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Abstract—This paper presents an application of a Convolu-
tional Neural Network as a solution for a task associated with
ESENSEI Challenge: Marking Hair Follicles on Microscopic
Images. As we show in this paper quality of classification results
could be improved not only by changing architecture but also
by ensemble networks. In this paper, we present two solutions
for the task, the first one based on benchmark convolutional
neural network, and the second one, an ensemble of VGG-16
networks. Presented models took first and third places in the
final competition leaderboard.

I. INTRODUCTION

IN THIS paper, we present our solution to the ESENSEI

Challenge: Marking Hair Follicles on Microscopic Images.

We used Deep Convolutional Neural Networks (DCNNs) mod-

els [1] to solve the given problem. Our final result consisting

of an ensemble of DCNNs models was the best performing

solution of the challenge. DCNNs training was a massive task,

which took a few days using GPU based computation. Before

that, we had tested different architectures and did many ex-

periments in order to find a better approach. Subsequently, we

trained derived architectures with gentle modification applied.

After all, we prepared an ensemble which achieved better

score with F-measure. In this paper, we also present 3rd place

solution of the challenge based on benchmark CNN model.

II. RELATED WORK

We found one study dealing with intelligent image analysis

of hair follicles. In [2], advanced automatic target recognition

(ATR) algorithms for identification of hair follicles were used.

The approach was not related to neural networks, though.

Instead of learning convolutional filters, the authors used

the ATR method which performed wavelet filtering of the

targets for enhancing the contrast of hair features in the

images. Subsequently, the collected features were sent to

Adaboost classifier for training and recognition. The system

itself was able to provide the intended hair follicle locations.

The follicle locations were isolated by continuous wavelet

transform in a grayscale image. The authors observed that

plotting a grayscale picture of skin with follicles in three

dimensions, lead to a print with local minima in the surface

plot, in which hair follicles resided. The cross-section of a hair

follicle resembled an inverted version of the second derivative

of a Gaussian wavelet, referred as Mexican hat wavelet. The

correlation between both, cross-section and a Mexican hat

wavelet was used to locate a hair follicle. Finally, correlations

were used to find regions of interest from the image. Sub-

sequently, features for follicles identification were extracted

e.g. entropy, skewness, mean, standard deviation, feature area,

minimum value, correlation peak and Euler Number.

The first stage of the ATR system was the optical correlation

operation, with the intentionally low set threshold. The output

contained many false positives, which were reduced in the

second stage, by application of adaptive boosting. The lower

bound of prediction performance was 77 % with a maximum

of 2 false positives per image. However, the images used in

[2] were not containing any hair, but only hair follicles, which

seemed to be a fairly easier task to solve.

III. PROBLEM DESCRIPTION

The dataset consisted of microscopic digital images of a

human scalp. The picture was in full HD resolution, with size

1920x1080 pixels. Each image was divided into equal non-

overlapping 144 sectors. Each sector forms a subimage square

with size 120x120 pixels. It means that each original image

was made of 144 bitmaps, framed in 16 columns and 9 rows.

Those subimages represented an defined input of classification

problem and contained the visual representation of possible the

hair follicle occurrence. In another bitmaps file, the knowledge

reflecting the presence of follicles was collected. If a subimage

contained at least one follicle, then it was marked by 1,

otherwise by 0. Finally, the task was to classify all sectors

from an image.

The training set contained 4880 full HD pictures in jpeg

format, with corresponding bitmaps containing encoded folli-

cle presence. However, dividing this images into 144 sectors

provided 702720 training samples. Approximately 14% of this

samples had been labeled as positive.

The test set was made of 1000 images. The task was to pre-

dict the follicle positions in the test pictures by classification

of each sector. Each prediction for an image had to contain
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144 binary values, concerning 16x9 square areas making one

image entity. Finally, 144000 test samples were classified.

IV. DATA PROCESSING

A. Data preprocessing

We applied some preprocessing steps in order to improve

quality of classification. Those steps were performed on both

sets, training and test. We treated all pictures as one channel

representing an image in grayscale. We experienced that

using 3 color channels was not worth all the effort needed,

greatly increasing input data size without significant result

improvement. All image data were standardized with respect

to the training and test set. Since the images were with

size 120x120 pixels, we scaled them to lower resolutions for

different models, i.e. 24x24, 36x36 and 48x48 pixels. We were

concerned about prediction quality on the sector edges. We

also recognized classified that a sector could strongly rely on

information from neighbour sectors, i.e. recognizing hair ge-

ometry in neighbourhood could provide important information

about hair facility occurrence in the analyzed sector. In order

to make it more robust, we merged near neighbourhood areas

with analyzed subimage, making one larger new input image,

to better recognize follicles on the image boundaries. We used

a few approaches to this problem, one of them used whole

neighbouring sectors. As result, we used area of 9x9 sectors,

where classified sector was always in the center of the area. In

this way, we created new datasets, with different surrounding

cell sizes. The first set was made of images in size 24x24

pixels, joined with their 8 neighbours (also 24x24 px). As a

result, we got 72x72 pixels images. We obtained further two

datasets, but in this case, we limited the surrounding area by

lowering the size of the neighbouring squares by factor 2.

Thus, we produced new input images with sizes 72x72 and

96x96 pixels. For the boundary images, when no neighbours

were available, we applied images filled with zeros.

B. Data augmentation

Data augmentation is a very common technique in image

classification, used for the training dataset enlargement. What

we had to do, was to perform minor alterations of existing

images. Those minor changes might be following: translations;

rotations; both, horizontal and vertical flipping; zooming or

more sophisticated transformation. The neural network would

treat such generated picture as a distinct one, and thus benefit

from it. ”Data augmentation has been shown to produce

promising ways to increase the accuracy of classification

tasks” [3]. This technique ”has played an active role in

achieving state-of-the-art results on many vision tasks” [4].

V. ARCHITECTURE OF NETWORK

We used two different architectures for each solution. In this

section, we describe both of them and final models based on a

benchmark CNN and an ensemble of deeper CNNs based on

VGG-16 architecture. We also want to discuss the problem of

damping position information in CNN.

A. Position information in CNN

As we said, our input data included neighbour sectors

which did not represent directly visual information about the

classified sector. It was very important to keep information

about that signal of hair facility occurrence raised from central

sector of input data. CNN could damp this information by their

architecture nature. Convolutional filters are applied to the

whole image and allow to propagate information about pattern

occurrence in the specific area. However, the output of filters is

normally processed by pooling layer which makes ”mixture”

of information from nearest sectors. In the most common

approach, the max signal value is chosen from this area. A

solution to this problem could be removing pooling layers

from a network. However, pooling layers allow to greatly

decrease the number of parameters in the network, reducing

the size of an analyzed topology of outputs from the previous

convolutional layer. This property of pooling is very desired

in CNN and allow to greatly simplify model complexity. As

shown in [5], in some cases CNN could not include pooling

layers and perform parameter reduction by applying a bigger

stride of a filter. Whereas, it can perform with similar results

as classical CNN architecture with pooling layer. This ap-

proach allows keeping pattern occurrence position information

through whole signal propagation. However, the bigger stride

could also cause skipping some patterns in the analyzed area.

Stride-based architecture could also have the problem with

generalization made network rigidly associated with input data

pattern positions, which in turn, could lead to generalization

problem. Based on this information we decided to use average

pooling, which does not damp position information from the

specific area like max pooling does but make this information

as a mixture from neighbour areas which finally provide noised

information about pattern occurrence position.

The problem of pattern position also limited possible data

augmentation techniques, i.e. shifting could noisy relation

between the input and the desired output.

B. VGG-16

We made use of cross-validation to choose better models

and to estimate learning rate parameter. Finally, we have

experienced that a VGG-16 [6] neural network is outperform-

ing other architectures. We applied many experiments with

different dense layers, class weights and image sizes. Besides

the architecture, the most important factor, in well-performing

prediction, is image size. We have observed that F1-score value

grows in general, with image resolution. Higher resolutions

lead to better results. On the other hand, increasing image size

demands more memory in a graphics card and slows down the

training process. Likewise, training of a high-resolution model

demands more data in general. Thus, we had to balance all that

criteria to build a suited and well-performing model. All in all,

we built on top of solution an ensemble model made from four

models.

The VGG-16 architecture consisting of 23 layers is shown

in the Figure 1.
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Fig. 1. The architecture of VGG-16 deep convolutional neural network. Dif-
ferent input sizes were used. Before each of convolution and average pooling
layers, zero-padding and batch normalization were applied, respectively. After
each VGG-16 section, we performed dropout layers to avoid over-fitting.
Regarding dense layers, we added dropout and batch normalization after each
dense layer.

Instead of max pooling, we used the average, which seemed

to perform a bit better. This decision had also analytic back-

ground associated with information about pattern position in

the image.

We have also modified the number of dense layers, we

have four of them. We used dropout to prevent model from

overfitting [7] and batch normalization technique [8] to scale

and adjust activation functions outputs. Zero padding tech-

nique removes unwanted boundary effects. As a loss function,

we adapted binary cross-entropy with Adam optimizer for

gradient descent optimization.

Fig. 2. The architecture of benchmark CNN used as one of the solutions for
a defined problem.

VI. MODELS

Our solution are based on convolutional neural network

which are the state-of-the-art models for many image classi-

fication problems[9][10][11]. For training networks, we used

Adam optimizer[12] which ”has been immensely successful

in development of several state-of-the-art solutions for a wide

range of problems” [13].

A. Training

We applied the learning rate of 0.005 for all models. We

have used Adam optimizer for optimization, β1 and β2 param-

eters were set close to 1. This method allows to easily adapt

to data and model architecture without a rich parametrization.

Networks were trained on 90 percentages of data, rest of set

was used for model validation. The early stopping technique

was used based on a progress of evaluated on validation

data F1-score metric value. Network training optimized bi-

nary cross-entropy which do not correspond directly to F1-

score. However, we could decrease the gap between both

optimization goals by manipulation class weights which could

allow us to find the balance between optimizing precision and

recall. Different strategies were chosen for different networks.

Figure 3 presents metrics values during a training process. It is

noticeable that shallow network train is more stable, with fewer
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outliers points. The mean values of loss functions and f1 scores

for models m1,m2,m3,m4 for both training and validation

sets are given in tuples respectively: (0.341± 0.052, 0.715±

0.035) and (0.214± 0.026, 0.715± 0.023). One can observe

the equality of F1-scores for training and validation sets.

B. Benchmark CNN

At first, we want to describe CNN architecture which took

3rd place in the competition. For convenience, we will call

this model as benchmark CNN. Figure 2 presents the archi-

tecture of model. To prevent this network from an overfitting

problem, between all convolutional layers we used a dropout

with p = 0.4, for fully connected layers p = 0.5. Batch

normalization allowed to damp too strong signals spikes. This

network was processing images with 48x48 pixels representing

an area of 9x9 sectors. The classified sector was always in

the center of the area. Class weights were fixed as 3 per

positive class and 1 per class negative class. This value was

adjusted experimentally. In next sections, we will discuss and

compare results of this model with an ensemble of VGG-

16 networks. In our experiments, we treat the results of this

model as a benchmark. The model consists of 2,3 mln trainable

parameters.

C. DCNN ensemble

As we stated before, we trained 5 models with respect to the

given DCNN architecture in Table 1. As shown in [14] ensem-

ble of CNN could enhance results quality. For convenience,

we will call members of ensemble m1,m2,m3,m4,m5.

Our two models m1,m2 have 72x72 pixels images on input.

The input image construction has been mentioned in Section

IV. Basically, one image is taken from 9 original subimages.

Those models differ only in class weights. Although there are

almost 6 times more negative samples than positive, we found

that the class weights 2 or 3 perform better. The first model

has class weights 1 and 2, and the second one has 1 and 3,

where the first weight is for class 0 and second for class 1.

We monitor the training process to not overfit the model, by

using early stopping method. We feed the model under training

with a validation dataset, in order to stop training if the model

performance measured in F1-score is getting lower, while we

keep the best performing model at hand. Both of the models

contained roughly 17.5 mln trainable parameters each. The

validation set was a 10% subset of total training data.

Subsequently, we have a model m3 with input images 72x72

pixels, but with higher resolution. The central cell is made

from 36x36 pixels image. We kept the same setup and applied

class weights 1 and 3. This model has the same number of

parameters to estimate. The outcome was slightly better than

in the previous approach.

In the end, we trained a model m4 with the highest

resolution. The training itself was a massive task. Since we

applied the input images with 96x96 pixels, we had to compute

values of more than 20 mln parameters. We trained this model

like others with using early stopping. But this time we wanted

to re-train a new model m5 from scratch, with make use of

Fig. 3. Training performance charts, for each models we present both, loss
function and F1 score performed on training and validation data sets.
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all data, including validation data. During the first training,

we estimated the number of epochs needed to establish the

parameter. Then, in the next round, we just added 2 epochs

more and started computing.

In the end, we made an ensemble of those described 5

models, which performed nicely on the leaderboard.

In the Figure 3 shown measurements from a training process

for all models from the ensemble. F1 score values and binary

cross-entropy loss function values seem to not always been

correlated in outliers points. However, trends on both function

are similar. We will discuss this problem in the next section.

VII. RESULTS

Our models m1,m2 are trained for more than 30 epochs,

each epoch lasts for about 33 minutes. F-measure calculated

on the validation data set is about 0.736. The model m3 has

a bit higher F1 score – 0.738. The last model m4 has been

trained for 37 epochs with F-measure 0.741. The epoch time

length was close to 54 minutes on GPU P40 machine. It means

that training of the biggest network took more than 33 hours

of excessive computations.

After all, we created an ensemble of 5 models:

m1,m2,m3,m4,m5 by computing arithmetic average based

on predicted probabilities of the follicle presence.

TABLE I
EXPERIMENTAL RESULTS - CLASSIFICATION QUALITY BASED ON

CROSSVALIDATION

Model F1 score Binary cross-entropy loss

benchmark CNN 0.7132 0.2116

m1 0.7357 0.1859

m2 0.7329 0.1960

m3 0.7384 0.1913

m4 0.7415 0.1858

As shown in table I and fig. 5 m1’s loss function is almost

equal to m4’s and m3’s loss function results. However F1

score difference between this models is noticeable (fig. 4).

The main reason for this behaviour is associated with lack

of direct relation between F1 score and optimized binary

cross-entropy function. F1 score could be seen as second

level training quality function. It is not directly implied

by cross-entropy but strongly correlated. This correlation is

depended on a prior distribution of classes in training set.

However, we could influence on strength of this correlation

by changing class weights. The training set was unbalanced

and contained approximately 14% of positive classes samples.

This state leads optimization process to focus on precision of

positive class classification. Increasing positive class weight

leads model to choose a positive class as an output more

frequently which implies increasing a recall importance in an

optimization process. F1 score is the harmonic average of the

precision and recall, which means that desired optimization

method should focus equally on precision and recall to reach

the best results.
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Fig. 4. F1 score results for specific models based on 3-fold cross-validation
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Fig. 5. Binary cross-entropy loss function results for specific models based
on 3-fold cross-validation

The second reason could be damping output signal. A

network could prefer to minimizing error penalty by taking

less risk in making the decision and return probabilities near

threshold value of 0.5. This behaviour could have many

reasons. First of them could be wrong labeling in training

set, which forces the network to generate different output from

almost the same inputs. The second one could be a too limited

capacity of the model to handle data and force network to

bring outputs closer to a prior distribution. A possible solution

for increasing a quality of the final class prediction could be

changing a threshold or manipulating class weights. However,

class weights manipulation had the influence on an entire

training process which allows us to use directly optimization

process as a tool to solve problems with unbalanced data. This
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the reason we choose this option to handle this problem.

The results achieved by VGG-16 models outperform bench-

mark CNN model which shows that deeper network architec-

ture allows to better solve this classification task. Finally, an

ensemble of VGG-16 models improve classification quality

and took first place in the competition with the final score of

0.763.
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