
Multithreaded Parallelization of the Finite Element

Method Algorithms for Solving Physically

Nonlinear Problems

Sergiy Fialko

Tadeusz Kościuszko Cracow University of Technology

ul. Warszawska 24, 31-155 Kraków, Poland

Email: sergiy.fialko@gmail.com

Viktor Karpilowskyi

IT company SCAD Soft

ul. Osvity 3a, office 1, 2, Kiev, Ukraine

Email: kvs@scadsoft.com

Abstract—The parallelization of the leading procedures of the
finite element method applied to solving physically nonlinear
problems of structural mechanics is considered.

I. INTRODUCTION

T
HE SOLUTION of physically nonlinear problems of

structural mechanics by the finite element method re-

quires a large number of calculations. The vast majority

of such problems are solved on multi-core shared memory

computers - desktops, laptops and multiprocessor workstations

with SMP (Symmetric Multiprocessing) architecture. When

using the finite element method, the most time-consuming

procedures are the assembling of a tangent stiffness matrix,

the evaluation of an internal force vector, and the solution of

a system of linear algebraic equations with a sparse symmetric

matrix. Solver PARDISO [1] from the Intel Math Kernel

Library (MKL) [2] or PARFES [3], [4] is used to solve systems

of linear algebraic equations with a symmetric sparse tan-

gent stiffness matrix. These solvers have successfully proven

themselves on multi-core computers of SMP architecture and

demonstrate stable acceleration with an increase in the number

of cores during the factorization stage. In addition, forward

and backward substitutions are also parallelized. Therefore,

this paper considers parallel algorithms for the assembling of

a tangent stiffness matrix and the calculation of an internal

force vector.

A. Assembling of the stiffness matrix

1) Related works: In [13] is presented a parallel node-by-

node assembling approach, when each block of the global

stiffness matrix, corresponding to given node, is processed on

the same processor. The blocks of an element matrices related

to given node are evaluated on this processor. There are no

overlapping of blocks in the global stiffness matrix and no

communication between processors are needed.

In [14] is considered only banded matrices. The set of

consecutive rows are taken as a synchronization region. Such

This work was supported by IT company SCAD Soft

a partitioning the matrix into a sufficient number of synchro-

nization regions allows to avoid simultaneous modification of

the same elements by the different threads.

The algorithm [15] assembles the stiffness matrix by groups

of rows related to each node of the finite element mesh. Each

processor will only assemble the rows related to a specific

group of nodes. Therefore, no synchronization is required

because each processor updates only their addresses of the

memory.

The method [16] creates for each element the list of

the processors onto which the associated columns in global

stiffness matrix composing this element have been mapped. If

this list consists in only one processor, the finite element is

totally local to this processor, and non totally local otherwise.

The totally local elements are mapped to each processor. The

remaining finite elements are processed on several processors

and need a synchronization.

In [17] before assembling is precomputed a coloring of the

finite elements such that no two elements of the same color

share any given degree of freedom. The appropriate heuristic

coloring algorithm is presented. The several algorithms real-

ising assembling on GPU, are presented.

We present the procedure of the stiffness matrix assem-

bling (section II.B) which require no synchronization between

threads and demonstrates an almost perfect load balance

even for different types of finite elements – triangular and

quadrilateral shell elements, spatial bar elements and so on.

It is the typical situation in structural analysis when design

model consists of different types of finite elements, and

evaluation of their stiffness matrices requires the quite different

computational efforts.

2) Assembling procedure: The procedure for a tangent

stiffness matrix assembling is as follows:

Kt =

Ne
∑

e=1

PT
e Ke,tPe, (1)

where Ke,t is a tangent stiffness matrix of the e-th finite

element, Pe is a permutation matrix and Ne is a number of

finite elements in the design model. In the case of physically

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 311–318

DOI: 10.15439/2018F40

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 311

Fig. 1. The flat shell finite element

nonlinear problems, the calculation of the tangent stiffness

matrix for the thin plane shell finite element (Fig. 1) is

represented as a sum of the following type integrals:

Ke =

∫

Ω

BT (Ω)

h/2
∫

−h/2

f (Ω, z) dz

B (Ω) dΩ, (2)

where Ω is an in-plane domain (dΩ = dxdy), h is the shell

thickness, B (Ω) is a deformation matrix [5], s1, s2, ... are the

axes of the reinforcement layers, zs1, zs2, ... are the distances

between reinforcement layers s1, s2, ... and middle surface.

The trapezoid method is applied to calculate the integral

over the shell thickness. In this case, the shell is divided into

10 - 40 layers through thickness. In addition, reinforcing rods

of the same direction form a layer of reinforcement. Usually,

the number of reinforcement layers is 4, although it may be

arbitrary. The integral over the domain of the finite element Ω
is computed by the Gauss method using the 2 × 2 integration

scheme. The components of the stress and strain tensors are

calculated at each Gaussian point. The number of such points

for a given type of finite element is 2 × 2 × (the number of

layers plus the number of reinforcement layers). The tangent

stiffness matrix for other types of finite elements is defined

similarly.

Thus, the procedure for the tangent stiffness matrix assem-

bling requires significant computational effort. The tangent

stiffness matrix assembling time is of the same order as the

factorization time of this matrix.

B. Internal force vector evaluation

The internal force vector is calculated as follows:

fint =

Ne
∑

e=1

PT
e rePe, (3)

where

re = Keqe, (4)

qe is a nodal displacement vector and re is a nodal reaction

vector for the e-th finite element. The stiffness matrix Ke has

to be calculated for each finite element in the expression (3).

It is not a tangent stiffness matrix, but it is a full stiffness

matrix [6], [7], [9].

This paper is devoted to the technique of multithreaded

parallelization of problems (1) and (3).

II. MULTITHREADED PARALLELIZATION

A. Internal force vector evaluation

First of all, we consider parallelization of the problem (3),

the corresponding Algorithm 1 is presented below.

Algorithm 1 Internal force vector evaluation

1: Initialization.

rrip ← 0, ip ∈ [0, np− 1], fint ← 0

2: for parallel e = 1 to Ne schedule(dynamic) do

3: ip = omp−get−thread−num()
4: Compute a transformation matrix Te

uglob
e ← u

uloc
e = Teuglob

e

5: Compute a nodal reaction vector rloce , using the consti-

tutive relations.

rglobe = Terloce

rrip ← + rglobe

6: end for

7: for ip = 0 to np− 1 do

8: for parallel eqn = 1 to Neq schedule(dynamic,

chunk) do

9: finteqn+ = rrip,eqn
10: end for

11: end for

At the initialization stage (point 1), we dynamically allocate

memory for vectors rrip, where ip is the thread number and np
is the number of threads. After Algorithm 1 is finished, vector

fint will store internal forces. Vectors rrip, ip ∈ [0, np− 1],
and fint have the dimension Neq - the number of equations

in the finite element model. All these vectors are zeroed.

At the second stage (points 2 – 6) we run a parallel loop

for over the number of finite elements Ne, where e is a

number of the current finite element. We obtain the thread

number ip (point 3) end evaluate the coordinate transformation

matrix Te (point 4). Then we put elements of the displacement

vector u, corresponding to the degrees of freedom of the finite

element e, to vector uglob
e . Vector u of dimension Neq (number

of equation) contains the nodal displacements and rotations

in the global coordinate system (CS) for the entire finite

element model. Vector uglob
e of dimension nstAct contains the

nodal displacements and rotations of the finite element e. The

displacements and rotations in the global CS are transformed

into the displacements and rotations in the local CS of the e-th

finite element with the help of the coordinate transformation

matrix Te.

312 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

The evaluation of the nodal reaction vector rloce in the local

CS is performed according to (4) (point 5). The constitutive

relations, reflecting the mechanical rules, are applied to eval-

uate the full stiffnes matrix Ke. Then, the transformation of

the reaction vector, given in the local CS, to the global CS

is performed (rglobe = Terloce). After this, the elements of the

reaction vector rglobe are added (← +) to the corresponding

elements of the vector rrip.

At the third stage (points 7 – 11), partially prepared reaction

vectors rrip, ip ∈ [0, np− 1] are combined in the vector

fint of internal forces. We parallelize an inner loop (points

8 – 9) covering the equations of the entire model. To avoid

incoherence in the processor caches when writing data to

vector fint at multithreading, the chunk size chunk is assumed

to be sixteen. In doing so, we assume that the size of the cache

line is 64 or 128 bytes, that is, eight or sixteen double words

respectively. It is important to do it to avoid a degradation of

performance at multithreading on processors, which are not

protected against such incoherence at the hardware level.

B. Stiffness matrix assembling

Unlike the internal forces evaluation algorithm discussed in

the previous subsection, the tangent stiffness matrix assem-

bling algorithm stores a large array to memory - a nonzero

structure of sparse matrix that comprises only nonzero ele-

ments. The symmetric sparse matrix in compressed column

format (CCS) is represented in the form of three arrays:

Space[pos], ind[pos] and Pos[j]. Array Space[pos] comprises

nonzero elements located column-by-column from the diago-

nal element to the last nonzero element of the column. Array

ind[pos] stores the i subscript for the corresponding element

kij of matrix Kt located in Space[pos]. Array Pos[j] points

to the position pos of the diagonal element kjj of the column

j in the arrays Space, ind. Here j ∈ [1, Neq] , i ≥ j. For

instance, the CCS format for the matrix (5) is presented in (6).

k11
0 k22
0 0 k33
k41 0 0 k44
0 k42 0 0 k55

(5)

pos 0 1 2 3 4 5 6
Space k11 k41 k22 k42 k33 k44 k55
ind 1 4 2 4 3 4 5
Pos 0 2 4 5 6 7
j 1 2 3 4 5 −

(6)

Subscript j is a column number. The last element in

Pos is required to properly obtain the number of nonzero

elements in the last column using the following expression

nonzeroj = Pos[j + 1] − Pos[j], where nonzeroj – the

number of nonzero entries in the column j counting from

the diagonal element to the lowest one. The nonzero structure

of a symmetric sparse matrix is presented by the undirected

adjacency graph, where vertexes correspond to columns of

matrices or to diagonal elements and the edges – to nonzero

off-diagonal elements [10].

The reordering of the adjacency graph reduces the number

of fill-in in the factorized matrix. The symbolic factorization

procedure [10] enables to create a nonzero structure of the

factorized sparse matrix without numerical factorization. It is

a very fast procedure, which operates only on the adjacency

graph of the initial matrix Kt and obtains a factor-graph.

As a result, the arrays Pos and ind are filled. Therefore,

the assembling procedure fills the array Space. Algorithm 2

demonstrates a trivial solution of a such problem.

Algorithm 2 Assembling of the tangent stiffness matrix with

using of critical sections (trivial solution)

1: for parallel e = 1 to Ne schedule(dynamic) do

2: ip = omp−get−thread−num()
3: evaluate a finite element matrix Ke,t and the list of

global equation numbers list−glob−eqns
4: for jeqn = 1 to nstAct do

5: jglobeqn = list−glob−eqns (jeqn)
6: prepare the inverse data structure to avoid a search

procedure

7: for pos = Pos[jglobeqn] to Pos[jglobeqn+1]− 1
do

8: iglobeqn = ind[pos]
Col [ip] [iglobeqn] = pos

9: end for

fill Space:

10: for ieqn = jeqn to nstAct do

11: iglobeqn = list−glob−eqns (ieqn)
pos = Col [ip] [iglobeqn]

12: begin_critical_section

13: Space [pos] + = Ke,t [ieqn, jeqn]
14: end_critical_section

15: end for

16: end for

17: end for

The parallel loop for is performed over the number of finite

elements (point 1). The thread number ip is defined (point 2)

and the finite element tangent stiffness matrix Ke,t with the

list of global equation numbers list_glob_eqns are obtained

(point 3).

The loop for is performed over the local equation number

jeqn (point 4 – 15). A column number jglobeqn of the

global tangent stiffness matrix Kt (point 5) is defined for each

column number jeqn of the matrix Ke,t. Then, the inverse

data structure Col [ip] [iglobeqn] is prepared to avoid a time-

consuming search of the position pos in the array Space
(points 7 – 9).

Loop for (points 10 – 15) runs along the column jeqn of

the matrix Ke,t. The position number pos is extracted from

Col [ip] [iglobeqn], where ieqn is a row number of the matrix

Ke,t and iglobeqn is a row number of the global tangent

stiffness matrix Kt (point 11 and a line below). To avoid

the situation, when several threads simultaneously modify the

SERGIY FIALKO, VIKTOR KARPILOVSKYI: MULTITHREADED PARALLELIZATION OF THE FINITE ELEMENT METHOD 313

same element of the array Space[pos], a critical section is

used (points 12 – 14).

Using a critical section in such a situation is not a good idea,

because the speedup with the increasing number of threads

begins to degrade very fast. The application of interlocked

functions [11] instead of a critical section does not improve

the speedup much.

Therefore, we do not use Algorithm 2. The following

approach is proposed instead. We divide the finite elements

into groups so that each group is simultaneously processed

by different threads and writes only in its positions pos of

the array Space. In other words, a situation, when different

threads simultaneously write data to the same addresses of the

array Space, should be eliminated.

To create such groups, we prepare an adjacency graph for

the finite elements of the design model (Fig. 2). The vertices

of the graph present the finite elements and the edges – the

nodes in which the adjacent finite elements are coupled.

1

2

3

4

5

6

7

8

9

10

11

Fig. 2. The finite element adjacency graph. The vertices present the finite
elements and edges – the nodes of the design model.

Then, we search for a pseudo peripherical vertex and create

a structure of levels with a root in such a vertex [10] (Fig. 3).

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4

ro
o
t

Levels

Tasks (groups of finite elements)

Fig. 3. The structure of levels for the finite element adjacency graph with a
root in a (pseudo) peripherical vertex

The root of the level structure is placed in the pseudo

peripheral vertex in order for the structure to be maximally

elongated (containing as many levels as possible) and to

minimize the number of vertices on each level. We call the

vertices belonging to a given level a computational task or

just a task. If we choose tasks of only even levels, then

the vertices of each task are not connected in any way with

the vertices of the remaining selected tasks. In other words,

the finite elements belonging to each even-level task do not

have any common nodes with finite elements belonging to

tasks of other even levels. Thus, we guarantee that the finite

elements belonging to different even levels make contributions

to different degrees of freedom of the design model, that is,

the modification of different elements of the Space array is

performed. Therefore, each even-level task can be performed

simultaneously at multithreaded data processing. In the same

way, as in the case of even levels, each task belonging to odd

level can be solved independently from the other tasks of odd

levels.

To achieve an acceptable load balance between threads, the

Algorithm 3 is applied.

Algorithm 3 Mapping tasks onto threads

1: Prepare finite element adjacency graph

2: Find a (pseudo) peripherical vertex

3: Create a structure of levels for the finite element adjacency

graph with the root in a (pseudo) peripherical vertex

Prepare the weights for even levels:

4: for lev=0; to NoLevels-1, lev += 2 do

5: levelWeightlev =
∑

e∈lev nstAct
2

e

6: end for

7: Sort the even levels in descending order of their weights.

Map tasks of even levels onto threads:

sumWeigh [ip]← 0, ip ∈ [0, np− 1]
8: for lev=0; to NoLevels-1, lev += 2 do

9: Find the thread number min−ip having a minimum sum

of already mapped weights, min−ip ∈ [0, np− 1]
10: queue [min−ip]← ∀e ∈ lev

sumWeigh [min−ip]+ = levelWeightlev
11: end for

Prepare the weights for odd levels:

12: for lev=1; to NoLevels-1, lev += 2 do

13: levelWeightlev =
∑

e∈lev nstAct
2

e

14: end for

15: Sort the odd levels in descending order of their weights.

Map tasks of odd levels onto threads:

sumWeigh [ip]← 0, ip ∈ [0, np− 1]
16: for lev=1; to NoLevels-1, lev += 2 do

17: Find the thread number min−ip having a minimum sum

of already mapped weights, min−ip ∈ [0, np− 1]
18: queue1 [min−ip]← ∀e ∈ lev

sumWeigh [min−ip]+ = levelWeightlev
19: end for

The points 1 – 3 of the presented algorithm have been

discussed above. After creating the level structure with a root

314 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

at a (pseudo) peripherical vertex, we obtain the weight of each

even level (points 4 – 6). Here, the NoLevels is the number

of levels of a level structure and levelWeightlev is defined as

a sum of weights for all vertices (finite elements) belonging

to the level lev. The dimension of the finite element tangent

stiffness matrix Ke,t is denoted as nstActe and the weight of

the vertex is accepted as a number of elements nstAct2e in

Ke,t.

Then, we sort all vertices belonging to the even levels, in

descending order of their weights, and zero the sum of weights

sumWeight [ip] mapped onto thread ip, ip ∈ [0, np− 1]
(point 7). For each even level we find a thread min−ip which

has a minimum sum of already mapped weights (point 9),

put all vertices of the given level to the queue [min−ip] and

correct sumWeight [min−ip] (point 10).

Finally, we apply the same approach to all the odd levels

and obtain queue1 [ip] , ip ∈ [0, np− 1] (points 12 – 19).

Therefore, all even levels are mapped onto np threads

and are presented by queue [ip] , ip ∈ [0, np− 1] queues.

Similarly, all odd levels are presented by queue1 [ip] , ip ∈
[0, np− 1] queues.

Sorting in descending order improves a load balance be-

tween threads. A similar approach has been used in [3], [4]

to achieve a load balance between threads in solver PARFES

and in block incomplete Cholesky factorization solver [8].

The Algorithm 4 demonstrates a tangent stiffness matrix

assembling using multithreading without any synchronization

allowing a high speedup with the increasing thread number.

In the first parallel region (points 1 – 18) the while loop

runs for each thread ip until the queue [ip] , ip ∈ [0, np− 1]
is empty. These queues contain parallel tasks for even levels of

level structure. In each while loop, the nearest finite element

number e is retrieved (point 4) and the tangent stiffness matrix

Ke,t with the list of global equation numbers are evaluated

(point 5). The loop for is executed over the columns of the

matrix Ke,t (points 6 – 16), where nstAct is a dimension

of Ke,t. The Col [ip] array stores a position number pos

of the nonzero entry Space [pos] with the global equation

number iglobeqn (points 9 – 11). It allows us to avoid a

time-consuming search of pos, corresponding to the global

equation number iglobeqn. The loop for (points 12 – 15) fills

the Space [pos] with elements of the matrix Ke,t.

The second parallel region (points 19 – 35) does the same

as the previous parallel region, but operates with queues

queue1 [ip], containing parallel tasks for odd levels of a

level structure. In contrast to Algorithm 2, Algorithm 4 does

not contain any synchronization objects due to the approach

presented above. This allows us to hope a high speedup with

the increasing thread number, even when the number of threads

is large. This approach formed the basis for the master’s degree

thesis in computer science [12], in which one of the authors,

S. Fialko, was a scientific leader.

III. NUMERICAL RESULTS

We consider a design model of a reinforced concrete floor

slab, comprising 65 117 equations (Fig. 4). The triangular and

Algorithm 4 Assembling of the tangent stiffness matrix using

the proposed approach

1: parallel region

2: ip = omp−get−thread−num()
3: while queue [ip] is not empty do

4: e← queue [ip] retrieve element number e
5: evaluate a finite element matrix Ke,t and the list of

global equation numbers list−glob−eqns
6: for jeqn = 1 to nstAct do

7: jglobeqn = list−glob−eqns [jeqn]
8: prepare the inverse data structure to avoid a search

procedure

9: for pos = Pos[jglobeqn] to Pos[jglobeqn+1]− 1
do

10: iglobeqn = ind[ieqn]
Col [ip] [iglobeqn] = pos

11: end for

fill Space:

12: for ieqn = jeqn to nstAct do

13: iglobeqn = list−glob−eqns [ieqn]
pos = Col [ip] [iglobeqn]

14: Space [pos] + = Ke,t [ieqn, jeqn]
15: end for

16: end for

17: end while

18: end of a parallel region

19: parallel region

20: ip = omp−get−thread−num()
21: while queue1 [ip] is not empty do

22: e← queue1 [ip] retrieve element number e
23: evaluate a finite element matrix Ke,t and the list of

global equation numbers list−glob−eqns
24: for jeqn = 1 to nstAct do

25: jglobeqn = list−glob−eqns [jeqn]
prepare the inverse data structure to avoid a search

procedure

26: for pos = Pos[jglobeqn] to Pos[jglobeqn+1]− 1
do

27: iglobeqn = ind [ieqn]
Col [ip] [iglobeqn] = pos

28: end for

fill Space:

29: for ieqn = jeqn to nstAct do

30: iglobeqn = list−glob−eqns [ieqn]
pos = Col [ip] [iglobeqn]

31: Space [pos] + = Ke,t [ieqn, jeqn]
32: end for

33: end for

34: end while

35: end of a parallel region

SERGIY FIALKO, VIKTOR KARPILOVSKYI: MULTITHREADED PARALLELIZATION OF THE FINITE ELEMENT METHOD 315

quadrilateral finite elements, taking into account the physical

nonlinearity, are used. The supports, modeling the walls, are

shown in blue color. The uniform normal pressure simulates

the dead and operational loads.

Fig. 4. The design model of a reinforced concrete floor slab

The computer with sixteen-core AMD Opteron 6276 proces-

sor, 2.3/3.2 GHz, 64 GB DDR3 RAM, OS Windows Server

2008 R2 Enterprise SP1, 64-bit, is used. Table I depicts a

tangent stiffness matrix assembling time (s) during the solution

of the entire nonlinear problem for the different number of

threads np in the case with no optimization, optimization

using a (pseudo) peripherical vertex and optimization using

a (pseudo) peripherical vertex and weights of levels.

The "no optimization" case means that a root for the level

structure is taken in the vertex 1. The pseudo peripherical

vertex is not found. The weights of levels are not used. The

queues queue [ip] and queue1 [ip] , ip ∈ [0, np− 1] are

prepared using a cyclic mapping of levels onto threads.

In the "use a peripherical vertex" case the pseudo periph-

erical vertex is found, but the weights of levels are not used.

The cyclic mapping of levels onto threads is applied. Taking

the pseudo peripherical vertex as a root of the level structure

results in an increase of the levels from 110 to 114 for

the given problem. It should be pointed out that for other

problems the choice of a root in a pseudo peripherical vertex

has a considerably larger impact on the increase of the level

number. Therefore, for the considered problem of the "use a

peripherical vertex" option on the reduction of the computing

time is not observed.

Algorithm 3 is applied in the "plus the use of the weights

of levels" case. The red color means that the load imbalance

between threads exceeds 15%. The shortest computing time on

a large number of threads is achieved when all optimizations

are applied.

Table II shows the distribution of sum of weights among

threads for the "no optimization" and "use peripherical ver-

texes and weights of levels" cases. Here, ip is a thread

number, a red color indicates a thread with a maximum

computational effort and a green color indicates a thread with

a minimum computational effort. The difference between the

maximum sum of weights and the minimum one is a measure

of imbalance between threads. These results demonstrate that

at a maximum number of threads the proposed approach,

corresponding to Algorithm 3 and Algorithm 4, has a imbal-

ancee between threads of about 11%. The "no optimization"

approach has a imbalance of about 36%. We estimate a

imbalance as (maximum sum of weights – minimum sum of

weights)/maximum sum of weights in percent. Therefore, the

above optimizations play an important role in improving a load

balance between threads.

The Fig. 5 demonstrates a speedup with the increasing

thread number in the range of the physical core number for

the given processor: Snp = T1/Tnp, where T1 is a time when

using one thread and Tnp is a time on np threads. The "ideal"

curve corresponds to an ideal speedup, passing through the

points (0, 0), (1, 1), (2, 2), However the given processor

has a turbo core mode. When a small number of cores are

loaded, the clock frequency is 3.2 GHz. When the number of

loaded cores is a maximum, the clock frequency reduces to

2.3 GHz. Therefore, an ideal speedup is unreachable.

Fig. 5. The speedup with the increasing thread number for the evaluation
of the internal forces and the tangent stiffness matrix assembling

The curve "id_tb" approximates an ideal speedup caused by

the turbo core mode using a square parabola. The points (0,

0), (1, 1) and (16, x) are used to define such a parabola. The

ordinate x is obtained as follows. A processor with sixteen

cores without a turbo core mode should work with a clock

frequency 3.2 GHz and should achieve a speedup of 16 times.

A processor in the turbo core mode works with a clock

frequency 2.3 GHz and has a speedup of x times. So, from

the proportion, we obtain x = 2.3/3.2*16 = 11.5 times.

The "Internal forces" curve demonstrates a speedup of the

internal force vector evaluation with the increasing thread

number (Algorithm 1). The "Assembling" curve depicts a

speedup of the tangent stiffness matrix assembling procedure

with the above optimizations, presented by Algorithms 3

316 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

TABLE I
THE TANGENT STIFFNESS MATRIX ASSEMBLING TIME DEPENDING ON THE NUMBER OF THREADS

nos of threads no optimization use a peripherical vertex plus the use of the weights of levels

1 84.7 85.9 86.7

2 46.6 46.2 45.6

4 26.3 26.8 27.6

8 17.7 18.2 16.6

12 13.6 14.4 12.8

16 11.3 11.6 10.4

TABLE II
SUM OF WEIGHTS PER EACH THREAD

thread number ip
no optimization use a peripherical vertex and weights of levels

even levels odd levels even levels odd levels

0 177264 183564 194760 196524

1 184644 187020 195012 197280

2 189108 208404 197820 198252

3 225216 242856 196488 195084

4 254772 248400 197532 206640

5 245304 228528 195840 194076

6 223272 218484 193392 194148

7 193572 174780 208512 210492

8 175464 169524 204840 194652

9 162432 163980 195048 211284

10 164268 168444 216396 205812

11 181224 185976 202140 202428

12 195804 202824 197460 194112

13 219816 229248 201348 193788

14 218160 190908 206784 196596

15 186840 187344 193788 199116

and 4. We obtain an acceptable correlation between "Internal

forces" and "Assembling" curves with the "id_tb" curve. A

steady increase in the speedup, with the exception of the last

point (np = 16), confirms the effectiveness of the proposed

approaches.

It should be noted that if we define speedup as
T1 ·∆tnp
Tnp ·∆t1

,

where ∆t1 and ∆tnp are the time of a single processor’s

tick when using a single thread and when using the np
threads correspondingly, then this ratio is not dependent on the

processor clock speed, and the curve describing an algorithm’s

acceleration can be compared with the ideal speedup (curve

"ideal"). However, for users, the definition of speedup as

Snp = T1/Tnp, based on real-time execution of the tasks, is

more understandable, therefore we use such a definition and

above approach.

IV. CONCLUSION

Two different approaches for multithreaded parallelization

of similar procedures – internal force vector evaluation and

tangent stiffness matrix assembling have been considered.

The first approach requires the allocation of an additional

vector of dimension Neq (number of equations) for each

thread. Therefore, the amount of additional core memory is

Neq × np words of double. On the other hand, such an

approach is relatively simple and fully eliminates incoherences

in caches of different processor cores.

The second approach, based on creating a finite element

adjacency graph and preparing a level structure, ensures the

independence of computational tasks, belonging to only even

levels or only odd levels of a level structure, allows us to reject

any type of synchronization and obtain a stable speedup with

an acceptable correlation in comparison with an ideal speedup,

taking into account the turbo core mode. Taking a pseudo

peripherical vertex of the adjacency graph as a root of the

level structure results in an increase of the levels number, so,

the number of computational tasks increases too and each task

becomes shorter. Together with a specific mapping-tasks-onto-

threads algorithm, using the weights of computational tasks,

this approach significantly improves the load balance between

threads (Tables I, II) and helps to achieve a stable speedup.

On the other hand, the second approach does not guarantee

the absence of incoherence in the processor caches. Numerous

tests, performed on different computers, demonstrate the relia-

bility of this approach. Moreover, the above example as well as

other tests, performed on the AMD Opteron processor, which

does not have hardware protection against performance degra-

SERGIY FIALKO, VIKTOR KARPILOVSKYI: MULTITHREADED PARALLELIZATION OF THE FINITE ELEMENT METHOD 317

dation due to incoherence in the processor caches, demonstrate

stable speedup with the increasing thread number. This ap-

proach could be applied to the multithreaded parallelization of

the internal force vector evaluation procedure, but we wanted

to compare the efficiency of two different approaches to justify

the reliability of the more complicated second method.

ACKNOWLEDGMENT

The authors are deeply grateful to IT company SCAD Soft

for the financial support of this research and for providing a

collection of problems.

REFERENCES

[1] O. Schenk, K. Gartner, ”Two-level dynamic scheduling in
PARDISO: Improved scalability on shared memory multiprocessing
systems,” Parallel Computing, vol. 28, 2002, pp. 187–197,
https://doi.org/10.1016/S0167-8191(01)00135-1

[2] Intel Math Kernel Library Reference Manual. URL:
https://software.intel.com/en-us/mkl-developer-reference-c-intel-mkl-
pardiso-parallel-direct-sparse-solver-interface (Last access: 17.04.2018).

[3] S. Yu. Fialko, ”Parallel direct solver for solving systems of linear
equations resulting from finite element method on multi-core desktops
and workstations”, Computers and Mathematics with Applications, 70,
2015, pp. 2968–2987, doi:10.1016/j.camwa.2015.10.009

[4] S. Fialko, ”PARFES: A method for solving finite element
linear equations on multi-core computers”, Advances in
Engineering Software, 40, (12), 2010, pp. 1256–1265.
https://doi.org/10.1016/j.advengsoft.2010.09.002

[5] K. J. Bathe, Finite Element Procedures, New Jersey: Prentice Hall; 1996.
[6] S. Yu. Fialko, ”Quadrilateral finite element for analysis of rein-

forced concrete floor slabs and foundation plates”, Applied Me-
chanics and Materials, 725–726, 2015, pp. 820 – 835, doi:
10.4028/www.scientific.net/AMM.725-726.

[7] S. Yu. Fialko, V. S. Karpilowskyi, ”Triangular and quadrilateral fat shell
fnite elements for nonlinear analysis of thin-walled reinforced concrete
structures in SCAD software,” In: Petraszkiewicz and Witkowski (eds).
Shell Structures: Theory and Applications, V. 4., Taylor and Francis
Group, London, 2018, pp. 367–370.

[8] S. Yu. Fialko, V. S. Karpilowskyi, ”Block subspace projection precon-
ditioned conjugate gradient method for structural modal analysis”, in
Proceedings of the Federated Conference on Computer Science and
Information Systems, ISSN 2300-5963 ACSIS, Vol. 11, pp. 497–506.
DOI: 10.15439/2017F64 .

[9] S. Yu. Fialko, Application of finite element method to analysis of strength
and bearing capacity of thin-walled concrete structures, taking into
account the physical nonlinearity, Moscow: Publishing House SCAD
SOFT, Publishing House ASV; 2018 (Russian).

[10] A. George, J. Liu, E. Ng, Computer Solution of Sparse
Linear Systems, 1994. URL: http://web.engr.illinois.edu/
~heath/courses/cs598mh/george

−
liu.pdf

[11] Interlocked variable access. URL: https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684122(v=vs.85).aspx

[12] M. Olczyk, ”The procedure of parallel assembling of stiffness matrix in
FE analysis for applying to the solution of nonlinear algebraic equation
systems”, Master’s degree work, Cracow University of Technology,
Cracow, Polish, 2017.

[13] D. Th. Nguyen, Parallel-Vector Equation Solvers for Finite Element
Engineering Applications, Springer Science+Business Media, LLC: New
Yourk; 2002. DOI 10.1007/978-1-4615-1337-7.

[14] Yu.V. Khalevitsky, N.V. Burmasheva, A.V. Konovalov, ”An approach
to the parallel assembly of the stiffness matrix in elastoplastic Prob-
lems”, Mechanics, Resource and Diagnostics of Materials and Struc-
tures (MRDMS-2016), AIP Conf. Proc. 1785, pp. 040023-1–040023-
4; Published by AIP Publishing. 978-0-7354-1447-1/$30.00 doi:
10.1063/1.4967080.

[15] M. N. De Rezendea, J. B. de Paiva, ”A parallel algorithm
for stiffness matrix assembling in a shared memory environ-
ment”, Computers & Structures, 76, (5, 15), 2000, pp. 593–602.
https://doi.org/10.1016/S0045-7949(99)00181-9.

[16] D. Goudin, J. Roman, A scalable parallel assembly of irregular meshes
based on a block distribution for a parallel direct solver, In: Applied
Parallel Computing, New paradigms for HPC in industry and academia,
5th International Workshop, PARA 2000, Bergen, Norway, June 2000,
Proceedings, Springer, Lecture Notes in Computer Science, V. 1947,
pp. 113 – 116. URL: https://link.springer.com/chapter/10.1007/3-540-
70734-4_15 (Last access: 13.07.2018)

[17] C. Cecka, A. Lew, E. Darve, ”Introduction to Assembly of Finite
Element Methods on Graphics Processors”, IOP Conf. Series: Ma-
terials Science and Engineering, 10, 012009, 2010, pp. 1 – 10.
doi:10.1088/1757-899X/10/1/012009.

318 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

