Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 18

Proceedings of the 2019 Federated Conference on Computer Science and Information Systems

Tool-assisted Surrogate Selection for Simulation Models in Energy Systems

, , , ,

DOI: http://dx.doi.org/10.15439/2019F242

Citation: Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 18, pages 185192 ()

Full text

Abstract. Surrogate models have proved to be a suitable replacement for complex simulation models in various applications. Runtime considerations, complexity reduction and privacy concerns play a role in the decision to use a surrogate model. The choice of an appropriate surrogate model though is often tedious and largely dependent on the individual model properties. A tool can help to facilitate this process. To this end, we present a surrogate modeling process supporting tool that simplifies the process of generation and application of surrogate models in a co-simulation framework. We evaluate the tool in our application context, energy system co-simulation, and apply it to different simulation models from that domain with a focus on decentralized energy units.

References

  1. M. Blank, T. Breithaupt, J. Bremer, A. Dammasch, S. Garske, T. Klingenberg, S. Koch, O. Lünsdorf, A. Niesse, S. Scherfke, L. Hofmann, and M. Sonnenschein, Smart Nord Final Report. Uni Hannover, 4 2015, pp. 21–30.
  2. M. Blank, M. Gandor, A. Niesse, S. Scherfke, S. Lehnhoff, and M. Sonnenschein, “Regionally-specific scenarios for smart grid simulations,” in 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG2015). IEEE, 5 2015, pp. 250–256. [Online]. Available: http://dx.doi.org/10.1109/PowerEng.2015.7266328
  3. J. P. Kleijnen, Design and Analysis of Simulation Experiments. Springer International Publishing, 2015. [Online]. Available: https://doi.org/10.1007%2F978-3-319-18087-8
  4. R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, 2016.
  5. A. I. J. Forrester, A. Sóbester, and A. Keane, Engineering Design via Surrogate Modelling - A Practical Guide. Wiley, 2008.
  6. T. Simpson, J. Poplinski, P. N. Koch, and J. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Engineering with Computers, vol. 17, no. 2, pp. 129–150, jul 2001. [Online]. Available: https://doi.org/10.1007%2Fpl00007198
  7. D. Gorissen, I. Couckuyt, E. Laermans, and T. Dhaene, “Multiobjective global surrogate modeling, dealing with the 5-percent problem,” Engineering with Computers, vol. 26, no. 1, pp. 81–98, aug 2009. [Online]. Available: https://doi.org/10.1007%2Fs00366-009-0138-1
  8. A. Mehmani, S. Chowdhury, C. Meinrenken, and A. Messac, “Concurrent surrogate model selection (COSMOS): optimizing model type, kernel function, and hyper-parameters,” Structural and Multidisciplinary Optimization, vol. 57, no. 3, pp. 1093–1114, sep 2017. [Online]. Available: https://doi.org/10.1007%2Fs00158-017-1797-y
  9. I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2016. [Online]. Available: https://doi.org/10.1016%2Fb978-0-12-804291-5.00024-6
  10. S. Koziel, S. Ogurtsov, and L. Leifsson, Surrogate-Based Modeling and Optimization. Springer New York, 2013. [Online]. Available: https://doi.org/10.1007/978-1-4614-7551-4
  11. R. Pinto, R. J. Bessa, and M. A. Matos, “Surrogate model of multiperiod flexibility from a home energy management system,” CoRR, abs/1703.08825, 2017.
  12. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [Online]. Available: http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
  13. K. Siebertz, D. van Bebber, and T. Hochkirchen, Statistische Versuchsplanung - Design of Experiments (DoE). Springer, 2017. [Online]. Available: https://doi.org/10.1007/978-3-662-55743-3
  14. C. Lemieux, Monte carlo and quasi-monte carlo sampling. Springer Science & Business Media, 2009. [Online]. Available: https://doi.org/10.1007/978-0-387-78165-5
  15. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2009.
  16. L. Yang, S. Liu, S. Tsoka, and L. G. Papageorgiou, “Mathematical programming for piecewise linear regression analysis,” Expert systems with applications, vol. 44, pp. 156–167, 2016.
  17. W. Ertel, Grundkurs Künstliche Intelligenz - Eine praxisorientierte Einführung. Springer Vieweg, 2013. [Online]. Available: https://doi.org/10.1007/978-3-658-13549-2
  18. L. Samaniego and K. Schulz, “Supervised classification of agricultural land cover using a modified k-NN technique (MNN) and landsat remote sensing imagery,” Remote Sensing, vol. 1, no. 4, pp. 875–895, nov 2009. [Online]. Available: https://doi.org/10.3390%2Frs1040875
  19. G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning. Springer, 2013, vol. 112.
  20. C. Cui, M. Hu, J. D. Weir, and T. Wu, “A recommendation system for meta-modeling: A meta-learning based approach,” Expert Systems with Applications, vol. 46, pp. 33–44, mar 2016. [Online]. Available: https://doi.org/10.1016%2Fj.eswa.2015.10.021
  21. K. Markov and T. Matsui, “Music genre and emotion recognition using gaussian processes,” IEEE Access, vol. 2, pp. 688–697, 2014. [Online]. Available: https://doi.org/10.1109/ACCESS.2014.2333095
  22. C. Hultquist, G. Chen, and K. Zhao, “A comparison of gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests,” Remote Sensing Letters, vol. 5, no. 8, pp. 723–732, aug 2014. [Online]. Available: https://doi.org/10.1080%2F2150704x.2014.963733
  23. J. V. Tu, “Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes,” Journal of Clinical Epidemiology, vol. 49, no. 11, pp. 1225–1231, nov 1996. [Online]. Available: https://doi.org/10.1016%2Fs0895-4356%2896%2900002-9