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Abstract—An important issue in predictive modeling is model
selection. This process is time consuming and can be simpli-
fied with meta-learning. However, meta-learning systems need
appropriate data descriptors for proper functioning. One of
them are data compression measures which can be extracted
out of the instance selection methods. When we only need to
estimate the classification accuracy of the model, the compression
obtained from instance selection is a good approximator, but
when we need to estimate other performance measures such as
the precision and sensitivity then the quality of the estimated
performance drops. To overcome this issue we propose a new
type of compression measure: the balanced compression which is
sensitive to the class label distribution and shows high correlation
with precision and sensitivity of the final classifiers. We also
show that the application of the balanced compression as a
meta-learning descriptor allows for precise assessment of the
model performance, as proved by the presented experimental
evaluation.

I. INTRODUCTION

N
OWADAYS, meta-learning [1], [2] is gaining more and

more popularity. It is aimed at speeding up the prediction

model construction which consists of model selection and

model parameters optimization. The model selection process

can be done without actually training the given model, by

using other meta-model which assesses the quality of the data

and estimates the performance of the desired classier or returns

a ranking.

As shown in [3], [4], a good indicator that characterizes the

dataset quality is the compression of the dataset obtained with

instance selection algorithms [7]. It is defined as: Cmp = 1−
‖P‖
‖T‖ where T = [{x1, y1}, {x2, y2}, . . . {xn, yn}] is a training

dataset that consists of n training instances {x, y}, where x ∈
ℜm and y is a label which takes one of l symbols, and the

dataset P is a subset of the instances from T selected by the

instance selection algorithm, so that P ⊂ T.

The main idea of using compression as a meta-learning de-

scriptor (also called meta-attribute) is based on the observation

that a dataset in which there is a lot of regularity can be

compressed well, and thus high prediction accuracy should

be achievable, while a dataset containing a lot of irregularities

and a lot of noise will have a low compression ratio. Moreover,

the instance selection methods are often used at the stage of

data preprocessing, which means that the value of compression

is obtained without additional computational cost. Some algo-

rithms, including CNN and ENN, have been identified as the

most useful for predicting the final model performance [4].

For example, the correlation between the compression ratio

and the accuracy of the kNN, Gaussian SVM and Random

Forest, obtained for CNN and ENN instance selection methods

is above 0.9. However, the research carried out so far has

focused only on the classical definition of the measure of

prediction accuracy expressed as the ratio of the correctly

classified examples to all evaluated examples.

It turns out that although correlation between compression

and classification accuracy is very high, the correlation be-

tween compression and other measures of classifier perfor-

mance is much weaker. We refer to such measures as the

average precision (also known as the balanced accuracy), or

the average sensitivity also called recall, which are especially

important in the context of unbalanced classification problems.

This work addresses this problem by introducing a new type

of compression, so-called balanced compression, which takes

into account the number of rejected instances which belong

to particular classes. The balanced compression linearizes the

relationship between compression and precision and between

compression and sensitivity. Implementing these measures

allows to enhance the meta-learning system performance.

II. INSTANCE SELECTION ALGORITHMS

As it was mentioned, the compression achieved by instance

selection can be used as a measure of the dataset quality.

We presented also an intuitive dependence, which indicates

that stronger compression is connected with greater regularity

of the decision boundaries in the dataset, and at the same

time it is easier for the classifier to reconstruct the desired

decision boundary. In practice, however, this depends on the

particular instance selection algorithm. These algorithms can

be divided into three basic groups: condensing methods, noise

filters and hybrid methods. Condensing methods are a set of

algorithms used to reduce the dataset size, where the only

criterion is maximization of compression while maintaining

comparable prediction accuracy. A typical example is the

CNN algorithm [8]. CNN was developed for use with the

kNN classifier to reduce the computational complexity. The

acceleration is accomplished by eliminating (compressing)
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unnecessary instances in the dataset. However, this does not

help increasing the prediction quality of this classifier. There

are algorithms that allow for stronger compression at the same

accuracy level, e.g. evolutionary based instance selection [6].

However, as the evolutionary approach belongs to the hybrid

group, the correlation we observed although is still significant,

is weaker then that obtained with CNN.

Noise filters, on the other hand, are a set of algorithms

created with the purpose of finding and removing training

instances that constitute noise in a dataset. An example and

historically the first noise filter is the ENN algorithm designed

to improve prediction accuracy of 1-NN [9]. ENN was also

developed to work with the kNN algorithm. Its operation is

based on the analysis of the closest neighborhood of a given

instance and checking if the nearest neighbors will vote for the

examined instance in accordance with its label. If not, then the

instance is removed.

Also generalizations of these algorithms were proposed,

where different classifiers, not only kNN can be embedded

into the instance selection process [10]. However, in the

experiments presented in this paper only instance selection

based on 1-NN will be considered.

The third group of instance selection algorithms are hybrid

methods. They combine the properties of the first two groups.

They start by filtering out the noisy samples from the data and

then condense the remaining dataset.

As it was shown in [4], each group of instance selection

methods behaves differently with regard to the prediction accu-

racy. For the condensing methods, an increase in compression

corresponds to an increase in prediction accuracy. In the case

of noise filter methods, this relation is reversed, because the

noise filters regularize and clean the datasets from noise. Thus

more removed instances indicate here more noisy dataset,

which means that with the increase of compression of the

noise filters, the reduction of prediction accuracy is observed.

The last group - hybrid methods combine both elements.

This causes that the relationship between compression and

prediction accuracy gets much weaker or totally disappear,

because the properties of condensation methods are canceled

out by the properties of noise filters. This causes that only the

instance selection methods, which obtain different compres-

sion depending on noise in data find application in estimating

the prediction accuracy.

III. BALANCED COMPRESSION MEASURE

As mentioned in the introduction, for unbalanced classi-

fication problems usually classical accuracy measure is not

used and rather other performance measures are evaluated

like average precision or average sensitivity. The purpose

of these measures is to reflect the quality of the prediction

model in the context of the number of instances in individual

classes. A similar situation occurs in the case of compression

measures. The commonly used compression measure ignores

the number of rejected instanced within individual classes. It

simply represents the ratio of the number of rejected samples

to the size of the training set T, thus, this measure is similar to

the classical accuracy used in prediction systems. The natural

conclusion from this is that we should adapt the measure of

compression to data with unbalanced class distribution, so that

the measure not only indicates the number of rejected samples

but also the number of rejected samples within individual

classes. It can bring tangible benefits in the form of additional

information about the nature of the classification problem, in

particular in the context of meta-learning systems.

An important difference between accuracy and compression

is the fact, that in contrast to the evaluation of the accuracy

of the classifier, in the case of compression we do not have

the confusion matrix and the values resulting from it like

False Positives or False Negatives. It is because instance

selection methods do not perform prediction, instead we only

have information which instances were selected and which

rejected, so we do not know what type of error occurred.

Therefore, the only factor possible to determine is the level of

class ci compression defined as
‖yT==ci‖−‖yP==ci‖

‖yT==ci‖
, where

‖yT == ci‖ denotes the number of samples in the training

set T which belong to class ci and ‖yP == ci‖ denotes the

number of instances in the dataset P (after instance selection)

which belong to class ci.

Based on this class compressions we define balanced com-

pression as an average over all classes

CmpBal =
1

l

l∑

i=1

‖yT == ci‖ − ‖yP == ci‖

‖yT == ci‖
(1)

where l denotes the number of classes. This measure can be

also generalized by introducing class weights denoted as wi

which describes importance of particular class, so the balanced

compression takes the form:

CmpBal =
1∑
wi

l∑

i=1

wi

‖yT == ci‖ − ‖yP == ci‖

‖yT == ci‖
(2)

In the conducted experiments we assumed equal values of

the weights ∀
i=1...l

wi = 1.

IV. EXPERIMENTS AND RESULTS

In order to verify the usefulness of the proposed bal-

anced compression in the context of meta-learning systems,

we carried out an experimental evaluation on 45 datasets

obtained from Keel Project [11] using three popular classifiers:

kNN, linear SVM and Random Forest. The experiments were

performed with RapidMiner and the Information Selection

package developed by the authors of this paper, which is

available from the RapidMiner Marketplace and on the website

www.prules.org [12]. The experiments were divided into two

parts. In the first part the correlation measure was evaluated

between compression measures and performance measures of

the evaluated classifiers. It indicates how the new compression

measure reflects the obtained classification performances. In

the second part a real meta-learning system was constructed

which is designed to predict performance of the three classi-

fiers. The meta-learning system utilizes meta-attributes which

are based on compressions obtained by both CNN and ENN.

26 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



A. Relationships Between Compression and Various Perfor-

mance Measures

The first part of the experiments consists of two stages. In

stage I, the three performance measures (accuracy, average

precision and average sensitivity) for each of the 45 datasets

were estimated using the cross-validation procedure. This

stage also included parameter optimization for all evaluated

classifiers (k for kNN, C- for linear SVM and the number

of trees for Random Forest). In stage II, each dataset was

compressed using the two previously described algorithms

ENN and CNN, each time measuring both compression and

balanced compression. The obtained results were then used

to calculate Pearson’s correlation coefficient between given

type of compression and the type of classification performance

measure independently for each classifier. Obtained correla-

tions were collected in Tab. I for CNN instance selection, and

in Tab. II for ENN instance selection algorithm.

Table I: Correlation between two types of compression ob-

tained for CNN and the three performance measures for kNN,

Linear-SVM and Random Forest

Compression type
Performance

measure
kNN SVM

Random
Forest

Compression Accuracy 0.937 0.902 0.900
Compression Precision 0.783 0.662 0.767
Compression Recall 0.738 0.640 0.767

Balanced compression Precision 0.920 0.794 0.880
Balanced compression Recall 0.932 0.808 0.880

Table II: Correlation between two types of compression ob-

tained for ENN and the three performance measures for kNN,

Linear-SVM and Random Forest

Compression type
Performance

measure
kNN SVM

Random
Forest

Compression Accuracy -0.965 -0.924 -0.917
Compression Precision -0.774 -0.672 -0.745
Compression Recall -0.758 -0.661 -0.765

Balanced compression Precision -0.935 -0.844 -0.883
Balanced compression Recall -0.981 -0.863 -0.895

The results in the tables indicate that the correlation between

classical compression and prediction accuracy is very high

and ranges from 0.917 to 0.965 for the ENN algorithm and

from 0.900 to 0.937 for the CNN (here for simplicity we

evaluate absolute values of the correlation as the sign does

not matter). However, changing the measure of the prediction

quality to average precision or average sensitivity causes the

correlation coefficient to drop rapidly to a level between

0.64 and 0.77 depending on the method of instance selection

and on the classifier. Changing compression to the balanced

compression results in a significant increase in the correlation

coefficient, which for the kNN classifier again exceeds 0.9,

and for the other classifiers varies between 0.8 and 0.88. This

is a significant improvement over the correlation coefficients

obtained with standard compression.

B. Meta-system - compression-based estimation of prediction

quality

Meta-learning systems are used for the estimation of quality

of predictive models [13], [1], [14], [15]. In these systems, for

a known dataset repository, which consists of nr datasets, the

prediction performance of the selected classifier is estimated

and the meta-attributes describing the properties of each of

these datasets are extracted [16]. Next, a meta-set is created.

The meta-set consists of the extracted meta-attributes (an input

vector of the meta-learning system) and labels that express

the accuracy of the given model, for which we would like to

estimate the accuracy. Therefore, the meta-set consists of nr

samples, where a single instance describes one dataset from

the repository. So we obtain a typical regression problem,

because labels in the meta-set represent numerical values (ac-

curacies). In the next step, the meta-set is used to build a meta-

model, a model capable of estimating prediction accuracy for

a given, previously unknown data set. When applying a meta-

model to a new data set, it is necessary in the first step to

determine the meta-attributes, create a record from them, and

then pass them to the meta-model input. The meta-model

then returns the estimated accuracy. Another commonly used

solution is learning the meta-ranking model, where the meta-

model returns the ranking of the best models or just the best

prediction model [17].

It was shown in [4] that the use of compressions as

meta-attributes lead to an improvement in the quality of

the estimated accuracy in comparison to the classic meta-

attributes used in the MLWizzard system [15]. Therefore, in

the experiments a meta-system based only on the data set

compression measures is constructed.

As a meta-model, Generalized Linear Model was used. In

total we had 9 meta-models (for each of the three performance

measures and for each of the tree classifiers). The meta-

model was tested using the 5x10 cross-validatin procedure.

The quality of the whole system was evaluated using RMSE

calculated between predicted and real prediction performance.

The obtained results are presented in Tab. III.

The results are placed in two columns. The first column

contains the results obtained using classical compression of

both CNN and ENN as meta-attributes, and the second column

contains the results obtained with a balanced compression. For

each of the tested classifiers, the three measures of accuracy

(accuracy, average sensitivity and average precision) were

estimated, and Welch’s t-test [18] was used to determine if

the results are statistically significantly different at α = 0.05.

The symbol (+) indicates results which are significantly better.

The obtained results clearly indicate that for meta-learning

systems where the task is to estimate classical accuracy, the

standard compression measure gives better results. However,

when the aim of the process is to estimate average precision

or average sensitivity, a much better solution is to use the

balanced compression; each time the results obtained using

balanced compression were statistically significantly better

than those obtained with standard compression.
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Table III: Results of the meta-learning system. The columns

represent RMSE of the meta-model aimed at estimating clas-

sification performance of three classifiers: kNN, Linear SVM,

and Random Forest using two meta-sets which consisted of:

clasical compression based meta-attributes (column 1) and

balanced compression - based meta-attributes (column 2)

Compression
Balanced

Compression
RMSE±std RMSE±std

k
N

N

Accuracy 0.0328±0.0207(+) 0.0799±0.0400
Recall 0.1336±0.0529 0.0703±0.0575(+)

Precision 0.1265±0.0607 0.0884±0.0628(+)

S
V

M

Accuracy 0.0640±0.0296(+) 0.0910±0.0416
Recall 0.1523±0.0610 0.1130±0.0600(+)

Precision 0.1453±0.0711 0.1171±0.0622(+)

R
an

d
o
m

F
o
re

st Accuracy 0.0437±0.0281(+) 0.0739±0.0408
Recall 0.1276±0.0632 0.0954±0.0711(+)

Precision 0.1284±0.0644 0.0979±0.0711(+)

The prediction quality of the kNN model can be estimated

more precisely than those of SVM or Random Forest, which

is natural, as the instance selection methods internally use

the nearest neighbor mechanism to evaluate each of the

instances. Random Forest ranked lower than kNN in terms of

performance estimation but ranked higher than SVM. SVM’s

high performance estimation error was caused by the fact that

the SVM considered in this study utilized a linear kernel,

and thus it was a linear classifier, while Random Forest is a

nonlinear classifier. By their very nature, methods of instance

selection are nonlinear, and thus they can overestimate the

results obtained by the linear model.

V. CONCLUSIONS

In this study we have shown that compression forms a strong

linear relationship with the standard prediction accuracy. We

have also shown that other measures of prediction quality do

not correlate strongly with the standard compression obtained

by instance selection.

To address this problem, we proposed a modified measure

of compression called balanced compression. The purpose

of balanced compression is to express the characteristics of

the dataset preserving distribution of the class labels. This

allowed to obtain almost linear relationship between the bal-

anced compression and the accuracy measures such as average

precision and average sensitivity. The importance of this linear

relationship can be efficiently used in meta-learning systems,

where the balanced compression allowed for a significant im-

provement in the estimation of average precision and average

sensitivity compared to estimation performed using standard

compression.
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