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Abstract—In this paper we develop a Mizar formalization of
Kronecker’s construction, which states that for every field F and
irreducible polynomial p ∈ F [X] there exists a field extension E

of F such that p has a root over E. It turns out that to prove
the correctness of the construction the field F needs to provide
a disjointness condition, namely F ∩F [X] = ∅. Surprisingly this
property does not hold for arbitrary representations of a field F :
We construct for almost every field F another representation F ′,
i.e. an isomorphic copy F ′ of F , not satisfying this condition. As a
consequence to F ′ our formalization of Kronecker’s construction
cannot be applied.
All proofs have been carried out in the Mizar system. Based on
Mizar’s representation of the fields Zp,Q and R we also have
proven that Zp ∩ Zp[X] = ∅, Q ∩ Q[X] = ∅, and R ∩ R[X] = ∅

respectively.

I. INTRODUCTION

I
NTERACTIVE theorem proving aims at developing sys-

tems to be used to formalize, that is both formulate and

prove, mathematical theorems and theories in an accurate and

comfortable way. The ultimate dream is a system containing

all mathematical knowledge in which mathematicians develop

and prove new theorems. To come at least a little closer to this

goal much effort has been spent building large repositories

of computer-verified theorems such as the Coq library [4],

the Isabelle2017 library [15], and the Mizar Mathematical

Library [17]. A number of important mathematical theorems

have been proven to illustrate the capability of interactive

theorem proving, the most prominent examples being the proof

of Kepler’s conjecture in HOL Light [13], the Feit-Thompson

theorem in Coq, and the Jordan curve theorem in Mizar (see

also [25]).

Another interesting challenge in this context is Artin’s

solution of Hilbert’s 17th problem, which asks whether a

(multivariate) polynomial taking only non-negative values over

the real numbers can be represented as a sum of squares of

rational functions. Its formalization requires the development

of real algebra: the theory of ordered fields and in particular the

notion of field extensions and field adjunctions [23]. A key tool

in field theory is Kronecker’s construction which states that for

every field F and every non-constant polynomial p ∈ F [X]
there exists a field extension E of F in which p has a root. The

Mizar formalization of Kronecker’s construction is the topic

of this paper.

One dominating subject in abstract field theory is the

construction of new larger fields containing the field (or ring)

one has started with, for example constructing C from R or

F (X) from F [X]. Here only the general structure of the field,

not the individual representation of the field’s elements, is of

interest; isomorphic fields are just considered to be the same

field. For example, when constructing the complex numbers

by R[X]/(X2 + 1) the result is not the usual field C of

complex numbers, yet we have R[X]/(X2 + 1) ∼= C. Also

R[X]/(X2 + 1) does not contain R as a subfield, but an iso-

morphic copy of it. From a mathematician’s point of view this

of course does not matter, because you can get what you want

by exchanging the isomorphic fields. This kind of argument

is omnipresent in abstract field theory. In fact, Kronecker’s

construction contains a similar argument and we will see that

exactly this is the hardest part in the formalization: to carry it

out, we need the disjointness condition F ∩F [X] = ∅ already

mentioned in the abstract.

The plan of the paper is as follows. In the next section we

give a brief overview of the Mizar system and illustrate how

algebraic domains are constructed. In section III we discuss

our Mizar formalization of Kronecker’s construction placing

emphasis on the disjointness condition. In the subsequent sec-

tion we present the construction of fields which do not fulfill

our disjointness condition. It turns out that our construction

works for every field except Z2. In section V and VI we pro-

vide an intuitive, though not really helpful, condition implying

F ∩ F [X] = ∅ and finally prove the disjointness condition

for Mizar’s representation of the fields Zp,Q, and R. In the

conclusion we discuss how a formalization of Kronecker’s

construction without a disjointness condition might look like.

II. THE MIZAR SYSTEM

Mizar has often been described in the literature, for example

in [3], [18], [12], [9], [8] and [11]. In this paper we will present

only theorems, not proofs; therefore we give only a very

rough description of Mizar. Mizar’s logical basis is classical

first-order logic, extended with so-called schemes. Schemes
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introduce free second-order variables enabling the definition

of induction schemes among others. In addition, Mizar objects

are typed, the types forming a hierarchy with the fundamental

type set. The user can introduce new (sub)types describing

mathematical objects such as groups, fields, vector spaces, or

polynomials over rings or fields. The development of the Mizar

Mathematical Library relies on Tarski-Grothendieck set theory

- a variant of Zermelo-Fraenkel set theory using Tarski’s axiom

about arbitrarily large, strongly inaccessible cardinals which

can be used to prove the axiom of choice. Mizar proofs are

written in natural deduction style. The rules of the calculus

are connected with corresponding (English) natural language

phrases so that the Mizar language is close to the one used in

mathematical textbooks [10].

To define algebraic domains Mizar provides so-called struc-

ture modes fixing the domain’s sets of elements and opera-

tions. So, for example1

definition

struct (addLoopStr,multLoopStr_0) doubleLoopStr

(# carrier -> set,

addF, multF -> BinOp of the carrier,

OneF, ZeroF -> Element of the carrier #);

end;

defines the necessary backbone of rings and fields. Note

that doubleLoopStr inherits from both addLoopStr and

multLoopStr_0, that is it joins the operations of additive

and multiplicative groups. Properties such as commutativity

or the existence of inverse elements are described by attribute

definitions such as

definition

let R be addLoopStr;

attr R is right_zeroed means

for a being Element of R holds a + 0.R = a;

end;

Here for elements a and b of (the carrier) of R a+b

is a shortcut for (the addF of R).(a,b). A field then

is a doubleLoopStr with the appropriate collection of

attributes (compare [21], [19]).

definition

mode Field is

Abelian add-associative right_zeroed

right_complementable associative commutative

well-unital almost_left_invertible

distributive non empty doubleLoopStr;

end;

As a consequence a Mizar object of type Field obtains all

properties described by the defining attributes. We note here,

that Mizar types have to be non-empty.

Concrete algebraic domains are built by instantiation of

structures. The field of rational numbers Q, for example, is

given by the set RAT of rational numbers and operations

addrat and multrat defining addition and multiplication

for elements of RAT. These are then glued together by the

following

1Throughout the paper Mizar code is written in verbatim style.

definition

func F_Rat -> Field equals

doubleLoopStr(#RAT,addrat,multrat,1,0#);

end;

Note, that the definition of the set RAT gives a particular

representation of the rational numbers Q; to be used when

arguing about the rational numbers using the field F_Rat.

There are other fields, that is fields with a different set of

elements, isomorphic to Q. In fact any field of characteristic

0 contains a subfield isomorphic to Q.

III. KRONECKER’S CONSTRUCTION

In this section we discuss our Mizar formalization of

Kronecker’s construction, sometimes also called the main

theorem of field theory. It can be stated as follows [24], [23]:

Theorem

Let F be a field and p ∈ F [X] irreducible. Then there exists

a field extension E of F such that p has a root over E.

Note that from this theorem easily follows the existence of

such an extension for every non-constant p ∈ F [X].

A. Field Extensions

We begin with the Mizar definition of field extensions: A

field E is a field extension of a field F , if F is a subfield of

E [24], or equivalently if F is a subset of E, which itself is a

field. It is understood that the operations + and ∗ in F are the

restrictions of + and ∗ in E. In Mizar this is stated as follows

(see [6]).

definition

let F be Field;

mode Subfield of F -> Field means

the carrier of it c= the carrier of F &

the addF of it = (the addF of F)

|| the carrier of it &

the multF of it = (the multF of F)

|| the carrier of it &

1.it = 1.F & 0.it = 0.F;

end;

The mode Subring of R, where R is a ring is defined

analogously. Based on this definition we can introduce field

extensions as follows.

definition

let R be Ring, E be Field;

attr E is R-field-extending means

R is Subring of E;

end;

definition

let F be Field;

mode FieldExtension of F is

F-field-extending Field;

end;

Note that instead of postulating that F is a subfield of E we

demand that a ring R is a subring of E. This way our definition

gets more flexible. For example, this allows to show that Q

extends Z. For a field F , however, our definition is equivalent
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to the one from the literature given above, in particular one

proves that

theorem

for F,E being Field

holds E is FieldExtension of F iff

F is Subfield of E;

In any case the definition implies that a field E in order to

be a field extension of a field F in particular must contain the

elements of F , e.g. we must have the carrier of F ⊆
the carrier of E as sets.

B. The Construction

Kronecker’s proof is constructive [24] and consists of two

parts: The first one observes is that if p is irreducible then

<p> is a maximal ideal in F [X], and hence E := F [X]/<p>
is a field. The second step consists of showing that [X]<p> is

a root of p in E[X]: If p = a0 + a1 ∗X + . . . an ∗Xn we get

p([X]) = a0 + a1 ∗ [X] + . . . an ∗ [X]n

= a0 + a1 ∗ [X] + . . . an ∗ [Xn]

= a0 + [a1 ∗X] + . . . [an ∗Xn]

= [a0 + a1 ∗X + . . . an ∗Xn]

= [p]

= 0.

Between these two steps one usually finds a remark that

F [X]/<p> is a field extension of F . Note that formally F
is no subfield of F [X]/<p> just because F 6⊆ F [X]/<p>
as sets; and therefore p ∈ F [X] is not even a polynomial

over F [X]/<p>. However, ϕ : F −→ F [X]/<p> given

by a 7→ [a()]<p> is a monomorphism, the so-called canonical

monomorphism, and gives rise to the embedding of F into

F [X]/<p>. The remark mentioned above then reads

We can identify ϕF with F in F [X]/<p> and thus

consider F as a subfield of F [X]/<p>.

The Mizar formalization of the two steps is quite straight-

forward. The quotient field F [X]/<p> has been defined in

[16], [20] and p([X]) = [p] can be easily shown by induction

on the degree of p.

The main task is to formalize the aforementioned

remark: Formally, identifying ϕF with F in a field E if

ϕ : F −→ E is a monomorphism means defining a new

carrier K := (E \ ϕF ) ∪ F and modifying addition and

multiplication of F appropriately. For example, a+ b for two

elements a and b of K where a ∈ F and b ∈ E\ϕF actually

means adding ϕa + b in E. The result a + b then either is

ϕa + b if this is not in ϕF or ϕ−1(ϕa + b) if this is in ϕF .

In this way we get a new field K isomorphic to E with F ⊆ E:

Theorem

Let F,E be fields and ϕ : F −→ E a monomorphism. Then

K := (E\ϕF )∪F is a field isomorphic to E. Moreover F is

a subfield of K.

This field K then is the desired field extension for Kro-

necker’s construction. Unfortunately we were not able to prove

the theorem in this general setting: the problem is that there

might be elements in E, more precisely in E\ϕF , already

appearing in F , that is F ∩(E\ϕF ) might be non-empty. This

leads to an identification of elements during the construction,

which destroys the isomorphism between (E\ϕF )∪F and E.

This has to be excluded, so we require a disjointness condition.

We hence come up with two slightly weaker theorems in

Mizar. Here E being a F -monomorphic field just means that

there exists a monomorphism ϕ : F −→ E and emb f is the

field K defined above.

theorem

for F being Field,

E being F-monomorphic Field

st F /\ E = {}

for f being Monomorphism of F,E

holds E,(emb f) are_isomorphic;

theorem

for F being Field,

E being F-monomorphic Field

st F /\ E = {}

ex E’ being Field st E’,E are_isomorphic &

F is Subfield of E’;

The Mizar proofs are straightforward, but quite tedious due

to the number of different cases. Now our Mizar version

of Kronecker’s construction has to take into account the

disjointness condition leading to the following theorem.

theorem

for F being Field,

p being non constant

Element of Polynom-Ring F

st F /\ (Polynom-Ring F)/({p}-Ideal) = {}

ex E being FieldExtension of F

st p is_with_roots_in E;

The theorem’s condition

F /\ (Polynom-Ring F)/({p}-Ideal) = {},

i.e. F ∩ F [X]/<p> = ∅, is not really satisfying: it depends

not only on the field F , but also on the given polynomial

p ∈ F [x]. This can be improved by carrying out Kronecker’s

construction using another representation of F [X]/<p>: the

isomorphic copy consisting of all polynomials f ∈ F [X] with

deg f < deg p (see [24]). We denote this representation by

F [p]. For F [p] we have in particular F [p] ⊆ F [X] as sets, so

that the condition F ∩ F [X] = ∅ suffices to apply the embed-

ding theorems from above. With polynomial_disjoint

denoting F ∩ F [X] = ∅ we now get the following Mizar

version of Kronecker’s construction:

theorem

for F being polynomial_disjoint Field,

p being non constant

Element of Polynom-Ring F

ex E being FieldExtension of F

st p is_with_roots_in E;
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IV. CONSTRUCTING NEGATIVE EXAMPLES

In the last section we discussed a Mizar formalization

of Kronecker’s construction and ended up with a version

that does not hold for all fields in the first place: To apply

Kronecker’s construction to a given field F we have to ensure

that F ∩ F [X] = ∅.

At first glance this condition should be no restriction.

Intuitively a polynomial p ∈ F [X] is a more complex object

than an element a of the underlying field F . In Mizar a

polynomial p ∈ F [X] is defined as a function p : N −→ F ,

which returns the coefficients of p: for n ∈ N p.n denotes the

coefficient of Xn. Therefore it should be easy to show that

a 6= p and hence F ∩ F [X] = ∅ for an arbitrary field F .

This, unfortunately, is not true in general. Of course it is

easy to show a 6= p if p includes a as a coefficient, that is

p.n = a for some n ∈ N. This, however, does not exclude

the existence of fields F with F ∩ F [X] 6= ∅, and in the

following we will construct for every field F , except for Z2,

an isomorphic copy F ′ of F with F ′ ∩ F ′[X] 6= ∅.

A. A First Example

Perhaps the easiest example is a three-element field isomor-

phic to Z3. One takes 0 and 1 and sets

F ′ := {0, 1, X}

where X is the identity polynomial. The idea is that the

polynomial X as a function N −→ F ′ is

X.i =

{

1; i = 1
0; i 6= 1

Therefore, having 0 ∈ F ′ and 1 ∈ F ′ we can built this

function (over F ′) and hence X ∈ F ′∩F ′[X]. The operations

+ and ∗ of F ′ are just defined to mimic the ones of Z3 with X
playing the role of 2. As a result we have an isomorphic copy

of Z3 our Mizar version of Kronecker’s construction cannot

be applied to.

B. A Class of Negative Examples

The idea of the first example can be generalized to almost

arbitrary fields F by observing that we in fact changed the rep-

resentation of Z3 by just exchanging 2 with the polynomial X .

This works for almost every field F ; Z2 is the only exception.

One can exchange an arbitrary element a ∈ F\{0, 1} with

another arbitrary object o by setting

Fa,o := (F\{a}) ∪ {o}.

Defining + and ∗ appropriately Fa,o then is an isomorphic

copy of F for an arbitary object o. Substituting X for o now

shows that X ∈ Fa,X ∩ Fa,X [X] and gives the Mizar

theorem

for F being non almost_trivial Field

ex F’ being non polynomial_disjoint Field

st F’,F are_isomorphic;

Here, the property non almost trivial excludes Z2.

In other words, for every field F (except for Z2) we con-

structed a representation of F our Mizar version of Kro-

necker’s construction cannot be applied to.

Note also that X is non-constant and hence X /∈ ϕF , so that

identifying ϕF with F will not adjust the intersection. In fact

- as o is arbitrary - one can substitute o with the polynomial

Xn for n ∈ N+. Xn as a function is

(Xn).i =

{

1; i = n
0; i 6= n

so an analogous argument shows Xn ∈ Fa,Xn ∩ Fa,Xn [X].
Hence, we get the following

theorem

for F being non almost_trivial Field

for n being non zero Nat

ex F’ being non polynomial_disjoint Field,

p being Polynomial of F’

st F’,F are_isomorphic &

deg p = n &

p in (the carrier of F’) /\

(the carrier of Polynom-Ring F’);

so that the degree of the polynomial p in the intersection

F ′ ∩ F ′[X] is not bounded.

As the main result from our counterexamples we get that

F ′∩F [X] = ∅ is a property not invariant under isomorphisms

(of fields). Consequently the application of Kronecker’s theo-

rem depends on the representation of the given field F .

V. AN INTUITIVE "SOLUTION"

In the last section it turned out that in order to apply Kro-

necker’s construction with a given field F we have to ensure

that F ∩F [X] = ∅, depending on the actual representation of

F . This is in particular true for the basic fields Q,R, and Zp,

where p is prime: it becomes important how these fields are

represented in Mizar.

A first approach to solve this problem again relies on the

intuitive feeling that a polynomial is a more complex object

than an element of the underlying field. So, if all elements of

a field F are of the same complexity, then F ∩ F [X] should

be empty just because all polynomials p ∈ F [X] are more

complex than - and therefore are not equal to - all elements

a ∈ F . Note, that our counterexamples from section IV do

not fulfill this condition.

A possibility to measure the complexity of mathematical

objects o is the so-called rank of o (see [5]). Here every object

o is understood as a set and the rank of o is the least ordinal

number greater than the rank of every member of the set o.

In Mizar the notion of rank has been formalized as a function

the_rank_of from objects into ordinal numbers [1]. Using

this function we define

definition

let F be Field;

attr F is flat means

for a,b being Element of F

holds the_rank_of a = the_rank_of b;

end;
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to express that all elements of a field F are of the same

complexity. As already mentioned a Mizar polynomial over F
is defined as a function p : N −→ F , i.e. formally is a set of

pairs p = { [n, p.n] |n ∈ N}.2 From this immediately follows

that if F is flat, then the rank of all polynomials p ∈ F [X] is

greater than the rank of all elements a ∈ F and thus

theorem

for F being flat Field

holds F is polynomial_disjoint;

Note that in particular the definition of functions in terms

of set of pairs enabled the proof of this theorem.

Unfortunately the criterion of being flat is not really helpful,

as it does not apply to standard representations of fields. The

reason is that in Mizar 0 is defined as the empty set - and

the empty set is the only mathematical object of rank 0.

Consequently every field containing 0 is non-flat, so that in

particular Q,R, and Zp are non-flat.

VI. SOME POSITIVE EXAMPLES

To provide some examples our Mizar version of Kronecker’s

construction can be applied to, we prove Zp ∩ Zp[X] = ∅,

Q∩Q[X] = ∅, and R∩R[X] = ∅ by hand. To do so we have

to rely on Mizar’s representation of these fields: essentially we

have to check the definitions. Note again, that for a field F the

condition F ∩ F [X] = ∅ suffices to apply our Mizar version

of Kronecker’s construction, because our formalization uses

F [p] instead of F [X]/<p>.

We already mentioned that a Mizar polynomial over F is a

function p : N −→ F , that is p = {[n, p.n] | n ∈ N} as a set.

We now need to show that no Mizar polynomial p can equal

any Mizar number r ∈ R ⊇ Q ⊇ Z ⊇ N. To be more precise,

this has to be shown for the Mizar sets REAL, RAT, INT, and

NAT, which have been used to define the fields INT.Ring p,

F_Rat, and F_Real. To keep the following more readable

we will, however, continue writing N for NAT, Z for INT, and

so on.

In Mizar all numbers beginning with N are constructed from

sets following the well-known set-theoretic approaches. So for

N we find 0 = ∅, 1 = {0}, 2 = {0, 1}, . . . and in general

n = {m | m < n} for n,m ∈ N.

Because the carrier of Zn equals {0, 1, . . . n − 1} ⊂ N we

already can show Zn ∩ Zn[X] = ∅. For if we have p = n
for a polynomial p and a natural number n it follows that

{[i, p.i] | i ∈ N} = {m | m < n}, hence there is a j ∈ N

smaller than n such that j = [n, p.n] = {{n}, {n, p.n}}. Then,

because j is a natural number, j must equal {0, 1} = {∅, 1},3

but neither {n} nor {n, p.n} equals ∅, a contradiction.

The proofs of polynomial disjointness for Z,Q and R use

similar set-based argumentations. To give an impression how

Mizar’s set-based definition of numbers is used, we briefly

discuss the case of Q. In Mizar first the non-negative rational

2We already mention here, that Mizar uses Kuratowski’s definition of pairs,
that is [x, y] := {{x}, {x, y}}. This will be used in section VI.

3In fact, j = {0} is possible if n = p.n; but in this case we get j = {{n}},
and hence {n} = 0 = ∅.

numbers Q+ are introduced as pairs of natural numbers, i.e.

elements of the set NAT (see [2]):

reserve i,j,k for Element of NAT;

definition

func RAT+ -> set equals

({[i,j]: i,j are_coprime & j <> {}}

\ the set of all [k,1])

\/ NAT;

end;

Note that the embedding N ⊆ Q+ is performed by hand

substituting all pairs [k,1] for k ∈ N. Then in a second step

the rational numbers Q are defined as

definition

func RAT -> set equals

RAT+ \/ [:{0},RAT+:] \ {[0,0]};

end;

that is a negative rational number r is represented as a pair

[0, r′], where r′ is a non-negative rational number.

Now assuming that there is a polynomial p and a positive

rational number r with p = r we get [i, j] = {[n, p.n] | n ∈ N}
for some i, j ∈ N, [i, j] ∈ Q+ and hence that [i, p.i] ∈ [i, j] =
{{i}, {i, j}}. Then both cases - [i, p.i] = {i} and [i, p.i] =
{i, j} - lead to a contradiction. Here we just mention that in

one (sub) case we even use that i and j are coprime.

With Q+ ∩ Q+[X] = ∅ it is then straightforward to also

show Q ∩ Q[X] = ∅: For if p = r for a polynomial p and a

rational number r, then r must be negative, that is r = [0, r′]
with r′ ∈ Q+. But then because [1, p.1] ∈ p = r = [0, r′] =
{{0}, {0, r′}} we either get [1, p.1] = {0} = 1 or [1, p.1] =
{0, r′} = {∅, r′} - in both cases a contradiction.

Summarizing, to show that our Mizar formalization of

Kronecker’s construction applies to Zp,Q, and R we have to

provide quite involved proofs using the set-based definition of

numbers in Mizar.

VII. CONCLUSION

We have presented a Mizar formalization of Kronecker’s

construction. The main drawback is the necessary disjointness

condition F∩F [X] = ∅. This condition forbids the application

of the construction with an arbitrary representation of the given

field F .

Though the proofs have been carried out in Mizar, we claim

that similar constructions should be possible in other proof

assistants such as HOL [14] or Isabelle [15] as well: From

a technical point of view all that was necessary to construct

our counterexamples was the possibility to aggregate arbitrary

objects in a set. In this way we defined the carrier of the

fields by uniting elements of F with elements of F [X]. This

should be possible in most proof assistants - if not some rank

or typing argument forbids aggregating elements of different

complexities.

Mathematicians solve our disjointness problem in a some-

what intuitive way:
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Of course F ∩ F [X], and also F ∩ F [X]/<p>,

can be considered non-empty, for if not just rename

elements appropriately.

is their comment, and in fact for every field F there exists

another representation F ′ ∼= F such that F ′ ∩ F ′[X] = ∅. It

would be desirable to eliminate the disjointness condition in

such a way. The comment can be stated as a theorem with F ′

denoting the renamed version of F :

theorem

for F being Field ex F’ being Field

st F’,F are_isomorphic &

F’ /\ (Polynom-Ring F’) = {};

or more general for arbitrary fields

theorem

for F,E being Field ex F’ being Field

st F’,F are_isomorphic & F’ /\ E = {};

These theorems would allow for formalizing Kronecker’s

construction without any condition. To prove them, it would be

necessary to exchange a possibly infinite number of elements

with new ones. The emphasize here is on "new", because one

has to ensure that the adjoined elements are in fact new, that

is appear neither in F nor in F [X] (nor in E). Note also

that the construction of our counterexamples uses precisely

the technique of exchanging elements. So the key of the proof

is the assumption that there is always an infinite stock of new

objects which can be stated as a

theorem

for Y being set

ex Z being infinite set st Y /\ Z = {};

With such a theorem one could construct the required

isomorphic copy F ′ by taking the elements of F ∪ F [X] (or

F ∪E) as Y and then exchanging the elements of F that are in

F ∩F [X] (or in F ∩E) with elements from Z. Note, however,

that one has to keep track of exactly which element of F is

replaced with which element of Z. This is necessary to define

the operations in F ′ appropriately.

We believe that the above theorem follows from Zermelo’s

axioms of set theory, namely the axiom of power set. Car-

rying out these proofs would call for a non-trivial amount

of additional work. Nevertheless it might be helpful when

further developing abstract field theory - and in fact would

give a formalization of Kronecker’s construction as found in

the literature. Again the proofs would make use of basics

of set theory showing that field theory heavily relies on the

(informally used) foundations of mathematics. Therefore the

further development of abstract field theory will remain a

challenge.
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