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Abstract—In recent years, research has been conducted aimed
at finding alternative asymmetric systems other than traditional
systems such as RSA (Rivest–Shamir–Adleman algorithm) and
ECC (Elliptic-curve cryptography). One of the most promising
is code-based cryptosystems since their security is based on
well-known NP-hard problems. Especially, the most interesting
cryptosystem is system proposed by Misoczki et al. based on
QC-MDPC codes which use the modified BitFlip algorithm as the
decoding algorithm. This work presents a comparison of different
variants of MDPC decoding algorithms and their impact on the
cryptosystem. We present a complete analysis of modification of
this algorithm and new results of the likelihood of correct word
decoding for security systems which ensure security level 2

128

and 2
256.

I. INTRODUCTION

A
SYMMETRIC cryptography is one of the most important

cryptographic mechanism currently in use. It provides

a number of options such as secure cryptographic keys ex-

changing over a public channel, digital signature and secure

messaging. Most of those systems are based on number the-

ory’s problems, such as factorization of a large number (RSA)

and the discrete logarithms in an elliptic curve. an important

limitation of the indicated security systems is the fact that

using Shor’s algorithm [10] can solve these problems on the

quantum computer so it means that they are not safe in the

long-term security.

If a large-scale quantum computer is built for, that algorithm

will become one of the most useful tools in cryptoanalysis,

especially in public key cryptography. Nowadays there is

a lot of interest in alternative systems that are not based

on numerical problems. From that reason, NIST has initiated

a process to solicit, evaluate, and standardize one or more

quantum-resistant public-key cryptographic algorithms.

Promising alternative is code-based crypto algorithms those

security is based on the General Decoding Problem were

extensively studied for their usage in small and embedded

systems. The first cryptosystems relying on coding theory

was proposed by J.R. McEliece in 1978 [8]. It uses binary

Goppa codes as a basis for the construction. This system

presents many advantages: it is very fast for both encryption

and decryption and the best-known attacks are exponential

in the length of the code. Although it has proved resistance

against all known attacks, it has one big flaw: the size of the

public key. The public key size for the original parameters that

provide security 280 proposed by McEliece has 67072 bytes,

against 256 bytes of a 1024-bit modulus instance of RSA.

In order to reduce key sizes, several alternative ap-

proaches for code-based cryptography were proposed. One

idea to shorten key is to use codes with particular struc-

tures.Unfortunately, most of the modifications of the code

structure result in the cryptosystem sensitivity to the so-called

structural attacks. Such attacks aim to exploit the hidden

structure, in order to recover the private key.

Another idea is to replace the binary Goppa codes with

another linear code which generates matrix rolled represen-

tation and has no vulnerability to structural attacks. One of

the promising algorithms was proposed by Misoczki et al. [9]

They proposed to modify the McEliece cryptosystem by using

a quasi-cyclic Moderate Parity Check (QC-MDPC). They

achieve a very fast cryptosystem with a relatively small public

key size (about 4801 b with secure level 280), lightweight

implementation and still preserving the security properties

of the cryptosystem. Unfortunately, in 2016 a very powerful

attack was shown. The attack can recover a secret key for

a system with security 280 using a chosen ciphertext attack

[4]. It means that this system is impractical for the encryption

scheme, but still can be used as secure Key Encapsulation

Mechanism.

The next section will present the motivation for the research.

In the third section basic definitions and necessary statements

will be presented. In the 4th section, the McEliece algorithm

based on the QC-MDPC codes will be presented and in

the fifth section, the decoding algorithms will be presented.

Section 6 contains a description of the assumptions during

the research. Section 7 contains the obtained results and their

analysis. The 8th section contains a summary of completed

research.

II. MOTIVATION

The McEliece system based on QC-MDPC codes is a very

interesting contribution because it has a very good perfor-

mance on embedded systems and limited resources. MDPC

code extends the concept a low-density parity-check (LDPC)

codes [3] by using the parity check matrix with moderated

sparse. Unfortunately, this leads to a significantly degraded

error correction performance. However, in cryptography, We
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are not interested in correcting a large number of errors, but

only the number ensuring an adequate level of security.

The probabilistic decoding algorithm used in the cryptosys-

tem is known as the modified bit flipping algorithm. During

the last few years this probabilistic aspect was very intensively

examined by community [1], [7]. The results of this research

increased error-correcting capability for the tested systems for

security 280. The quality of the solution was measured by the

decoding failure rate and the number of iterations required to

decrypt the message.

In the submission for the NIST standardization project,

an IND-CPA1 secure ephemeral Key Encapsulation Mecha-

nism (KEM) based on the Quasi-Cyclic Moderate Density

Parity-Check (QC-MDPC) McEliece encryption knows as QC-

MDPC KEM was presented. In this work, we investigated sev-

eral ways to efficiently decode erroneous MDPC codewords,

especially for such codes as were proposed for the McEliece

cryptosystem with security 2128 and 2256. Additionally, we

have proposed and evaluated a new way of choosing the

parameter b for systems with security 2256. This optimiza-

tion leads to reduced decoding failure probability and fewer

decoding iterations.

III. PRELIMINARIES

In order to unify the notations and definitions, we will

present a few definitions of the necessary concepts. All con-

siderations will be conducted on finite field F2

The Hamming weight (or simply weight) of vector x ∈ Fn

2

is the number of nonzero components denoted as wt(x)
A binary (n, r)-linear code C of length n and dimension

r is an r-dimensional vector subspace of Fn

2 . It is spanned

by the rows of a matrix G ∈ Fr×n

2 , called a generator matrix

of C. Also, it is the kernel of a matrix H ∈ F (n−r)×n

2 called

a parity-check matrix of C. The codeword c ∈ Cn of a vector

m ∈ Fr

2 is c = mG. The syndrome s ∈ Fn−r

2 of a vector

ǫ ∈ Fn

2 is s = HeT

An (n, r)-linear code is a quasi-cyclic code (QC) if there

is some integer n0 such that every cyclic shift of a codeword

by n0 places is again a codeword. Additionally when n = n0p
for some integer p, it is possible to have generator and parity

check matrices composed by p× p circulant blocks which are

completely described by their first row (or column).

An (n, r, w)-LDPC or MDPC code is a linear code of length

n, dimension r which admits a parity-check matrix of constant

row weight w. LDPC and MDPC codes differ in the magnitude

of the row weight w. We assume for MDPC codes row weight

whose scale is O(
√
n log n). On the other hand, the constant

row weight is usually less than 10 for LDPC.

A. MDPC and QC-MDPC code

An random (n, r, w)-MDPC code is easily generated by

selecting a random parity-check matrix H ∈ Fr×n

2 of row

weight w. We only have to check that the rightmost r × r
block is full rank. If not, wecan swap a few columns to get

1Indistinguishability under chosen-plaintext attack

a full rank matrix. The general definition of MDPC codes can

be found in [9]. For the purpose of this article, construction

using n0 = 2 will be discussed.

The (n, r, w)–QC-MDPC codes where n = 2p and r = p.

So then the parity check matrix has the form

H = [H0|H1]

where Hi is a r×r circulant block. To define the parity-check

matrix H we pick up a random first row of weight w and the

other r− 1 rows are obtained from r− 1 quasi-cyclic shift of

this first row.

A generator matrix G in the row reduced echelon form can

be easily derived from the Hi’s blocks. Assuming that the

block H1 is non-singular (which particularly implies row hi

of matrix H1 has wt(hi) odd) we construct a generator-matrix

G =
[

I
∣

∣

∣

(

H−1
1 ·H0

)T
]

IV. QC-MDPC MCELIECE VARIANT

In order to define a McEliece variant based on t-error

correcting (n, r, w)–QC-MDPC code we need to fix some

MDPC decoding algorithm equipped with the knowledge of H

(denoted as ΨH ). Encryption, decryption and key generation

for the QC-MDPC McEliece variant cryptosystem are defined

as follows.

Key Generation. The key Generation procedure consists of

two steps. First we generate a parity-check matrix H ∈ Fr×n

2

of a t-error-correcting(r, r, w)–QC-MDPC code by choosing

the first row of the parity-check matrix. The second step is to

generate the corresponding generator matrix G ∈ Fr×n

2 in the

row reduced echelon form.

The public-key of this system is the tuple (G, t) and the

private-key is matrix H.

Encryption. In order to encrypt message m ∈ Fr

2 we need

to generate random vector ǫ ∈ Fn

2 of wt(ǫ) ≤ t and compute

x← mG+ ǫ

where x ∈ Fn

2 is a ciphertext.

Decryption. To decrypt x ∈ Fn

2 into m ∈ Fr

2 we compute

mG← ΨH(x)

If the generated matrix G is in the row reduced echelon form,

we extract the message m from the first r position of mG.

A. Security and Parameter Selection

Theoretical security of the QC-MDPC McElice cryptosys-

tem has been presented [9]. In particular, an analysis of the

safety and impact a quasi-cyclic structure on the security was

presented. Recently, new attacks on system using those codes

have been proposed. The most important is very powerful

attack using a quasi-cyclic form of the parity check matrix [4].

The attack leverages the fact that there is some probability,

termed the Decoding Failure Rate (DFR), that the decoding

may fail to compute the errors.

Parameters for the examined systems are based on analyzes

carried out in the work [11]. The suggested parameters are

presented in Table I. The tests have been carried out using

these values.
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Table I
SUGGESTED PARAMETER SETS FOR CLASSIC SECURITY AND QUANTUM SECURITY [11]

System Classical security Quantum Security n r w t Public Key size

McEliece 80 58 9602 4801 90 84 4801

McEliece 128 86 19714 9857 142 134 9857

McEliece 256 154 65542 32771 274 264 32771

V. DECODING ALGORITHMS

Decoding in the McEliece cryptosystem is a more complex

operation than encryption. For lightweight embedded systems,

the best solution seems to be the variant of the Gallager’s bit

flipping algorithm [3], dedicated to the LDPC code. Positive

aspects of this solution are its simplicity and lack of floating-

point arithmetic. On the other hand, the disadvantage of this

solution is that we find the codeword with some probability

determined by threshold b, which will be later discussed.

The algorithm works as follows. At each iteration, the

number of unsatisfied parity-check equations associated to

each bit of the message is computed. Each bit associated

with more than b unsatisfied equations is flipped and the

syndrome is recomputed. This process is repeated until either

the syndrome becomes zero or after a maximum number of

iteration is reached. We name this algorithm Algorithm 1.

The algorithm has complexity O(nwI), where I stands

for the average number of iterations. The most important

difference from the algorithm proposed by Gallager is how

threshold b is determined. The first proposition was to precom-

pute thresholds for each iteration i. The threshold is set as the

maximum number of unsatisfied parity-check equations b =
max(σi). In [9] the authors suggest to use b = max(σi)− δ,

for some small δ (suggested in [9] is δ ≈ 5). In [7] the

authors propose incrementing the precomputed thresholds by

∆ = 1 and in the case of a decoding failure increase it

to ∆ = ∆ + 1. Decoding is restarted with the adapted ∆
until reaching a predefined ∆max = 5. The survey of this

optimalization is included in Table II

A. Effective implementation

Code-based systems allow lightweight and effective imple-

mentations in devices with limited hardware resources and all

operations are much less complex when compared to the other

post-quantum systems.

Encryption involved simple operations such as vector-matrix

multiplication followed by an addition.

Decoding is a more complex operation, but it is possible

to reduce the cost of this operation by some improvements.

In [7] they propose to improve the syndrome computation.

They observe that if i-the bit of ciphertext is flipped, the new

syndrome is equal to the old syndrome accumulated with row

hi of the parity check matrix. The authors suggest updating

the syndrome directed after flipped i-th bit. This modified

algorithm is presented as algorithm 2.

Key generation is a very simple operation, as it mainly

uses a pseudorandom generator. In this paper, we do not

investigate selecting pseudorandom generators appropriate for

Algorithm 2 Modified Gallager’s bit flipping algorithm

Input: x ∈ Fn

2

Require: H ∈Mn

r
, rmax ∈ Z+

Output: m ∈ C lub error
s← xHT

2: for r ∈ {0, . . . , rmax−1} do

for i ∈ {0, . . . , n− 1} do

4: σi ← 〈s, hi〉 ∈ Z *

if σi ≥ b then

6: xi ← xi ⊕ 1 **

s = s⊕ hi

8: end if

end for

10: if s = 0r then

return x
12: end if

end for

14: return error
* 〈·, ·〉 – means scalar product of two vectors,

hi – means i-th column of matrix H

** xi – means i-th position in vector x

the code-based systems. Some research focused on software

implementations in this area is presented in [2].

VI. EXPERIMENTAL SETUP

In this work we focus on the parameter selection of decod-

ing algorithms for the proposed McEliece systems based on

QC-MDPC codes and corresponding to other security levels

according to the Table II a total 10000 random decoding trials

were evaluated on a computer equipped with an Intel Core i7

2670QM running at 2.20 GHz.

The research was conducted to investigate the impact of

choosing the parameter value of the Decoding Failure Rate

(DFR) and to examine the number of rounds needed for correct

decryption of the ciphertext. The generation of plaintext and

error pattern was based on a uniform distribution.

As part of the study, particular attention was paid to decod-

ing algorithms that use the maximum value of the coefficient

sigmai to calculate the b parameter. In this work the results

for the following algorithms will be presented: Decoder:

Decoder A Algorithm 1, threshold b value chose using

Misoczki method,

Decoder B Algorithm 2, threshold b value chose using

Misoczki method,

Decoder C Algorithm 2 with method choosing threshold

b proposed in this work with increment δ by two (starting

from 5 to 9) every two iterations,
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Table II
PROPOSED METHOD OF CHOOSING THRESHOLD b

Proposed by Year Method Comments

1 Galager [3] 1962 bi − const, i ∈ {1, . . . , r} bi ∈< 28, 26, 24, 22, 20 >

2 Huffman and Pless [6] 2010 b = #max #max means the maximal value σi

3 Misoczki [9] 2013 b = #max− δ Decrement δ from 5 to 0 for every incorrect decoding

4 Heyse [5] 2013 b = bi + δ Decrement δ from 5 to 0 for every incorrect decoding

5 This paper 2018 b = #max− δ Increment δ every two iterations by two starting from 5 to 9

6 This paper 2018 b = #max− δ similarly to the Misoczki proposal, only the starting point is different for
each level of security, starting from 5 to 7 respectively

Decoder D Algorithm 2 with method choosing threshold

b proposed in this work similar to the Misoczki proposal,

only the starting point is different for each level of

security, starting from 5 to 7 respectively.

The method proposed by Huffman and Pless is a special case

of the method proposed by Misoczki et al. and, therefore, it

will not be considered in the study. [7]

VII. RESULTS

In the beginning, we focused on the analysis of the average

distribution of σi coefficients depending on the chosen security

level. The graph for these values is presented in Figure 1. The

average distribution of the parameter σi represents the first

distribution before any coding algorithm is used. As can be

seen, the values of the parameter σi for systems with security

280 and 2128 are similar to each other while for the 2256

security system, the average values σi are much higher and

more intense.

These are the first symptoms that the decoding parameter δ
for the safest system will need to be modified. An interesting

relationship is that if we take the average distribution for σi for

the files corresponding to the word correctly decoded, we can

say that it is different depending on the choice of the decoding

algorithm. an example of a distribution for the system with

security level 2128 is shown in Figure 2. The given property

can be used to distinguish, which decoding algorithm was

used.

The Decode Failure Rates for the tested algorithms are listed

in Table III for all levels of security considered in the table I.

Figure 1. The average distribution of σi coefficients depending on the chosen
security level.

Figure 2. The average distribution of σi coefficients depending on the chosen
decoding algorithm.

Analysing the results obtained for the Decoder A, which was

proposed in the original work, it can be seen that for higher

security levels it is not useful. Especially for the level 256,

wherein any of the examined cases, the message was properly

decoded.

Comparing the two decoders from literature (Decoder a and

Decoder B), in Decoder B provides much better decoding

failure rate for higher security. However, it still has too high

DFR to be practically used. Our proposition to change the δ
value for higher security level has a very strong impact on the

decoding failure rate. In addition, our solution led to a smaller

average number of decoding iterations, respectively 13% and

26% less.

Comparing decoders B, C, D we can see that the decod-

ing failure rate and the number of decoding iterations are

not strongly correlated. The improvement of the DFR level

does not always result in an improvement in the number of

decoding iterations. If we properly manipulate the parameters

of decoding algorithm, we can get properties adapted to the

specific application.

Additionally, as part of the study, the decoding failure rate

was analyzed depending on the distribution of words with the

desired Hamming weight. The test assumes that the codewords

have the Hamming weight equal to r/2. It was noted that the

DFR, as well as the number of rounds, increased slightly.
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Table III
EVALUATION OF THE PERFORMANCE AND ERROR CORRECTION CAPABILITY OF THE TESTED ALGORITHMS. NOTE, A DFR OF 0 MEANS THAT NO

DECODING ERROR OCCURRED DURING OUR EVALUATIONS BUT THE DECODERS ARE STILL PROBABILISTIC.

Name
80 128 256
DFR Round Number DFR Round Number DFR Round Number

Decoder A 0.00000* 6.30000 0.21400 9.65600 1.00000 –

Decoder B 0.00000* 3.02850 0.00499 6.31087 0.16400 8.69617

Decoder C 0.01600 3.98831 0.07304 5.45662 0,00300 6,72700

Decoder D 0,00000* 3.02850 0.00440 5.54209 0,00000* 6.87500

VIII. CONCLUSIONS

In this work, we examined various variants of the decoding

algorithm depending on the choice of the threshold. Addition-

ally, we presented the method of selecting the threshold for

codes used in high-security levels systems.

Additionally, as part of the work, an analysis of the possi-

bility of improving the bit-flipping algorithm in applications

to MDPC codes was presented.

An interesting fact is that if we use algorithms with

a relatively high DFR coefficient, we can distinguish these

algorithms based on the analysis of histograms discussed in

Section VII. However, it should be noted that when using

low-DFR decoding algorithms, the corollary analysis does not

apply.

In the light of the achieved results, it can be concluded

that the modified Bit Flipping algorithm can be successfully

applied to various types of key encapsulation mechanism

based on QC-MDPC codes. Especially, for the QC-MDPC-

KEM algorithm reported to a process to solicit, evaluate,

and standardize one or more quantum-resistant public-key

cryptographic algorithms organized by NIST.

In further work I will focus on compare and analysis of

other algorithms for decoding QC-MDPC codes, in particular

the "One-round Bit Flipping" algorithm and their use in the

KEM QC-MDPC system.
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