

Abstract—This paper is devoted to the description of a new

block cipher that will be applicable in the post-quantum era and

will not need a lot of resources. The main advantages:

probabilistic encryption, the cipher block chaining mode, the

ability to transfer to distributed systems. All this combined with

the use of PRNG, working on the Cremona transformations, has

significantly increased the cryptographic strength and increased

the scope of this encryption.

I. INTRODUCTION

IST recommendations for block encryption consist in

increasing the size of the key. We believe that instead of

increasing the key, it is necessary to build completely

probabilistic encryption in such a way that the output file size

would be unpredictable, that is, to make the output file size

unpredictable, even if the key is the same. In addition, it is

necessary to build a pseudo-random number generator that

receives parameters depending on the time, or other

parameters of the computer. To achieve this, the finite rings -

adapted Cremona transformation is used. The case is that this

kind of transformation in real numbers is in use for fractals

constructing.

II. ALGORITHM DESCRIPTION

A. Formulation of the problem

It is necessary to encrypt a block of text B, which has 𝑛

symbols of 𝑏-bit size each with secret key.

B. Key

The key is used to generate matrices and to fill in the tables

of frequencies in Huffman coding. The assumed key size is: 𝑙 = 2 ∗ 𝑏 ∗ 𝑛 (1)

To extract all the necessary data from the key we would use

a PRNG (hereinafter the Generator), which is described in

more detail below.

C. Preparation phase

1) Module Choice

Let us choose a set of prime integers 𝑀1 < 𝑀2 < … <𝑀𝑚 such as: 𝑀 = 𝑀1 ∙ 𝑀2 ∙ … ∙ 𝑀𝑚 ∈ [2𝑏 , 2𝑏+1] (2)

 This work was supported by JetBrains Research

 It is necessary for having unique decomposition any

symbol of 𝑏-bit size in remainders by these numbers [2].

2) Generation of Permutations

To provide nonlinear encryption it is necessary to obtain

permutations for arithmetic operations for each module

from the secret key.

To the module 𝑀𝑖 a permutation is a set of prime integers

of the type: 〈𝑎0, 𝑎1 , 𝑎2 , … , 𝑎𝑀𝑖−1〉, where 𝑎𝑖 ∈ [1,𝑀𝑖 − 1]
and 𝑎𝑖 ≠ 𝑎𝑗, 𝑖 ≠ 𝑗. This set is obtained by Generator by

the induction algorithm [1].

The permutation changes the addition and multiplication

tables for each module [1].

3) Generation of Matrices

 For each module invertible matrices 𝐴1, 𝐴2 , … , 𝐴𝑚 of 𝑛 × 𝑛 size are generated [1].

4) Generation of Huffman Table

In order to increase the cryptographic strength of the

algorithm at one of the stages of encryption, we use the

Huffman algorithm [1], [3], in which the occurrence

frequency for each symbol are obtained by Generator.

This choice may be justified by the fact that the

combination of Huffman coding and insertion of fake

symbols which are described below leads to the changes

in the size and content of the encrypted message at every

other ciphering though the key is not changed. This helps

to resist entropic methods of cracking and known-

plaintext attacks [4].

D. Move-To-Front

In order to add the block chaining mode - the phenomenon

in which changing the block of source text leads changing not

only the corresponding encrypted block, but all following

blocks, the technology Move-To-Front [3] is used.

Let us present the Huffman table in the form of two arrays:

one contains symbols, which are need to be encrypted, a

dictionary, and the other is bit representations. Initially, the

dictionary will be represented as a sequence from 0 to 𝑀𝑚.

The encoding consists of sequentially traversing all the

characters of the encrypted vectors. The symbol is searched

for in the dictionary, and its bit representation is written to the

output stream. After that, the symbol is removed from its

position and inserted into the beginning of the dictionary. The

second array remains unchanged.

N

Probabilistic Block Cipher

Nikita Zbitnev, Dmitry Shishlyannikov, Dmitry Gridin
JetBrains Research, Novosibirsk, Russia

Novosibirsk State University, Novosibirsk, Russia

Email: nikita.zbitnev.a@gmail.com, dmitry.shishlyannikov.a@gmail.com, dmitry.gridin.v@gmail.com

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 603–606

DOI: 10.15439/2018F97

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 603

For decoding it is necessary to do similar actions with

encoded text, in this case the initial state of the dictionary

must be identical to the initial state of the encoding dictionary.

E. Fake Symbols

As mentioned above, the algorithm has a stronger

cryptography if encrypted data look different at every other

ciphering with the same key. We use fake symbols, which

change the look of the encrypted message for this purpose.

Obviously, with a symbol size of 𝑏, the encrypted

characters can not have a value greater than 2𝑏. Also,

according to the Chinese remainder theory, from the

remainders of the division of an integer we can collect a

number which is smaller than the multiplication of all

modules 𝑀 [2]. Then, if a number 𝜆 is added into a block

would satisfy following condition 2𝑏 < 𝜆 < 𝑀 it will be clear

that the number is not a symbol of the source file when the

block is deciphered and collected.

Each time a new block is read, a decision, whether to insert

a fake symbol, made by Generator. The symbol 𝜆 itself is also

obtained by means of the Generator [1].

F. Ciphering

We will choose modules: 𝑀1, … ,𝑀𝑚. Secret key is used to

generate permutations, matrices 𝐴1, 𝐴2, … , 𝐴𝑚 for each

module and a Huffman table. Read the block 𝐵 of size 𝑛 ∗ 𝑏

and ciphered as follows:

1. The block 𝐵 = 𝑞1, 𝑞2, … , 𝑞𝑛 is represented in the

form of a vector �⃗� = (𝑞1𝑞2⋮𝑞𝑛). The coordinates of the

vector is remainders of 𝑀1, … ,𝑀𝑚. We would have

vectors 𝑣1 = (𝑣11𝑣12⋮𝑣1𝑛
) , 𝑣2 = (𝑣21𝑣22⋮𝑣2𝑛

) ,… , 𝑣𝑚 =
(𝑣𝑚1𝑣𝑚2⋮𝑣𝑚𝑛

), where 𝑣𝑖𝑗 = 𝑞𝑗 𝑚𝑜𝑑 𝑀𝑖.
2. Matrices are multiplied by the relevant vectors (in

every module), all operation we do by tables of

multiplication and addition generated previously,

vectors of such form are obtained 𝑣𝑖′ = 𝐴𝑖 ∙ 𝑣𝑖 , (3)

where 𝑖 = 1. . 𝑚.

3. The resulting vectors are recorded a special order in

accordance with the Huffman table. The order is

defined by the sequence of numbers 𝑃 ={𝑝1, 𝑝2, … , 𝑝𝑚}, where 𝑝𝑖 ∈ [1,𝑚] – position of this

module, 𝑝𝑖 ≠ 𝑝𝑗 if 𝑖 ≠ 𝑗. So, the vectors are recorded

as a sequence: 𝑣𝑝1 , 𝑣𝑝2 , … , 𝑣𝑝𝑚.

When moving from block to block, matrices, Huffman

tables and the order of record of the encrypted vectors are

changed. Matrices are changed through string/column

exchange operations or transpositions to save their

invertibility.

The order of record of the encrypted vectors is changed

through the right circular shift of 𝑃 to the right to number

obtained from the Generator.

The Huffman table is modified according to the Move-To-

Front algorithm described above, based on the result of

vectors multiplication.

G. Deciphering

We will choose modules: 𝑀1, … ,𝑀𝑚. Secret key is used

to generate permutations, matrices 𝐴1, 𝐴2, … , 𝐴𝑚 for each

module and a Huffman table. Inverse matrices 𝐴1−1, … ,𝐴𝑚−1,

all operation we do by tables of multiplication and addition

generated previously.

1. We read 𝑚 encrypted vectors 𝑣1′ , … , 𝑣𝑚′ , decoding

each symbol in accordance with the Huffman table

and change the Huffman table according to the MTF

dictionary in the opposite direction.

2. An invertible matrix is multiplied by the relevant

vector, all operation we do by tables of

multiplication and addition generated previously: 𝐴𝑖−1 × 𝑣𝑖′, 𝑖 = 1, … ,𝑚. Result of this operation is

deciphered vectors 𝑣1, … , 𝑣𝑚.

3. According to the Chinese remainder theory the

obtained vectors are collected into the block 𝐵. This

is a deciphered block. If it has a symbol the

numerical value of which is more than 2𝑏, the

symbol is assumed as fake and is thrown out of the

block.

When moving from block to block, the changes in the

reading order and in Huffman tables are done similarly to the

ciphering procedure. In case of invertible matrices, string

permutations are replaced by column permutations.

Transposition remains unchanged.

III. PRNG AND CREMONA TRANSFORMATION

A fairly large part of the encryption job is tied to a pseudo-

random number generator. In order to exclude the possibility

of such an important detail to become a weak point, we

decided to take the Cremona transforms [5], [6] as the basis

of the principle of the generator's operation. The Cremona

transformation is an invertible polynomial mapping from the

vector space 𝑅𝑛 onto itself, which is given by polynomial

functions: ℎ1(𝑥1, 𝑥2, … , 𝑥𝑛), ℎ2(𝑥1, 𝑥2, … , 𝑥𝑛), … ℎ𝑛−1(𝑥1, 𝑥2, … , 𝑥𝑛), ℎ𝑛(𝑥1, 𝑥2, … , 𝑥𝑛);
invertibility means that equations system: ℎ1(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎1, ℎ2(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎2, … (4) ℎ𝑛−1(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎𝑛−1, ℎ𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎𝑛;
is solvable for any right-hand side.

604 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

 We fix some module 𝑚 such that raising to the power 𝑘1, … , 𝑘𝑛 is a one-to-one mapping modulo 𝑚. These degrees

can be the same.

We will introduce the mapping: 𝑝1 = (𝑢1)𝑘1 + 𝑓1(𝑢2, 𝑢3, … , 𝑢𝑛), 𝑝2 = (𝑢2)𝑘2 + 𝑓2(𝑢3, … , 𝑢𝑛), … (5) 𝑝𝑛−1 = (𝑢𝑛−1)𝑘𝑛−1 + 𝑓𝑛−1(𝑢𝑛), 𝑝𝑛 = (𝑢𝑛)𝑘𝑛;
Here 𝑓1(𝑢2, 𝑢3, … , 𝑢𝑛), 𝑓2(𝑢3, … , 𝑢𝑛), …, 𝑓𝑛−1(𝑢𝑛) are

arbitrary polynomials in the indicated variables. We call this

mapping an upper-triangular Cremona mapping and denote

this mapping 𝐅.

The lower-triangular Cremona map is defined similarly.

Let the raising to the power 𝑠1, 𝑠2 , … , 𝑠𝑛 to be a one-to-one

mapping modulo 𝑚. Lower-triangular mapping Cremona: 𝑞1 = (𝑣1)𝑠1 , 𝑞2 = (𝑣2)𝑠2 + 𝑔1(𝑣1), … (6) 𝑞𝑛−1 = (𝑣𝑛−1)𝑠𝑛−1 + 𝑔𝑛−2(𝑣1, 𝑣2, … , 𝑣𝑛−2), 𝑞𝑛 = (𝑣𝑛)𝑠𝑛 + 𝑔𝑛−1(𝑣1, 𝑣2, … , 𝑣𝑛−2, 𝑣𝑛−1);
we will denote this map 𝐆.

It is obvious, that both maps are invertible.

We can take a superposition with linear invertible

mappings that are represented by 𝑛 × 𝑛 matrices, and these

matrices are invertible modulo 𝑚. In addition, we can use

invertible affine mappings that are determined by an

invertible matrix and the vector 𝐰. Let us give a simple

example. Consider the case: 𝑛 = 2, 𝑚 = 11;
Upper-triangular transformation: 𝑝1 = (𝑢1)3 + 2 ∗ (𝑢2)2, 𝑝2 = (𝑢2)5;
Lower-triangular transformation: 𝑞1 = 𝑝1, 𝑞2 = 𝑝2 + (𝑝1)2;
Superposition: 𝑞1 = (𝑢1)3 + 2 ∗ (𝑢2)2, 𝑞2 = (𝑢2)5 + [(𝑢1)3 + 2 ∗ (𝑢2)2]2 = = (𝑢2)5 + (𝑢1)6 + 4 ∗ (𝑢1)3 ∗ (𝑢2)2 + 4 ∗ (𝑢2)4;
Suppose given a matrix 𝐀 = (3 510 2)

Consider the superposition of 𝐆𝐀𝐅. 𝐀𝐅: (3 510 2) ((𝑢1)3 + 2(𝑢2)2(𝑢2)5) = = (3(𝑢1)3 + 6(𝑢2)2 + 5(𝑢2)510(𝑢1)3 + 9(𝑢2)2 + 2(𝑢2)5) 𝐆𝐀𝐅: 3(𝑢1)3 + 6(𝑢2)2 + 5(𝑢2)5 10(𝑢1)3 + 9(𝑢2)2 + 2(𝑢2)5 + +[3(𝑢1)3 + 6(𝑢2)2 + 5(𝑢2)5]2

This composition can be used any number of times, thus

increasing the degree of polynomials. In this case, if the

degrees of the transformations 𝑝𝑖 and 𝑞𝑖 are less than or equal

to 2, then the possibility to restore the initial data will be

preserved. That as a result will make it possible to infinitely

complicate the relationship between the initial data. The best

application of this fact can be found in the generation of

public keys and the exchange of keys.

By increasing the dimensionality of the matrix, we can also

control the length of the resulting vector, which makes the

algorithm easily scalable.

Cremona transformations can be used not only to generate

a sequence of polynomials of any degree, but also to generate

pseudo-random vectors. Consider the following example: 𝑚 = 11, 𝑥 = 𝑢7 + 𝑣4 + 5, 𝑦 = 𝑣5, 𝑝 = 𝑥, 𝑞 = 𝑥2 + 2𝑦, 𝑥1 = 10, 𝑦1 = 8, 𝑥𝑖+1 = 𝑥𝑖7 + 𝑦𝑖4 + 5, 𝑦𝑖+1 = (𝑥𝑖7 + 𝑦𝑖4 + 5)2 + 2 ∗ 𝑦𝑖5; (108); (49); (05); (105); (95); (36); (89); (86); (110); (31); (06); (101); (10); (25); (60); (91); (67); (13); (66); (72); (12); (77); (1010); (17); (52); (99); (103); (42); (01); (27);…

This sequence has a period of about 30 operations, but if

you change the input data and the transformation degree, we

can achieve a lager period. This fact has yet to be explored in

more detail. Since for the generator we do not need the

invertibility of operations, the degrees of the transformations 𝑝 and 𝑞 can be arbitrary. However, the largest period is

observed in powers that can be uniquely inverted for most

field elements.

Generators of this kind will be useful if there will be

necessity for generating a set of numbers for further work, for

example, determining the insertion of fake symbols into a

sequence of blocks at once, and not on each block separately.

IV. CRYPTANALYSIS

A. Probabilistic encryption

The basis of probabilistic encryption in our algorithm is

fake symbols. These symbols can easily be added to the

source text, using any PRNG to determine the character and

its position, and it is also easy to detect them while decrypting.

The algorithm also does not impose any restrictions on the

number of fake characters in one block, which allows you to

change their number depending on our needs. Therefore, on

small texts you can use not only fake symbols, but also the

fake blocks, distributing useful information among random

places of ciphertext.

The number of multipliers, the source text block divided

by, also affects the size of the ciphertext. In combination with

the Huffman table, this fact allows you to fully control the size

of the encrypted text, that means you can both increase the

size of the output text, and reduce.

Thus, the size of the resulting text becomes unpredictable,

which forces the attacker to pick up the initial parameters

before the attack begins, that is completely restore the

algorithm. So, the problem of hacking is a full search of

options. Even on the same source text and the same key, the

DMITRY SHISHLYANNIKOV ET AL.: PROBABILISTIC BLOCK CIPHER 605

ciphertext will be different. This is ensured by the use of a

PRNG, based on some non-persistent parameter, for example,

the time, the processor clock rate. As a source of entropy, any

time-dependent variable will do.

B. Avalanche effect and block chaining mode

If any bit in any block is changed, the entire block changes

on average by 45% after encryption [4]. This property

increases encryption strength, due to the fact that attacks,

based on small changes in the source text, stop working.

Block chaining is provided by changing the Huffman table

for all following blocks, depending on the results of the

encrypted block. So, changing any bit in the block, changes

the result of encryption not only of this block, but of all the

following. Depending on the Huffman table, changes in

subsequent blocks are in range from 40% to 60% and on

average provide good block chaining.

C. Cremona transformations

In the existing version, the Cremona transformation is used

to increase the entropy of the Generator seeds, which allows

use the Generator based on the current time not so often. The

key is sufficient to create a whole set of generators, based on

these transformations, which can be switched during

operation, ensuring the Generator operation unpredictability.

Another option is to generate fake characters at once for a

set of blocks. This way will allow to access to the generator

less often, which will significantly increase the speed of

encryption. Moreover, the fact of working in the fields allows

not to worry about a great increase in the transformations

degrees, which will provide an acceptable generation rate.

V. PERFORMANCE

The sizes of the read character and block are 16 bits and 8

characters respectively. The key is 256 bits. Modules are: 5,

7, 11, 17, 19. Processor: Intel Core i7-4720HQ 2.6 GHz. The

test results for files of different sizes are presented below:

It can be seen that our algorithm loses in speed. This is due

to the fact, that the algorithm is probabilistic and, in fact, a

greater amount of data is encrypted, than is fed to the input.

Also, the current version of the algorithm is just an early

prototype, and we are still working on optimization.

Nevertheless, even now, because of the great flexibility of the

settings, you can achieve a significant speed increase.

VI. CONCLUSION

In this article, a modification of a fully probabilistic cipher

based on the theory of information compression and Cremona

transformation was presented. This modification can be

useful in various areas, since it has a modular structure.

Probabilistic encryption guarantees high cryptographic

strength for any application. In future research, we hope to

optimize this algorithm to make it lightweight, and explore

the application of Cremona transformations more. We hope

that in the near future there will be an increased interest in

probabilistic encryption, so that there is an opportunity to

actively develop this direction and compare this algorithm

with analogues.

ACKNOWLEDGMENT

We greatly thank our scientific director Sergey Krendelev

for support and comments that improved the paper. We would

also like to show our gratitude to the team of key exchange,

under the direction of Sergey Krendelev, for sharing their

ideas with us during the course of this research.

REFERENCES

[1] S Krendelev, N Zbitnev, D Shishlyannikov and D Gridin, “Block cipher

based on modular arithmetic and methods of information compression”
IOP Conf. Series: Journal of Physics: Conf. Series 913 (2017) 012009

https://doi.org/10.1088/1742-6596/913/1/012009

[2] Vinogradov I M “Elements of Number Theory”, 5th ed Kravetz S,
Dover, 1954

[3] Nelson M 1995 “The Data Compression Book”, 2nd Edition IDG

Books Worldwide Inc

[4] Schneier B “Applied Cryptography Second Edition”, John Wiley &

Sons Inc, 1996

[5] S. Cantat “The Cremona group in two variables”, Proceedings of the
sixth European Congress of Math., pp. 211–225, Europ. Math. Soc.,

2013

[6] S. Cantat “The Cremona Groups”, to appear in Proceedings of 2015

Summer Institute on Algebraic Geometry, AMS Proceedings of

Symposia in Pure Mathematics

TABLE I.

TEST RESULTS

Algorithm File Size

(Bytes)

Encrypt time

(s)

Decrypt time

(s)

Encrypt file

size

(Bytes)

Our algorithm 1 048 576

(1 MB)

0.24 – 0.27 0.23 – 0.25 1 726 399 –

1 727 072

AES-256 1 048 576

(1 MB)

0.035 0.068 1 048 576

Our algorithm 104 857 600

(100 MB)

25.12 – 25.96 23.87 – 24.42 172 611 865 –

172 622 351

AES-256 104 857 600

(100 MB)

2.63 5.96 104 857 600

606 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

