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Abstract—Personal Monitoring Devices (PMDs) collect im-
mense amount of data about health and wellness of hundreds
of millions of people. One of the obstacles of the prevailing
data analytics approaches to PMDs’ data is limited value of
correlation-based conclusions in a health context. Causal in-
ference seems a natural solution, but general causal inference
methodologies are difficult to apply to PMDs data due to size
and complexity of observational data. Some methods, such as
randomized trials, are largely infeasible in PMDs’ context due
to lack of control over the investigated population. In this paper,
we overview existing approaches to causal inference including
recent works that attempt to take advantage of time series
data to automatically derive causality using extended difference-
in-deference or Granger methods. We then outline challenges
and opportunities for causal inference in the health context.
Finally, we propose a following challenge: can we establish a
new standard of evidence and a study design process that: (1)
allows for drawing causal conclusions from large observational
datasets and (2) can suggest interventions to enforce causal links
discovered in the data.

I. INTRODUCTION

O
FTEN repeated phrase “correlation is not causation”

became with time an offhand apology for providing only

correlation-based conclusions for research questions, rather

than motivating efforts to develop improved methods for deter-

mining causation. Even though, it might require a considerable

extra effort to arrive at causal relations, the utility of causal

results is far greater than correlation results, even if causal link

would be of limited precision.

Many researchers and practitioners settle on correlation

only, but this trend appears to change recently. Highly pub-

licized cases, such as flops of Google Flu Trends[1], show

dangers of ignoring proper causal analysis. If we want to plan

and evaluate interventions or make safe long-term predictions,

a tool stronger than correlation is necessary.

Pearl, originally known for development of Bayesian Net-

works and probability-centered approach to AI, suggests in his

new book [2] that current developments in machine learning

and artificial intelligence focus too much on improved curve

fitting, that is correlation and probability. To lead to the next

breakthrough machines have to reason beyond probability. He

brings an example of malaria and fever. It is important to

understand that malaria causes fever and not only that they

are correlated. Introducing causality language into existing

data analyses could help us reason about possible results of

interventions using observational data.

Correlation prevails as for now in big data publications, as

documented by Ekibia et al. review [3]. Other authors, e.g.,

George et al. [4] also notice that causality does not inform the

design of big data as a domain. Grimmer [5] points out that

large amounts of data will not solve the problem of variable

selection in causal inference. Scientists require more training

to better understand causal inference. With time, problems,

such as those with Google Flu Trends, uncovered issues with

such approach. Lazer et al. in their Science paper [6] suggest

changes to approaches to data analysis based on the problems

with Google Flu prediction. They show that analysis based on

like Google Correlate is difficult to reproduce. Even Google

Flu cannot be reproduced using Correlate. Analyses that base

on sources produced by users are susceptible to blue team and

red team problem. Blue team problem is the unintended influ-

ence on algorithm results due to changes to data generation

as a result of changing company policies and goals. Red team

problem is the unintended influence on algorithm results due

to attack on data generation mechanism (generating fake data

based on knowledge of algorithm functioning).

More and more authors stress importance of causal analysis

for big data and data science. A good example is an article

by Provost and Fawcett [7]. They stress, in particular, the

importance of careful analysis of assumptions on confounding

factors, causal links are directly dependent on these assump-

tions. Confounding factor is characterized by associations both

with outcome and evaluated cause variable, but does not lie

in the cause path between them. Kitchin [8] describes his

reservations about the shift from knowledge-driven science to

data-driven science. At the same time he notices benefits of

big data and suggests that they could lead to creation of more

sophisticated models.

After Introduction, in Section II we explain basics of causal

inference including most common models and methods, such

as Neyman-Rubin Causal Model, Structural Equation Model-

ing, Structural Causal Model, and Difference in Differences.

In Section III we present current trends in causal inference

in big data, healthcare, and time series leading to automation.

We conclude in Section IV where we propse a challenges.

II. BASICS OF CAUSAL INFERENCE

Gelman [9] organizes causal reasoning in two general types

of questions one can ask: forward and reverse. These two
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questions are sometimes formulated in a shorthand form as

“effects of causes vs. causes of effect”, which traces back to

Mill [10]. Forward question asks about results of a certain

intervention one might perform. Reverse question asks about

causes of a certain observed effect. The consensus based on

Gelman’s overview is that effects of causes can be usually

traced, so forward question can be answered. Typical methods

used to answer forward questions include: Neyman-Rubin

causal model (RCM), Structural Equation Modeling (SEM),

and Structural Causal Model (SCM).

Causes of effects are more difficult to deduce, especially if

we are facing complex processes involving, e.g., politics, such

as causes of war. Nevertheless, some reverse questions, even

involving social matters, might still be answerable. It typically

requires expert reasoning to pre-identify meaningful factors

for actual analysis. The analysis would then account for these

factors, which should lead to disappearance of differences in

outcomes. This confirms causes of effects under assumption

that factors are meaningful. This assumption naturally weakens

such causal argument.

A. Model vs. Data

There are several general viewpoints on what is necessary

to derive causal relation. These views are summarized and

organized by Gelman. The main question that Gelman asks

is how permissive a particular view is in allowing correlation

and observational data as a basis for causal relations. Most

strict approaches are based exclusively on strict models and

randomized studies. Some scientists, such as Pearl, hold a

view that observational data under strong models may lead

to causal conclusions. In some domains it is also common to

derive causality from covariance matrices, but it is unclear

how widely it can be applied. The most permissive view

covers automatic derivation of causality by computer from

observational data. Gelman’s organization can be seen as a

scale that balances between model and data. All methods

require data for confirmation of the actual relation, but few

see data as a sole basis for such relation.

RCM is the method that often unconsciously guides people’s

thinking about causal inference. It introduced concept that

are now taken for granted, such as: counterfactual, treatment,

and control. Main methods that base on structure are SEM

and SCM. They use both graphical and purely computational

techniques to a different extent, particularly there are many

different methods under SEM. Main method which uses mini-

mal structure is DD (Difference in Differences), it also heavily

focuses on use of data. It can be used as a basic calculation

technique for some other methods that employ structural

approach. An interesting example of a method with minimal

expert structure is Google’s CasualImpacts [11], which we

mention in greater detail later in this paper. We will now

shortly describe the four main methods: Neyman-Rubin causal

model (RCM), structural equation modeling (SEM), structural

causal model (SCM), and Difference in Differences (DD).

B. Neyman-Rubin Causal Model

The basis for Neyman-Rubin causal model was first for-

mulated by Neyman [12] for randomized (alternatively called

controlled) experiments and extended by Rubin [13] and others

for both observational and experimental studies. This model

introduced basic tools considered now a standard in any

causal analysis. The model defines counterfactuals used to

specify potential outcomes and then comparing outcomes of

alternative exposures. In practice, it is usually impossible to

check more than one intervention on the same subject. This

problem is often named the fundamental problem of causal

inference. The goal of randomized experiments is to solve this

problem by creating two comparable groups that collectively

can form a basis for causal reasoning.

C. Structural Equation Modeling

SEM is, as Kline [14] describes, a grouping of several

methods used to verify a proposed causal model. Methods

include path analysis, confirmatory factor analysis, structural

regression models, latent growth models, covariance and cor-

relation structure models. Sometimes path analysis is called

causal modeling, which is considered an anachronism. Results

of SEM cannot be assumed to be causal per se. Causality is

dependent on the design of experiment which SEM methods

then verify.

Confirmatory Factor Analysis is a form of Factor Analysis.

It is used to compare researchers understanding of factors

and their relation against the measurement. CFA is sometimes

called measurement model in SEM and it does not specify

structure. Factor analysis (Exploratory Factor Analysis, EFA)

uses unobserved variables, called factors, to reduce amount of

variables necessary to described variability in observed data.

Principal Component Analysis is a simple version of EFA

Path analysis, is a method to specify directed dependencies

between variables in the model. It only provides structure, no

measurement. Latent growth modeling adds a time component

to explanation of dependent variables, this way it can describe

longitudinal change (change over time). Most applications

limit themselves to slope and starting point only, but higher

order methods are also used.

D. Structural Causal Model

SCM proposed by Pearl [15] attempts to integrate other

existing approaches to causal inference into a unified model,

in particular it subsumes SEM and various graphical models. It

also claims to subsume RCM, but Aliprantis [16] indicates that

an important difference in modeling approaches exist between

these two methods. Even though, it is possible to find an SCM

generating any RCM contingency tables, there is no unique

SCM that generates a particular solution. It may result in

critical discrepancies between each approach. However, this

limitation does not necessarily take away all usability of SCM.

It is still important because the integrative approach is helpful

to clarify formal meaning of important concepts, such as: d-

separation, interpretation of counterfactuals, and confounding.

E. Difference in Differences

Difference in differences method uses observational data to

imitate experimental design. It calculates normal difference in
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the outcome, using control group for normalization. Measure-

ments need to be done at least once before and once after

the intervention. The control group by assumption should:

(1) show similar trends over time, (2) not be exposed to

intervention enacted on or experienced by treatment group,

(3) nothing other than treatment changes in only one group.

These assumption can be collectively called a parallel trend

assumption.

In the context of DD one might talk about natural exper-

iment, which is non-randomized experiment. DD allows to

estimate counterfactual from observational data from natural

experiments. There preferably should be two groups with

similar experience, but differently affected by an experiment or

intervention. Intervention should be well planned, it should be

exogenous that is not a reaction to a specific behavior, because

it could cause people to change their behavior unpredictably to

game the system. Resulting in inferior or even useless results.

III. CURRENT TRENDS

A. Big Data

Emerging sources of data, often coming from sensors,

are characterized by large volume (especially accumulative),

sometimes high velocity, and wide variety of actual data

sources and related data formats. These properties are com-

monly refereed as 3 Vs of big data. Moreover, such data

that reflect various natural phenomena are often observational.

By natural phenomena in this context we mean ones that

actually occur due to normal human or other activity, in

contrast to, e.g., simulations. While it is in theory possible

to attempt randomized experimentation in such setting, it is

unfortunately usually infeasible. Reasons are multiple, but

major ones include: cost, ethical considerations, and general

feasibility of recruitment to control groups.

Despite these obvious problems, new data sources provide

important opportunities due to their granular and longitudinal

character. Progress in sensor and storage technologies provides

the possibility to capture data over long periods of time, large

areas, and with ample frequency. These properties are not yet

well explored in the existing research, with several exceptions

which we mention here.

The most notable example might be work of Brodersen et

al. [11] on CausalImpacts. The motivation of this approach

was to infer causal impact for marketing campaigns, but it is

not necessarily limited just to this one domain. In principle, it

bases on difference in differences (DD) approach, but uses a

state-space model of time series to predict the counterfactual.

This is to compensate for many of the limitations of basic DD.

It allows considering synthetic control, inclusion of Bayesian

priors for parameters, and measuring evolution of impact of

an intervention over time.

Three types of sources are used to construct the synthetic

control. The first are properties of outcome time series before

intervention. The second are properties of time series that

could be used to predict outcome time series before interven-

tion. The third source, if available, are parameter values from

older related studies used as Bayesian priors.

Zigler and Dominici [17] propose a new Bayesian method

to select Propensity Score variable, which is supposed to

help causal inference in i.a. big data scenario. Beyond these

examples, we have not found other explicit attempts to address

data scale in causal analysis.

B. Time Series and Automation

Gelman in his aforementioned review suggests that time can

be considered from two different non-exclusive perspectives in

causal inference. First perspective considers contamination of

results due to exposure to more than one treatment over time.

Such contamination requires special attention in observational

data, where exposure to more than one treatment is difficult

to avoid and not always direct. For instance mere knowledge

about alternative treatment might impact the results. Placebo

method, which corrects for this issue, is difficult to deploy

outside controlled randomized experiment setting.

Second perspective includes time as system variable to

express changing effect of one treatment over time. Gelman

only considers it for limited amount of future time points. Such

limited treatment presumably results from combination of data

available in traditional causal research and related methods.

Some most resent developments address this limitation.

Granger causality test [18] has been more and more com-

monly used in the recent years. It provides well defined tool

to determine if one time series is a predictor of another. In

many cases this might be considered close to causality, but in

principle it is a correlation with time precedence. The method

relies on time series and allows for automation of the causality

inference process. It defines determinate formulas eliminating

(to some extent) necessity for human involvement, what makes

it easier to scale with growing data, as long as we consider

some form of windowing or sampling.

C. Health and Welfare Monitoring

Krumholz in his widely cited paper on "Big Data and New

Knowledge in Medicine" [19] observes that improvements in

any service (be it either health or movie rental) are possible

despite lack of conceptual models, hypotheses testing, or

randomized trials, but can come directly from observational

data. Historically empirical insights derived from existing

data were considered inferior to insights based on theory

and experiments. However, many research questions can be

answered based on observational data without understanding

the underlining mechanism. In some case, these data might

contribute then to understanding of the mechanism. Author

provides an example of aspirin that was successfully used

without physicians at the time knowing why it produced the

results.

The paper opens for development of causal inference from

non experimental studies. It is particularly important when

experimentation might be unethical. Influence of smoking

on development of cancer is widely accepted despite relying

largely on observational data. Author identifies development

of widely accepted criteria for evaluating causal conclusions

from large observational datasets as crucial for further work,

but does not attempt that in the paper.

Visvanathan et al. in the Research Statement of American

Society of Clinical Oncology [20] notice that observational
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studies can be complimentary to Randomized Controlled Trials

(RCTs) by generating new hypotheses, revealing patterns and

answering questions that cannot be answered by RCTs. To

achieve this it is necessary to use a rigorous methodology

and transparent reporting, in addition to ensuring data quality,

interoperability and privacy.

What emerges through this Research Statement is a need for

a new standard of evidence to take advantage of observational

data and compensate for the lack of randomness and controlled

groups. It remains an open question whether elements of quasi-

randomness could be effectively introduced to observational

studies on large populations.

Janke et al. [21] discuss the potential of primitive analytics

and big data in emergency car. The potential that they consider

unexplored. They notice that observational data could improve

patient care but weak causal inference is a limiting factor at the

moment. One of the approaches they suggest is that systems

could prompt for additional information after discovering

patterns of interest. It could be done both on population and

individual level.

They believe that observational data might be used to derive

and validate new models, it cannot be used to evaluate the

effects of implementing these models. Example of influence

of smoking on cancer development shows that the mentioned

limitation should not preclude wider use of observational

approaches. Moreover, possible advancements in causal rea-

soning could at least partially reduce that limitation.

IV. CONCLUSIONS - THE CHALLENGE

In order to take advantage of large observational dataset

coming, in the context of underdevelopment methodologies

of causal inference from such datasets, propose the following

challenge: can we establish a new standard of evidence and

a study design process that: (1) allows for drawing causal

conclusions from large observational datasets and (2) can

suggest interventions to enforce causal links in these data.

We propose to focus on Personal Monitoring Devices, at

least in the beginning. Large portion of population is already in

possession of such device, data are already collected (though

in proprietary systems) and causal analysis has potential to

lead to meaningful health and well-being recommendations

both on individual and societal level.

Based on the existing literature we suggest that the start-

ing point should be causal inference based on time series

properties as preliminary explored in, e.g., aforementioned

Google’s library CausalImpacts, possibly in combination with

some formal causality formulation method, such as Pearl’s Do-

Calculus [22].

These developments could later also be applied wider to

smart technologies and observational data, but we think that

proposed initial limitation to would in fact stimulate faster

development of an accepted methodology.
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