
The impact of parallel programming on faster

image filtering

Kamil Książek1, Zbigniew Marszałek1,2, Giacomo Capizzi2,1,

Christian Napoli3, Dawid Połap1, Marcin Woźniak1,2

1Institute of Mathematics, Silesian University of Technology,

Kaszubska 23, 44-100 Gliwice, Poland
2 Department Electrical, Electronics and Informatics Engineering,

University of Catania, V. Andrea Doria 6, 95125 Catania, Italy
3 Department of Mathematics and Computer Science, University of Catania,

V. Andrea Doria 6, 95125 Catania, Italy

Email: KamilKsiazek95@gmail.com, Zbigniew.Marszalek@polsl.pl, Gcapizzi@diees.unict.it,

Napoli@dmi.unict.it, Dawid.Polap@polsl.pl, Marcin.Wozniak@polsl.pl

Abstract—Parallel programming is a field of science with a
great potential nowadays due to the development of advanced
computers architectures. Appropriate usage of this tool can
be therefore highly beneficial in multimedia applications and
significantly decreases the time of calculations.

In this article, we analyze how the speed of calculations is
influenced by the usage of parallel algorithms in image filtering
processes. We present a method based on multithreading and the
division of the image for rectangles. The filter is applied parallel
on each part of the image. Results show that in some cases our
proposition can bring over 90% benefit when compared to the
classical approach.

Index Terms—parallel programming, image filtering, Lapla-
cian, multithreading

I. INTRODUCTION

P
ARALLEL programming is currently a dynamically

growing field of computer science. Modern multicore

processors enable a significant reduction of computation time.

Proper use of computing power is an enormous challenge

for programmers. A skillful preparation of parallel instruc-

tions that are to be carried out causes a lot of problems.

However, benefits of parallel programming are obvious. Some

multimedia applications require a huge amount of time - it is

visible for instance in image processing. Filtering the images

containing the several thousand pixels can take a lot of time,

especially, when there is a substantial number of images to be

filtered. Therefore an intelligent methods that improve image

processing are very important.

It is clear that image filtering has a lot of applications. It

is possible to improve the quality of photos with blur, noise

or other undesirable effects. Moreover, sharpening the edges

can be helpful in the objects detection. Parallel methods can

be very useful in graphics processing and cloud computing

directed to multithreading. High-quality images are also cru-

cial in medicine in diagnosis of diseases (for instance in X-ray

pictures). Therefore, capturing the details is very important. In

this article we present multithreading in image filtering, and

its impact on the whole process. Our approach is designed to

equally distribute work among all the threads. The input image

is divided into equal rectangles and each thread filters only

the designated area. Therefore by the proposed algorithm we

construct a method which uses all available cores. Depending

on the number of CPU threads in the computer we can

significantly decrease time of processing, reaching even 90%

of improvement. It has a significant importance for HD mul-

timedia systems where all the images and multimedia streams

are very complex structures. Therefore our proposed method

may reduce time and improve the efficiency of processing.

For the research we have used an architecture with 32 CPU

threads and 320 GB of memory.

The main part of this article is following: Section II de-

scribes some related works, Section III presents a theoretical

background of the image filtering and three Laplacian filters

applicated in the research. In Section IV it is shown a detailed

description of the tested parallel method. Section V gives a

results of measurements and Section VI contains conclusions

and remarks after studies.

II. RELATED WORKS

Very important application of multitasking is connected

with data processing. In [1] it was shown how to parallelize

fast sorting algorithm, while in [2] it was proposed a new

more efficient parallel merge sort algorithm. These decrease

computation time in large databases for instance in case of data

analysis. In [3] an overview on intelligent systems for data re-

trieval was discussed. Graphics processing is frequent and very

important topic of many publications. In [4] it was proposed a

method how to more efficiently analyze the information from

images for detection, and in [5] a segmentation of images

based on graph analysis of the semantic image structure was

presented. The image decomposition method which combines

information from the infrared and visible images is presented

in [6]. This method can be helpful for instance in target

recognition. In [7] and [8] was presented a system for image

data classification by the use of fast selection methods based

on shapes comparisons. Authors in [9] propose a Weighted

Guided Image Filtering algorithm (WGIF) which prevents so

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 545–550

DOI: 10.15439/2018F71
ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 545



called "halo artefacts" effect. In many cases combination of

different data ensures more efficient analysis. Such approach

in medical images is shown in [10]. The method intended

for filter identification is presented in [11]. An interesting

problem connected with underwater imaging is introduced in

[12]. Authors in [13] show the Core algorithm designed for

document’s identification from images. It is compared with

classical detectors like ORB, SIFT and SURF-BRISK. In our

paper it will be shown a method which can speed up the

calculations on images. A properly and quickly processed

image streamlines further work. The presented method is

intended for initial processing of the images.

III. IMAGE FILTERING

A very common situation is that the analysis of the original

image is difficult due to noise, blur or other factors. Further-

more, if the number of details is too large, a detection of

the crucial parts of the image (for instance, the contours of

presented objects) is impossible. Therefore it is necessary to

pre-process the image. Further analysis will be easier thanks

to such tools as the image filtering.

A. Theoretical background

One of the most popular color models is RGB model

[14]. Each pixel consists of three components: R (red),

G (green) and B (blue). They can be integers from the

range {0, 1, ..., 255}. For instance [0, 0, 0] represents black,

[255, 255, 255] determines white, [255, 255, 0] yellow, etc.

In this paper we assume that calculations will be performed

by using the RGB model. Let Rn×m be a two-dimensional

array with the values of pixels of a given image (n is the

width of an image and m is the height of an image, R[i, j]
represents the position (i, j) on the image, i ∈ {1, ..., n}, j ∈
{1, ...,m}). The idea relies on modification of the image by

moving the convolution mask over the pixels. The new values

of three components R, G, B depend on the pixels in the

nearest neighborhood of the calculated one. This process is

illustrated in Fig. 1, by the example of 3× 3 mask. The new

value of the position (x, y) depends on 9 pixels. Of course,

other sizes are also allowed.

The greater the mask, the larger number of pixels is taken

into account during processing. The impact of each pixel is

defined by the table of weights, called a filter. In our research,

there were applied three types of convolution masks: 3 × 3,

5 × 5 and 9 × 9. The larger the filter is, the more details are

lost [15]. During calculations on larger masks it is necessary

to create an auxiliary image with borders filled with black

pixels (the convolution masks exceeds the original one). This

operation has an nonsignificant influence on the final image

but it enables the filtering. The pattern for the new value of

each component of the pixel located at position (i, j) in the

case of 5× 5 mask is as follows: [16]:

R′(i, j) =
1

M

2
∑

k=−2

2
∑

l=−2

w(k, l) ·R(i+ k, j + l), (1)

Fig. 1: The sample of using a 3× 3 convolutional mask.

where M is the sum of all values in the array (the convolution

mask), w(k, l) is the weight of pixel located at position

(i + k, j + l) and R(i + k, j + l) is the previous value of

the pixel at given position. Sometimes M may be equal to 0.

In that situation, the factor 1

M
is omitted. Patterns for other

convolution masks are created similarly.

Fig. 2: Illustration of the image split into 4 rectangles. (The

original photo was taken by Jonathan Andreo, and is available at unsplash.com)

B. The applied filters

During further calculations, three Laplacian filters will be

used (Fig. 3). [17]. Their main task is sharpening the edges of

the objects and hence, loosing of irrelevant details. The picture

which has been filtered, is presented in Fig. 4. It is possible

to see how the Laplacian filters influence the original image.

The edges are therefore definitely more visible than the rest

of the image. This kind of filters facilitates the detection of

shapes.

IV. PARALLELIZATION

Image filtering involves a lot of calculations. The larger the

photo is, the greater the time of filtering is. In case of analyzing

a large number of pictures, minimizing the computation time is

546 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018







0 −1 0
−1 4 −1
0 −1 0





(a) 3× 3 Laplacian filter













−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 24 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1













(b) 5× 5 Laplacian filter





























0 1 1 2 2 2 1 1 0
1 2 4 5 5 5 4 2 1
1 4 5 3 0 3 5 4 1
2 5 3 −12 −24 −12 3 5 2
2 5 0 −24 −40 −24 0 5 2
2 5 3 −12 −24 −12 3 5 2
1 4 5 3 0 3 5 4 1
1 2 4 5 5 5 4 2 1
0 1 1 2 2 2 1 1 0





























(c) 9× 9 Laplacian filter

Fig. 3: The presentation of Laplacian filters applied in the paper.

Fig. 4: The figure presents as follows: the original image and the image after 3× 3 Laplacian filter (the first row) and images

after 5× 5 and 9× 9 Laplacian filter (the second row). (The original photo was taken by Jonathan Andreo, and is available at unsplash.com)

crucial. The idea presented in this paper relies on moving the

mask parallely over the image. The photo can be divided into

t rectangles, where t is the number of threads (an exemplary

division into 4 rectangles is presented in Fig. 2). Then each

thread applies the filter to the allocated area and does not

influence any other parts. Finally, all filtered fragments are

combined into one image.

The only issue is to determine the way of assigning suitable

areas for t threads. Each thread after running receives its own

index (the numbering starts from zero). Let w be the width of

the processed image (in pixels). Then the number of pixels per

one thread is equal to
⌊

w

t

⌋

. The ceiling function is necessary

because w

t
may not be an integer. In such a situation the

last thread can have slightly more pixels to calculate. The

Algorithm 1 presents the pseudocode of the proposed method.

V. EXPERIMENTAL RESULTS

As was said before, application of three Laplacian filters

was tested. In all cases, 100 measurements were performed

and the results were averaged. The investigated image is

1200 pixels wide and 676 pixels high. For each convolution

mask the image was filtered by using 1, 2, 4, 8, 16 and 32

threads. The algorithm was implemented in C# language. The

testing parallel architecture was Quad-Core AMD Opteron

8356 8p (32 CPU threads). Detailed results of experiments

are presented in Tab. I and shown in Fig. 5 - 7. On all graphs

the horizontal axis represents the number of threads and the

vertical axis represents time.

KAMIL KSIĄŻEK ET AL.: THE IMPACT OF PARALLEL PROGRAMMING ON FASTER IMAGE FILTERING 547



TABLE I: Results of image filtering by using Laplacian filters (100 averaged measurements).

3× 3 convolution mask

threads average time
(seconds)

percentage standard
deviation

average time
(CPU ticks)

standard
deviation

1 17.87600 100% 0.23354 40153258 524569

2 10.18082 56.95% 0.30065 22868252 675319

4 6.03999 33.79% 0.28318 13567088 636091

8 3.84961 21.54% 0.25843 8647022 580477

16 2.93947 16.44% 0.21808 6602667 489848

32 2.42189 13.55% 0.08085 5440081 181596

5× 5 convolution mask

1 46.05641 100% 1.08065 103452367 2427362

2 24.74928 53.74% 0.26110 55592085 586472

4 14.43128 31.33% 0.26109 32415682 1912613

8 8.82084 19.15% 0.97053 19813459 2180018

16 6.05791 13.15% 0.49399 13607337 1109609

32 4.32978 9.40% 0.15660 9725596 351746

9× 9 convolution mask

1 141.72927 100% 1.55923 318353710 3502354

2 75.59142 53.34% 1.27017 169794198 2853071

4 43.08413 30.40% 4.14568 96776003 9312067

8 25.00103 17.64% 2.58287 56157567 5801661

16 17.28079 12.19% 1.61762 38816286 3633518

32 10.67084 7.53% 0.51039 23968946 1146444

Algorithm 1 Pseudocode of the parallel method of the image

filtering.

Input: the image for filtering, the size of the image: width w,

height h, the convolution mask, number of threads t

Calculate the number of pixels per one thread:
⌊

w

t

⌋

.

Create t threads.

for i = 0 to t− 1 do

Set the range for the thread from i ·
⌊

w

t

⌋

+1 to i ·
⌊

w

t

⌋

+
⌊

w

t

⌋

.

if i = t− 1 then

Set the range for (t−1)-th thread from (t−1) ·
⌊

w

t

⌋

+1
to w.

end if

Filter the determined area according to the convolution

mask.

end for

Merge all the parts into the one image.

It is possible to observe that even the division of the image

into 2 rectangles speeds up significantly the calculations (53%-

57% of the calculation time for one thread). In the case of the

9 × 9 convolution mask, the time was decreased from 141

to 75 seconds. Fig. 5 - 7 show a hyperbolic decline of the

computing time. The differences between consecutive cases

are getting smaller but still the most beneficial application is

while using 32 threads (the maximum number of available

CPU threads). The larger the convolution mask is, the more

time can be saved thanks to multithreading (7-10 seconds in

the case of the 3 × 3 mask, 22-42 seconds in the matter of

the 5 × 5 mask and 66-131 seconds regarding to the 9 × 9
mask). As we have proposed multithreading method can be a

very useful tool in speeding up the calculations.

VI. CONCLUSIONS AND FINAL REMARKS

The research has shown that proposed parallelization sig-

nificantly decreases the time of calculations. The profit is best

visible when all CPU threads are used. The larger the picture

and the computation mask is, the more important reduction in

time spent for calculations is visible. It is worth to mention

that the time necessary to filter the image of a size 1200×676
pixels by using only one thread and the 9 × 9 convolution

mask exceeds two minutes. It can be concluded that filtering

larger image (for instance of a size 6000 × 6000 pixels or

even higher) involves several minutes, especially in the case

of large convolution masks, also bigger than 9 × 9. Striving

for a significant reduction of the calculation time is essential.

The method can be further developed by examining other

parallel algorithms or trying to process many images at the

same time. In our future research we will also investigate this

methodology in movie processing, since this application can

be the most important for HD multimedia systems.

ACKNOWLEDGMENT

Authors acknowledge contribution to this project of the

"Diamond Grant 2016" No. 0080/DIA/2016/45, and from the

program "Best of the Best 3.0" both from the Polish Ministry

of Science and Higher Education.

REFERENCES

[1] Z. Marszałek, “Parallel fast sort algorithm for secure multiparty com-
putation,” J. UCS, vol. 24, no. 4, pp. 488–514, 2018.

[2] Z. Marszalek, “Parallelization of modified merge sort algorithm,” Sym-

metry, vol. 9, no. 9, p. 176, 2017, DOI: 10.3390/sym9090176.

[3] J. Protasiewicz, “Inventorum: A platform for open innovation,” in
Systems, Man, and Cybernetics (SMC), 2017 IEEE International Con-

ference on. IEEE, 2017, pp. 10–15.

548 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



Fig. 5: Results for 3× 3 convolution mask.

Fig. 6: Results for 5× 5 convolution mask.

Fig. 7: Results for 9× 9 convolution mask.

[4] D. D. Burdescu, L. Stanescu, M. Brezovan, F. Slabu, and D. Ebanca,
“Multimedia data for efficient detection of visual objects,” in Proceed-

ings of the 11th International Conference on Ubiquitous Information

Management and Communication, ser. IMCOM ’17. New York, NY,
USA: ACM, 2017, pp. 61:1–61:8, DOI: 10.1145/3022227.3022287.

[5] D. D. Burdescu, M. Brezovan, L. Stănescu, C. S. Spahiu, and D. C.
Ebâncă, “Graph-based semantic segmentation for 3d digital images,” in

2017 31st International Conference on Advanced Information Network-

ing and Applications Workshops (WAINA), 2017, pp. 114–119, DOI:
10.1109/WAINA.2017.69.

[6] Y. Jia, C. Rong, C. Wu, and Y. Yang, “Research on the decomposition
and fusion method for the infrared and visible images based on the
guided image filtering and gaussian filter,” in 2017 3rd IEEE Interna-

tional Conference on Computer and Communications (ICCC), 2017, pp.

KAMIL KSIĄŻEK ET AL.: THE IMPACT OF PARALLEL PROGRAMMING ON FASTER IMAGE FILTERING 549



1797–1802, DOI: 10.1109/CompComm.2017.8322849.
[7] S. Deniziak and T. Michno, “New content based image retrieval database

structure using query by approximate shapes,” in Proceedings of the

2017 Federated Conference on Computer Science and Information

Systems, FedCSIS 2017, Prague, Czech Republic, September 3-6, 2017.,
2017, pp. 613–621, DOI: 10.15439/2017F457.

[8] ——, “Query-by-shape interface for content based image retrieval,”
in 8th International Conference on Human System Interaction, HSI

2015, Warsaw, Poland, June 25-27, 2015, 2015, pp. 108–114, DOI:
10.1109/HSI.2015.7170652.

[9] R. Karumuri and S. A. Kumari, “Weighted guided image filtering
for image enhancement,” in 2017 2nd International Conference on

Communication and Electronics Systems (ICCES), 2017, pp. 545–548,
DOI: 10.1109/CESYS.2017.8321137.

[10] N. Dhengre, K. P. Upla, H. Patel, and V. M. Chudasama, “Bio-
medical image fusion based on phase-congruency and guided filter,” in
2017 Fourth International Conference on Image Information Processing

(ICIIP), 2017, pp. 1–5, DOI: 10.1109/ICIIP.2017.8313792.
[11] C. Chen and M. C. Stamm, “Image filter identification using de-

mosaicing residual features,” in 2017 IEEE International Confer-

ence on Image Processing (ICIP), 2017, pp. 4103–4107, DOI:
10.1109/ICIP.2017.8297054.

[12] S. K. Dewangan, “Visual quality restoration enhancement of underwater
images using hsv filter analysis,” in 2017 International Conference on

Trends in Electronics and Informatics (ICEI), 2017, pp. 766–772, DOI:
10.1109/ICOEI.2017.8300807.

[13] E. Royer, J. Chazalon, M. Rusiñol, and F. Bouchara, “Benchmark-
ing keypoint filtering approaches for document image matching,” in
2017 14th IAPR International Conference on Document Analysis and

Recognition (ICDAR), vol. 01, 2017, pp. 343–348, DOI: 10.1109/IC-
DAR.2017.64.

[14] R. Jain, R. Kasturi, and B. G. Schunck, Machine vision. McGraw-Hill
New York, 1995, vol. 5.

[15] R. C. Gonzalez and R. E. Woods, Digital image processing. Upper
Saddle River, NJ: Prentice Hall, 2012.

[16] Z. Czech, Wprowadzenie do obliczeń równoległych. Wydawnictwo
Naukowe PWN, 2013.

[17] T. Zieliński, Cyfrowe przetwarzanie sygnałów: od teorii do zastosowań.
Wydawnictwa Komunikacji i Łączności, 2007.

550 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018


