another system will

most probably invalidate many assumptions and test cases

[10]. Features, performance and operational aspects need to

be proven before a sub-system is ready for integration. The

development of such simulation-based test environments is a

challenging task: sub-systems can be interfaced with

simulation models where the remaining sub-systems operate

at a higher degree of abstraction and the technical

performance of the simulators can be insufficient.

In this article we discuss the possibilities and technical

challenges regarding the coupling of simulation models with

real world implementations. In section two we first introduce

the SDD approach and show how modeling and simulation

technologies can be applied to leverage specification quality

and speed in the development of complex distributed

systems. Section three explains the idea of loose coupling

T

Simulation Driven Development of Distributed Systems – Coupling

of virtual and real system components

Tommy Baumann

Andato GmbH & Co. KG

Ehrenbergstraße 11

98693 Ilmenau, Germany

tommy.baumann@andato.com

Bernd Pfitzinger

Toll Collect GmbH

Linkstraße 4

10785 Berlin, Germany

bernd.pfitzinger@toll-collect.de

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 93–97

DOI: 10.15439/2018F375

ISSN 2300-5963 ACSIS, Vol. 16

c©2018, PTI 93

and applies it in the example of the German toll system. In

section four we explain the idea of tight coupling and apply

it on the example of testing an electronic control unit (ECU)

of a car. In the last section, we summarize and provide an

outlook about future work.

II. SIMULATION DRIVEN DEVELOPMENT

Simulation Driven Development (SDD) is an efficient

methodology for developing complex distributed systems. In

contrast to conventional methodologies simulation models of

the system to be developed are used during the entire

development process [11]. These simulation models allow

description of static and dynamic system properties which

enormously improves specification quality and speed.

Furthermore, they are used for analysis, evaluation,

validation, verification and optimization during the course of

the developing process. In addition to the simulation model

of the system to be developed, SDD uses a simulation model

of the development process itself. This simulation model

allows automation of development steps in the form of

workflows like optimization cycles, test cycles, revision

controls and document sharing with component

manufacturers. Fig. 1 shows SDD in the form of an extended

V-Model.

User requirements of the system to be developed are

determined and transferred into an initial simulation model

during the requirement analysis. It represents the dynamic

user behavior as well as the user interaction with the system

in form of application scenarios / use cases. The simulation

model is the basis for future acceptance tests and allows the

first analyses in developing the design of the system.

In the subsequent phase of system specification, developer

requirements (functional and not-functional) are derived and

transferred into an executable specification. This is a

simulation model of the whole system encompassing

technical functions, architecture and user behavior. Each

element of the simulation model is related to the user’s or
developer’s requirements to ensure their compliance. The
simulation model allows an early validation of the whole

system against the application scenarios and allows locating

integration problems (dynamic coupling effects between

system components). Furthermore, it permits system-level

optimizations and is the basis for later system integration

tests.

Within the component specification each system

component is further refined in form of simulation models.

Starting point is the present executable system specification

with the component related requirements and parameters.

Simultaneously the executable system specification serves as

development environment for component validation and

optimization against the holistic system. As a consequence of

the refinement, the components and thus also the system

parameters become more specific. The component

specification forms the basis for the later unit tests and

component integration tests.

Fig. 1: Simulation Driven Development as a V-Model

After the specification of the system and its components

the development process proceeds with the implementation.

Based on the previously specified test cases the

implementation will be verified and validated (performance

tests and endurance tests). First, component integration tests

are performed. In this step the functionality of each

component is viewed in isolation. Afterwards components

are integrated to a system followed by system integration

tests. Finally, the system is tested against the initially defined

user requirements by an acceptance test. SDD allows the

reuse of the previously defined test cases which exist in form

of simulation models. To that extent, simulation models are

attached to the system implementation by

Hardware/Software in the Loop (SiL/HiL).

To implement SDD a formal definition of the overall

process is required. Figure 1 depicts the SDD approach as a

V process model enriched by simulation-based test activities

throughout the whole process. As in the classical V process

model the level of detail increases when going downwards in

the process and it is possible to go back to upstream process

steps if it emerges that changes are required. The result of

each process step is captured by one or more simulation

models which provide test drivers for integration steps like

“in-the-loop”, integration or even acceptance tests. It is
therefore similar to the W model in software development

[12]. Both models share the concept of “testing starts at day
one”, i.e. that tests performed during the design stages

prepare the integration tests and that test teams and system

designers work together from the very beginning. A key

improvement is that SDD features dynamic testing by the use

of simulation models from the very beginning which directly

supports dynamic testing in the integration phase in contrast

to the classical W model where only static analysis is

performed at early design phases.

Test failures or emerging new requirements can lead to

changes in upstream (more general) designs which in turn

might invalidate downstream (more detailed) specifications

and simulation models. It is therefore critical to maximize

the overall degree of formalism, automation and

requirements traceability within and between each of the

94 POSITION PAPERS. POZNAŃ, 2018

steps in the SDD process model. This in turn requires

detailed workflows for which individual working steps can

then eventually be executed automatically by a workflow

engine.

As mentioned above, SDD follows the idea of “test starts
at day one”. A prerequisite is the presence of an executable

system model throughout all design stages. To enable unit

tests, the system models need to be coupled to existing

hardware or software components (HiL and SiL) which can

be implemented in two different ways: loose coupling and

tight coupling [13] [14]. While loose coupling doesn’t
consider the dynamic interaction between the sub-systems,

tight coupling does.

III. LOOSE COUPLING

Loose coupling simplifies the implementation of unit tests

of relatively independent sub-systems. The prerequisite is a

mostly unidirectional exchange of data. e.g. lacking feedback

or disregarding feedback that deviates from the simulation.

This enables technically simpler test benches, since a sub-

system can be tested without real-time connectivity to the

rest of the system. One possible implementation is to simply

take the events passing through the simulation model and

export those events that are relevant to a particular domain-

specific interface. The event list is a flat file with a

chronological list of points in time and additional domain

specific information.

In the example of the German automatic toll system we

use this approach to provide the temporal behavior of 1.1

million on-board units communicating with the central

system [15]. The event list contains all TCP/IP connections

and their domain specific payload, e.g. the number of

journey data files transmitted. Operational testing takes this

temporal data, adds the domain specific content and uses

another more technical simulator to drive the real-world data

center applications. The example illustrates two challenges

encountered in this approach:

 The abstraction gap – when a high-level simulation model

encounters a real-world system – is overcome by

additional simulation models. Loose coupling of the

simulation models immediately translates into loose

coupling of the technical teams involved.

 The simulation performance – where a real-world system

must not be impacted by the simulation performance.

Loose coupling allows to precompute at least parts of an

operational test.

IV. TIGHT COUPLING

Tight coupling is used to develop and test sub-systems

that work closely together, e.g. as parts of an embedded

system. The entire logic of such systems is typically

distributed across several sub-systems. These sub-systems

need to be connected dynamically to deliver the desired

logic/process. Each sub-system is characterized by

interconnectivity and inter-processing to the other sub-

systems and depends strongly on them.

Two possibilities of technical implementation can be

distinguished: direct tight coupling using data files, shared

memories or network protocols and indirect tight coupling

using a central data distribution service (DDS). Fig. 2 shows

direct coupling using TCP/IP sockets. Each participating

simulator needs to implement an adapter to each connected

simulator – a time-consuming and expensive task. All

requirements regarding quality of service (real-time

capabilities, distribution of simulators across multiple

nodes), standardization of data types (different data types of

simulators) and time synchronization (global clock as

simulation time) need to be considered. These issues are

solved using a central data management entity like DDS.

Fig. 2: Direct tight coupling using TCP/IP

DDS is a networking middleware that simplifies complex

network programming and distribution of data. It implements

a publish–subscribe pattern for sending and receiving data,

events, and commands among the nodes. Nodes that produce

information (publishers) create "topics" (e.g., temperature or

pressure) and publish "samples". DDS delivers the samples

to subscribers that declare an interest in that topic. DDS

handles transfer chores: message addressing, data

marshalling and de-marshalling (so subscribers can be on

different platforms from the publisher), delivery, flow

control, retries, etc. Any node can be a publisher, subscriber,

or both simultaneously.

The DDS publish-subscribe model virtually eliminates

complex network programming for distributed applications.

The key benefit is that applications that use DDS for their

communications are decoupled. Little design time needs be

spent on handling their mutual interactions. In particular, the

applications never need information about the other

participating applications, including their existence or

locations [16] [17]. Fig. 3 shows the basic architecture of a

DDS solution.

BERND PFITZINGER, TOMMY BAUMANN: SIMULATION DRIVEN DEVELOPMENT OF DISTRIBUTED SYSTEMS 95

Fig. 3: Indirect tight coupling using DDS

We have developed an ECU test environment which

couples three different simulation tools (MSArchitect,

Matlab/Simulink and LabVIEW). It is used to validate and

test the function and performance of the interface between

the three simulation tools. The coupling between those

systems is accomplished by using TCP/IP sockets achieving

a high data transfer rate.

In this example MSArchitect takes the server role while

Matlab/Simulink and LabVIEW are the clients. During the

initialization phase of the simulation the server is waiting for

incoming connections. Once all clients have been connected

to the TCP/IP sockets the simulation starts.

The tight coupling example caused several challenges

which have to be solved. The data transfer through TCP/IP

sockets is limited to character arrays. Therefore, the different

data types of the several simulation tools could cause issues

because of the conversion in character arrays and the

conversion back to the data types. For this reason, a

definition of supported data types and a standardization of

those data types need to be developed. Furthermore, the time

of the connected simulators need to be synchronized, for

example by implementing a global clock, controlled and

distributed by one simulator.

Fig. 4 shows the user interfaces of the test environment.

The whole car is modelled in MSArchitect and parts of the

model are implemented in LabVIEW or Matlab/Simulink.

The LabVIEW model contains the entire logic of the ECU

which is built in the car model. Matlab/Simulink provides the

logic and behavior of the combustion engine. The

performance of the ECU test environment is limited by the

hardware resources of the test computer.

In our case the desired maximum performance of the

implemented interface could not be accomplished since all

three models were running on the same system. In future

work, we want to split the simulation models over three

processing nodes to reach a significant higher performance

of the entire simulation. At this point, the ECU test

environment is running without any data loss or

synchronization issues, which in fact is a great starting point

for further development.

Fig. 4: ECU test environment

V. CONCLUSION

We have shown the applicability of simulation models

along the development process using a simulation driven

design process. From the onset the simulation model

provides the operational context and over time the level-of-

detail can be increased to the point where real-world sub-

systems interface with the simulation model. In the article we

discussed how simulation models can interface with real-

world hardware or software to enable realistic unit tests. Two

possibilities have been introduced: loose coupling and tight

coupling.

Next, we’re planning to extend our DDS solution and
connect the examples mentioned above to this solution.

Above all, securing a defined quality of service within DDS

will be a challenging task. In addition, we’re preparing a

guideline to select a proper coupling mechanism.

REFERENCES

[1] B. Boehm: A view of 20th and 21st century software engineering.

Proceedings of the 28th international conference on Software

engineering, ACM, 2006, pp. 12-29. doi: 10.1145/1134285.1134288.

[2] W. W. Royce: Managing the development of large software systems.

Proceedings of IEEE WESCON, Los Angeles, Aug. 1970, pp. 1-9.

96 POSITION PAPERS. POZNAŃ, 2018

[3] Verein zur Weiterentwicklung des V-Modell XT e.V. (Weit e.V.): V-

Modell XT version 2.0. [accessed 21-Jan-16]. Available: http://www.

v-modell-xt.de/

[4] S. Biffl, D. Winkler, R. Höhn, and H. Wetzel: Software process

improvement in Europe: Potential of the new V- Modell XT and

research issues. Software Process: Improvement and Practice, vol. 11,

no. 3, pp. 229-238, Jun. 2006. doi: 10.1002/spip.266

[5] D. Janzen and H. Saiedian: Test-Driven Development: Concepts,

taxonomy, and future direction. Computer, vol. 38, no. 9, pp. 43-50,

Sep. 2005. doi: 10.1109/MC.2005.314

[6] Manifesto for agile software development, [accessed 29- Jul-2015].

Available: http://www.agilemanifesto.org/.

[7] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly,

M. Kwiatkowska, J. McDermid, and R. Paige: Large-scale complex IT

systems. Communications of the ACM, vol. 55, no. 7, pp. 71-77, Jul.

2012, doi: 10.1145/2209249.2209268

[8] D. Cliff and L. Northrop: The global financial markets: An ultra-large-

scale systems perspective. In R. Calinescu and D. Garlan (Eds.):

Large-Scale Complex IT Systems. Development, Operation and

Management. Ser. Lecture Notes in Computer Science, vol. 7539, pp.

29-70, Berlin: Springer, 2012. doi: 10.1007/978-3-642-34059-8_2.

[9] Baumann, T, “Simulation-driven design of distributed systems”. In

SAE International, SAE Technical Paper, pp. 1-7, 2011.

doi:10.4271/2011-01-0458.

[10] E. J. Weyuker: Testing component-based software: A cautionary tale.

IEEE Software, vol. 15, no. 5, pp. 54-59, Sep. 1998.

doi:10.1109/52.714817

[11] B. Pfitzinger, T. Baumann, and T. Jestädt, “Simulation driven

development - validation of requirements in the early design stages of

complex systems - the example of the German toll system," in

Proceedings of the 2017 Federated Conference on Computer Science

and Information Systems, M. Ganzha, L. Maciaszek, and M. Pap-

rzycki, Eds., ser. Annals of Computer Science and Information

Systems, vol. 11, IEEE, Sep. 2017, pp. 1127-1134. doi:

10.15439/2017F133.

[12] Gerrard, P. and N. Thompson: „Risk-Based E-Business Testing“,

Artech House INC 2002, ISBN-13: 9781580533140, ISBN-10:

1580533140

[13] A. Salkintzis, C. Fors, and R. Pazhyannur, "WLAN-GPRS Integration

for Next-generation Mobile Data Networks," IEEE Wireless

Communications, vol. 9, no. 5, pp. 112-124, October 2002. doi:

10.1109/MWC.2002.1043861

[14] Beck, F. and Diehl, S., “On the Congruence of Modularity and Code

Coupling”, in 19th ACM SIGSOFT Symposium on the Foundations of

Software Engineering and 13rd European Software Engineering

Conference (ESEC/FSE '11), Szeged, Hungary, September 2011.

doi:10.1145/2025113.2025162

[15] Pfitzinger, B.; Baumann, T.; Jestädt, T.: Network Resource Usage of

the German Toll System: Lessons from a Realistic Simulation Model.

In: 46th Hawaii International Conference on System Sciences

(HICSS) (2013), pp. 5115–5122. doi: 10.1109/HICSS.2013.41

[16] Rekik, R. and Hasnaoui, S., “Application of a CAN BUS Transport

for DDS Middleware”; 2009 Second International Conference on the

Applications of Digital Information and Web Technologies, London,

2009, pp. 766-771.doi: 10.1109/ICADIWT.2009.5273919

[17] Deniz, E. et al., “DDS Based MIL-STD-1553B Data Bus Interface

Simulation”; The Journal of Defense Modeling and Simulation, vol

12, issue 2, pp. 179 – 188. doi: 10.1177/1548512914530534

BERND PFITZINGER, TOMMY BAUMANN: SIMULATION DRIVEN DEVELOPMENT OF DISTRIBUTED SYSTEMS 97

