
 

 

 

 

 

Abstract—This paper is devoted to the description of a new 

block cipher that will be applicable in the post-quantum era and 

will not need a lot of resources. The main advantages: 

probabilistic encryption, the cipher block chaining mode, the 

ability to transfer to distributed systems. All this combined with 

the use of PRNG, working on the Cremona transformations, has 

significantly increased the cryptographic strength and increased 

the scope of this encryption. 

I. INTRODUCTION 

IST recommendations for block encryption consist in 

increasing the size of the key. We believe that instead of 

increasing the key, it is necessary to build completely 

probabilistic encryption in such a way that the output file size 

would be unpredictable, that is, to make the output file size 

unpredictable, even if the key is the same. In addition, it is 

necessary to build a pseudo-random number generator that 

receives parameters depending on the time, or other 

parameters of the computer. To achieve this, the finite rings -

adapted Cremona transformation is used. The case is that this 

kind of transformation in real numbers is in use for fractals 

constructing. 

II. ALGORITHM DESCRIPTION 

A. Formulation of the problem 

It is necessary to encrypt a block of text B, which has 𝑛 

symbols of 𝑏-bit size each with secret key. 

B. Key 

The key is used to generate matrices and to fill in the tables 

of frequencies in Huffman coding. The assumed key size is: 𝑙 = 2 ∗ 𝑏 ∗ 𝑛                                 (1) 

To extract all the necessary data from the key we would use 

a PRNG (hereinafter the Generator), which is described in 

more detail below. 

C.  Preparation phase 

1) Module Choice 

Let us choose a set of prime integers 𝑀1 < 𝑀2 < … <𝑀𝑚 such as: 𝑀 = 𝑀1 ∙ 𝑀2 ∙  … ∙ 𝑀𝑚 ∈ [2𝑏 , 2𝑏+1]           (2) 
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 It is necessary for having unique decomposition any 

symbol of 𝑏-bit size in remainders by these numbers [2]. 

2) Generation of Permutations 

To provide nonlinear encryption it is necessary to obtain 

permutations for arithmetic operations for each module 

from the secret key.   

To the module 𝑀𝑖 a permutation is a set of prime integers 

of the type: 〈𝑎0, 𝑎1 , 𝑎2 , … , 𝑎𝑀𝑖−1〉, where 𝑎𝑖 ∈ [1,𝑀𝑖 − 1] 
and 𝑎𝑖 ≠ 𝑎𝑗, 𝑖 ≠ 𝑗. This set is obtained by Generator by 

the induction algorithm [1]. 

The permutation changes the addition and multiplication 

tables for each module [1]. 

3) Generation of Matrices 

 For each module invertible matrices 𝐴1, 𝐴2 , … , 𝐴𝑚 of 𝑛 × 𝑛  size are generated [1]. 

4) Generation of Huffman Table 

In order to increase the cryptographic strength of the 

algorithm at one of the stages of encryption, we use the 

Huffman algorithm [1], [3], in which the occurrence 

frequency for each symbol are obtained by Generator. 

This choice may be justified by the fact that the 

combination of Huffman coding and insertion of fake 

symbols which are described below leads to the changes 

in the size and content of the encrypted message at every 

other ciphering though the key is not changed. This helps 

to resist entropic methods of cracking and known-

plaintext attacks [4].  

D. Move-To-Front 

In order to add the block chaining mode - the phenomenon 

in which changing the block of source text leads changing not 

only the corresponding encrypted block, but all following 

blocks, the technology Move-To-Front [3] is used. 

Let us present the Huffman table in the form of two arrays: 

one contains symbols, which are need to be encrypted, a 

dictionary, and the other is bit representations. Initially, the 

dictionary will be represented as a sequence from 0 to 𝑀𝑚. 

The encoding consists of sequentially traversing all the 

characters of the encrypted vectors. The symbol is searched 

for in the dictionary, and its bit representation is written to the 

output stream. After that, the symbol is removed from its 

position and inserted into the beginning of the dictionary. The 

second array remains unchanged. 
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For decoding it is necessary to do similar actions with 

encoded text, in this case the initial state of the dictionary 

must be identical to the initial state of the encoding dictionary. 

E. Fake Symbols 

As mentioned above, the algorithm has a stronger 

cryptography if encrypted data look different at every other 

ciphering with the same key. We use fake symbols, which 

change the look of the encrypted message for this purpose. 

Obviously, with a symbol size of 𝑏, the encrypted 

characters can not have a value greater than 2𝑏. Also, 

according to the Chinese remainder theory, from the 

remainders of the division of an integer we can collect a 

number which is smaller than the multiplication of all 

modules 𝑀 [2]. Then, if a number 𝜆 is added into a block 

would satisfy following condition 2𝑏 < 𝜆 < 𝑀 it will be clear 

that the number is not a symbol of the source file when the 

block is deciphered and collected. 

Each time a new block is read, a decision, whether to insert 

a fake symbol, made by Generator. The symbol 𝜆 itself is also 

obtained by means of the Generator [1]. 

F. Ciphering 

We will choose modules: 𝑀1, … ,𝑀𝑚. Secret key is used to 

generate permutations, matrices 𝐴1, 𝐴2, … , 𝐴𝑚 for each 

module and a Huffman table. Read the block 𝐵 of size 𝑛 ∗ 𝑏 

and ciphered as follows: 

1. The block 𝐵 = 𝑞1, 𝑞2, … , 𝑞𝑛 is represented in the 

form of a vector �⃗� = (𝑞1𝑞2⋮𝑞𝑛). The coordinates of the 

vector is remainders of 𝑀1, … ,𝑀𝑚. We would have 

vectors 𝑣1 = (𝑣11𝑣12⋮𝑣1𝑛
) , 𝑣2 = (𝑣21𝑣22⋮𝑣2𝑛

) ,… , 𝑣𝑚 =
(𝑣𝑚1𝑣𝑚2⋮𝑣𝑚𝑛

), where 𝑣𝑖𝑗 = 𝑞𝑗  𝑚𝑜𝑑 𝑀𝑖. 
2. Matrices are multiplied by the relevant vectors (in 

every module), all operation we do by tables of 

multiplication and addition generated previously, 

vectors of such form are obtained 𝑣𝑖′ = 𝐴𝑖 ∙ 𝑣𝑖 ,                           (3) 

where 𝑖 = 1. . 𝑚. 

3. The resulting vectors are recorded a special order in 

accordance with the Huffman table. The order is 

defined by the sequence of numbers 𝑃 ={𝑝1, 𝑝2, … , 𝑝𝑚}, where 𝑝𝑖 ∈ [1,𝑚] – position of this 

module, 𝑝𝑖 ≠ 𝑝𝑗 if 𝑖 ≠ 𝑗. So, the vectors are recorded 

as a sequence: 𝑣𝑝1 , 𝑣𝑝2 , … , 𝑣𝑝𝑚. 

When moving from block to block, matrices, Huffman 

tables and the order of record of the encrypted vectors are 

changed. Matrices are changed through string/column 

exchange operations or transpositions to save their 

invertibility. 

The order of record of the encrypted vectors is changed 

through the right circular shift of 𝑃 to the right to number  

obtained from the Generator. 

The Huffman table is modified according to the Move-To-

Front algorithm described above, based on the result of 

vectors multiplication. 

G. Deciphering 

We will choose modules: 𝑀1, … ,𝑀𝑚. Secret key is used 

to generate permutations, matrices  𝐴1, 𝐴2, … , 𝐴𝑚 for each 

module and a Huffman table. Inverse matrices 𝐴1−1, … ,𝐴𝑚−1, 

all operation we do by tables of multiplication and addition 

generated previously. 

1. We read 𝑚 encrypted vectors 𝑣1′ , … , 𝑣𝑚′ , decoding 

each symbol in accordance with the Huffman table 

and change the Huffman table according to the MTF 

dictionary in the opposite direction. 

2. An invertible matrix is multiplied by the relevant 

vector, all operation we do by tables of 

multiplication and addition generated previously: 𝐴𝑖−1 × 𝑣𝑖′, 𝑖 = 1, … ,𝑚. Result of this operation is 

deciphered vectors 𝑣1, … , 𝑣𝑚. 

3. According to the Chinese remainder theory the 

obtained vectors are collected into the block 𝐵. This 

is a deciphered block. If it has a symbol the 

numerical value of which is more than 2𝑏, the 

symbol is assumed as fake and is thrown out of the 

block. 

When moving from block to block, the changes in the 

reading order and in Huffman tables are done similarly to the 

ciphering procedure. In case of invertible matrices, string 

permutations are replaced by column permutations. 

Transposition remains unchanged. 

III. PRNG AND CREMONA TRANSFORMATION 

A fairly large part of the encryption job is tied to a pseudo-

random number generator. In order to exclude the possibility 

of such an important detail to become a weak point, we 

decided to take the Cremona transforms [5], [6] as the basis 

of the principle of the generator's operation. The Cremona 

transformation is an invertible polynomial mapping from the 

vector space 𝑅𝑛 onto itself, which is given by polynomial 

functions: ℎ1(𝑥1, 𝑥2, … , 𝑥𝑛), ℎ2(𝑥1, 𝑥2, … , 𝑥𝑛), … ℎ𝑛−1(𝑥1, 𝑥2, … , 𝑥𝑛), ℎ𝑛(𝑥1, 𝑥2, … , 𝑥𝑛); 
invertibility means that equations system: ℎ1(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎1, ℎ2(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎2, …                                           (4) ℎ𝑛−1(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎𝑛−1, ℎ𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎𝑛; 
is solvable for any right-hand side. 
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 We fix some module 𝑚 such that raising to the power 𝑘1, … , 𝑘𝑛 is a one-to-one mapping modulo 𝑚. These degrees 

can be the same. 

We will introduce the mapping: 𝑝1 = (𝑢1)𝑘1 + 𝑓1(𝑢2, 𝑢3, … , 𝑢𝑛), 𝑝2 = (𝑢2)𝑘2 + 𝑓2(𝑢3, … , 𝑢𝑛), …                                           (5) 𝑝𝑛−1 = (𝑢𝑛−1)𝑘𝑛−1 + 𝑓𝑛−1(𝑢𝑛), 𝑝𝑛 = (𝑢𝑛)𝑘𝑛; 
Here 𝑓1(𝑢2, 𝑢3, … , 𝑢𝑛), 𝑓2(𝑢3, … , 𝑢𝑛), …, 𝑓𝑛−1(𝑢𝑛) are 

arbitrary polynomials in the indicated variables. We call this 

mapping an upper-triangular Cremona mapping and denote 

this mapping 𝐅. 

The lower-triangular Cremona map is defined similarly. 

Let the raising to the power 𝑠1, 𝑠2 , … , 𝑠𝑛 to be a one-to-one 

mapping modulo 𝑚. Lower-triangular mapping Cremona: 𝑞1 = (𝑣1)𝑠1 , 𝑞2 = (𝑣2)𝑠2 + 𝑔1(𝑣1), …                                           (6) 𝑞𝑛−1 = (𝑣𝑛−1)𝑠𝑛−1 + 𝑔𝑛−2(𝑣1, 𝑣2, … , 𝑣𝑛−2), 𝑞𝑛 = (𝑣𝑛)𝑠𝑛 + 𝑔𝑛−1(𝑣1, 𝑣2, … , 𝑣𝑛−2, 𝑣𝑛−1); 
we will denote this map 𝐆. 

It is obvious, that both maps are invertible. 

We can take a superposition with linear invertible 

mappings that are represented by 𝑛 × 𝑛 matrices, and these 

matrices are invertible modulo 𝑚. In addition, we can use 

invertible affine mappings that are determined by an 

invertible matrix and the vector 𝐰. Let us give a simple 

example. Consider the case: 𝑛 = 2, 𝑚 = 11; 
Upper-triangular transformation: 𝑝1 = (𝑢1)3 + 2 ∗ (𝑢2)2, 𝑝2 = (𝑢2)5; 
Lower-triangular transformation: 𝑞1 = 𝑝1, 𝑞2 = 𝑝2 + (𝑝1)2; 
Superposition: 𝑞1 = (𝑢1)3 + 2 ∗ (𝑢2)2, 𝑞2 = (𝑢2)5 + [(𝑢1)3 + 2 ∗ (𝑢2)2]2 = = (𝑢2)5 + (𝑢1)6 + 4 ∗ (𝑢1)3 ∗ (𝑢2)2 + 4 ∗ (𝑢2)4; 
Suppose given a matrix 𝐀 = ( 3 510 2) 

Consider the superposition of 𝐆𝐀𝐅. 𝐀𝐅: ( 3 510 2) ((𝑢1)3 + 2(𝑢2)2(𝑢2)5 ) = = ( 3(𝑢1)3 + 6(𝑢2)2 + 5(𝑢2)510(𝑢1)3 + 9(𝑢2)2 + 2(𝑢2)5) 𝐆𝐀𝐅: 3(𝑢1)3 + 6(𝑢2)2 + 5(𝑢2)5 10(𝑢1)3 + 9(𝑢2)2 + 2(𝑢2)5 + +[3(𝑢1)3 + 6(𝑢2)2 + 5(𝑢2)5]2 

This composition can be used any number of times, thus 

increasing the degree of polynomials. In this case, if the 

degrees of the transformations 𝑝𝑖 and 𝑞𝑖 are less than or equal 

to 2, then the possibility to restore the initial data will be 

preserved. That as a result will make it possible to infinitely 

complicate the relationship between the initial data. The best 

application of this fact can be found in the generation of 

public keys and the exchange of keys. 

By increasing the dimensionality of the matrix, we can also 

control the length of the resulting vector, which makes the 

algorithm easily scalable. 

Cremona transformations can be used not only to generate 

a sequence of polynomials of any degree, but also to generate 

pseudo-random vectors. Consider the following example: 𝑚 =  11, 𝑥 = 𝑢7 + 𝑣4 + 5, 𝑦 = 𝑣5, 𝑝 = 𝑥, 𝑞 =  𝑥2 + 2𝑦, 𝑥1 = 10, 𝑦1 = 8, 𝑥𝑖+1 = 𝑥𝑖7 + 𝑦𝑖4 + 5, 𝑦𝑖+1 = (𝑥𝑖7 + 𝑦𝑖4 + 5)2 + 2 ∗ 𝑦𝑖5; (108 ); (49); (05); (105 ); (95); (36); (89); (86); ( 110); (31); (06); (101 ); (10); (25); (60); (91); (67); (13); (66); (72); (12); (77); (1010); (17); (52); (99); (103 ); (42); (01); (27);… 

This sequence has a period of about 30 operations, but if 

you change the input data and the transformation degree, we 

can achieve a lager period. This fact has yet to be explored in 

more detail. Since for the generator we do not need the 

invertibility of operations, the degrees of the transformations 𝑝 and 𝑞 can be arbitrary. However, the largest period is 

observed in powers that can be uniquely inverted for most 

field elements. 

Generators of this kind will be useful if there will be 

necessity for generating a set of numbers for further work, for 

example, determining the insertion of fake symbols into a 

sequence of blocks at once, and not on each block separately. 

IV. CRYPTANALYSIS 

A. Probabilistic encryption 

The basis of probabilistic encryption in our algorithm is 

fake symbols. These symbols can easily be added to the 

source text, using any PRNG to determine the character and 

its position, and it is also easy to detect them while decrypting. 

The algorithm also does not impose any restrictions on the 

number of fake characters in one block, which allows you to 

change their number depending on our needs. Therefore, on 

small texts you can use not only fake symbols, but also the 

fake blocks, distributing useful information among random 

places of ciphertext. 

The number of multipliers, the source text block divided 

by, also affects the size of the ciphertext. In combination with 

the Huffman table, this fact allows you to fully control the size 

of the encrypted text, that means you can both increase the 

size of the output text, and reduce. 

Thus, the size of the resulting text becomes unpredictable, 

which forces the attacker to pick up the initial parameters 

before the attack begins, that is completely restore the 

algorithm. So, the problem of hacking is a full search of 

options. Even on the same source text and the same key, the 
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ciphertext will be different. This is ensured by the use of a 

PRNG, based on some non-persistent parameter, for example, 

the time, the processor clock rate. As a source of entropy, any 

time-dependent variable will do. 

B. Avalanche effect and block chaining mode 

If any bit in any block is changed, the entire block changes 

on average by 45% after encryption [4]. This property 

increases encryption strength, due to the fact that attacks, 

based on small changes in the source text, stop working. 

Block chaining is provided by changing the Huffman table 

for all following blocks, depending on the results of the 

encrypted block. So, changing any bit in the block, changes 

the result of encryption not only of this block, but of all the 

following. Depending on the Huffman table, changes in 

subsequent blocks are in range from 40% to 60% and on 

average provide good block chaining. 

C. Cremona transformations 

In the existing version, the Cremona transformation is used 

to increase the entropy of the Generator seeds, which allows 

use the Generator based on the current time not so often. The 

key is sufficient to create a whole set of generators, based on 

these transformations, which can be switched during 

operation, ensuring the Generator operation unpredictability. 

Another option is to generate fake characters at once for a 

set of blocks. This way will allow to access to the generator 

less often, which will significantly increase the speed of 

encryption. Moreover, the fact of working in the fields allows 

not to worry about a great increase in the transformations 

degrees, which will provide an acceptable generation rate. 

V.    PERFORMANCE 

The sizes of the read character and block are 16 bits and 8 

characters respectively. The key is 256 bits. Modules are: 5, 

7, 11, 17, 19. Processor: Intel Core i7-4720HQ 2.6 GHz. The 

test results for files of different sizes are presented below: 

It can be seen that our algorithm loses in speed. This is due 

to the fact, that the algorithm is probabilistic and, in fact, a 

greater amount of data is encrypted, than is fed to the input. 

Also, the current version of the algorithm is just an early 

prototype, and we are still working on optimization. 

Nevertheless, even now, because of the great flexibility of the 

settings, you can achieve a significant speed increase. 

VI. CONCLUSION 

In this article, a modification of a fully probabilistic cipher 

based on the theory of information compression and Cremona 

transformation was presented. This modification can be 

useful in various areas, since it has a modular structure. 

Probabilistic encryption guarantees high cryptographic 

strength for any application. In future research, we hope to 

optimize this algorithm to make it lightweight, and explore 

the application of Cremona transformations more. We hope 

that in the near future there will be an increased interest in 

probabilistic encryption, so that there is an opportunity to 

actively develop this direction and compare this algorithm 

with analogues. 

ACKNOWLEDGMENT 

We greatly thank our scientific director Sergey Krendelev 

for support and comments that improved the paper. We would 

also like to show our gratitude to the team of key exchange, 

under the direction of Sergey Krendelev, for sharing their 

ideas with us during the course of this research. 

REFERENCES 

[1] S Krendelev, N Zbitnev, D Shishlyannikov and D Gridin, “Block cipher 

based on modular arithmetic and methods of information compression” 
IOP Conf. Series: Journal of Physics: Conf. Series 913 (2017) 012009 

https://doi.org/10.1088/1742-6596/913/1/012009  

[2] Vinogradov I M “Elements of Number Theory”, 5th ed Kravetz S, 
Dover, 1954 

[3] Nelson M 1995 “The Data Compression Book”, 2nd Edition IDG 

Books Worldwide Inc 

[4] Schneier B “Applied Cryptography Second Edition”, John Wiley & 

Sons Inc, 1996 

[5] S. Cantat “The Cremona group in two variables”, Proceedings of the 
sixth European Congress of Math., pp. 211–225, Europ. Math. Soc., 

2013 

[6] S. Cantat “The Cremona Groups”, to appear in Proceedings of 2015 

Summer Institute on Algebraic Geometry, AMS Proceedings of 

Symposia in Pure Mathematics 

TABLE I. 

TEST RESULTS 

Algorithm File Size 

(Bytes) 

Encrypt time 

(s) 

Decrypt time 

(s) 

Encrypt file 

size 

(Bytes) 

Our algorithm 1 048 576 

(1 MB) 

0.24 – 0.27 0.23 – 0.25 1 726 399 – 

1 727 072 

AES-256 1 048 576 

(1 MB) 

0.035 0.068 1 048 576 

Our algorithm 104 857 600 

(100 MB) 

25.12 – 25.96 23.87 – 24.42 172 611 865 – 

172 622 351 

AES-256 104 857 600 

(100 MB) 

2.63 5.96 104 857 600 
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