
Towards semantic-rich word embeddings

Grzegorz Beringer, Mateusz Jabłoński, Piotr Januszewski,

Andrzej Sobecki, Julian Szymański

Faculty of Electronic Telecommunications and Informatics

Gdańsk University of Technology, Gdańsk, Poland

Email: julian.szymanski@eti.pg.edu.pl

Abstract—In recent years, word embeddings have been shown
to improve the performance in NLP tasks such as syntactic
parsing or sentiment analysis. While useful, they are problematic
in representing ambiguous words with multiple meanings, since
they keep a single representation for each word in the vocabulary.
Constructing separate embeddings for meanings of ambiguous
words could be useful for solving the Word Sense Disambiguation
(WSD) task.

In this work, we present how a word embeddings average-
based method can be used to produce semantic-rich meaning
embeddings. We also open-source a WSD dataset that was created
for the purpose of evaluating methods presented in this research.

I. INTRODUCTION

Word embedding methods, that map the vocabulary words to

low-dimensional continuous space, have been widely applied

to various natural language processing (NLP) problems. They

are commonly used as the input representation of words,

replacing high-dimensional one-hot encodings, and have been

shown to improve the performance in tasks such as syntactic

parsing[1] and sentiment analysis[2].

In word embedding methods, such as word2vec[3] or

GloVe[4], each word in the vocabulary has exactly one repre-

sentation. While it is enough for most words, it is problematic

for ambiguous words, which can contain more than one

meaning. For example, consider the following examples with

the word tree, extracted from Wikipedia articles:

(a) The olive, known by the botanical name Olea europaea,

meaning "European olive", is a species of small tree in the

family Oleaceae [...]

(b) Many theories of syntax and grammar illustrate sentence

structure using phrase trees, which provide schematics of how

the words in a sentence are grouped and relate to each other.

(c) Upon completion of listing all files and directories found,

tree returns the total number of files and directories listed.

All three sentences mention the word tree (or trees), but the

meaning differs based on context - (a) means tree as a forest

plant, (b) tree as a parse tree, (c) tree as a command in Unix

systems.

For many applications, such as improving relevance of

search engines, anaphora resolution or coherence, identifying

which meaning is used, based on context, is important. This

task is called Word Sense Disambiguation (WSD) and is an

open problem in NLP domain. Word embeddings cannot be

applied to WSD out-of-the-box, since they cannot differentiate

between multiple meanings of an ambiguous word.

In this work, we propose a method to create semantically

rich embeddings for each keyword (ambiguous word together

with meaning, e.g. tree (structure), pool (computer science)),

by averaging embeddings of the ambiguous word and words

describing its meaning. We evaluate this approach on a WSD

task, gathered from Wikipedia articles (III). Finally, we discuss

our results and propose future work (V-A).

II. RELATED WORK

There have been many methods of creating semantically

meaningful word representations. Global matrix factorization

methods, such as latent semantic analysis (LSA)[5], use matrix

factorization to perform dimensionality reduction on a large

term-frequency matrix, that captures statistical information

about the corpus. As the result, we receive word and document

embeddings, which are parametrized by the number of topics

we want to extract from the documents, and which can be used

to find similarities between different words and documents.

Other approach to creating word embeddings is to take only

local context into account, without using global statistics. Ex-

ample of this is word2vec[3], where a shallow neural network

is trained to either predict context words based on the current

word (skig-gram), or predict current word based on context

words (continuous bag-of-words). Continuous representations

of words are then extracted from the hidden layer of the trained

network. FastText[6] improves upon skip-gram method, by

representing each word as a bag of character n-grams, which

provides more flexibility and has an added benefit of the ability

to compute word representations for words unseen during

training.

Global Vectors (GloVe)[4] combine both global matrix

factorization and local context window methods, by training

word vectors on co-occurence matrix, so that their differences

predict co-occurence ratios.

Word embeddings can be also extracted from a trained lan-

guage model[7]. Recently, methods like ELMo[8] or BERT[9]

were shown to achieve great results in many NLP tasks.

They produce deep contextualized word embeddings by using

internal states of a trained language model pretrained on large

corpus of text. Since models used are bidirectional (LSTM

for ELMo, Transformer for BERT), the word embedding is

conditioned on its left and right context, achieving flexible

vector representations that could be used to disambiguate

words.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 273–276

DOI: 10.15439/2019F120

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 273



Iacobacci et al.[10] were the first to try to use word

embeddings for Word Sense Disambiguation. They consider

four different strategies for integrating a pre-trained word

embeddings as context representation in a supervised WSD

system: concatenation, average, fractional and exponential

decay of the vectors of the words surrounding a target word.

Peters et al.[11] create word representations that differ from

traditional word embeddings in that each token is assigned a

representation that is a function of the entire input sentence.

They use vectors derived from a bidirectional LSTM that is

trained with a coupled language model objective on a large

text corpus.

The most usual baseline for WSD task is the Most Frequent

Sense[12] (MFS) heuristic, which selects for each target word

the most frequent sense in the training data. Recent growth of

sequence learning techniques using artificial neural networks

contributed to WSD research: Raganato et al.[13] propose a

series of end-to-end neural architectures directly tailored to the

task, from bidirectional Long Short-Term Memory (LSTM) to

encoder-decoder models. Melamud et al.[14] also use bidirec-

tional LSTM it their work. They use large plain text corpora

to learn a neural model that embeds entire sentential contexts

and target words in the same low-dimensional space, which

is optimized to reflect inter-dependencies between targets and

their entire sentential context as a whole.

III. DATASET

For the purpose of constructing semantic-rich word embed-

dings, we manually gathered usage examples for 6 ambiguous

words, 4 to 7 meanings each (28 meanings in total). Am-

biguous word together with its meaning constitues a keyword,

which we use as a separate class when identyfing the closest

meaning given some context.

We chose ambiguous words based on the number and

variety of meanings it had. Meanings themselves were chosen

to cover a range of topics (e.g. tree (forest), tree (family),

trees (folk band), tree (command)). We also tried to look for

meanings that are semantically related and can occur in similar

context (and in turn be difficult for the model to differentiate

between), e.g. tree (structure), tree (parse), tree (decision) or

nails (new wave band), nails (hardcore punk band). Lastly,

we added some keywords, that we suspected to be really

underrepresented in the word embedding of the ambiguous

word, e.g. Mars as the pop singer Bruno Mars (mars (bruno

singer)) or pool as the computer science term (pool (computer

science)).

Usage examples for keywords were gathered mostly from

Wikipedia, using What links here utility, which lists all

Wikipedia pages that link to a specific article. We used these

links to search for usages of our keywords in context. We

found that What links here utility has some limitations. Many

articles linked to the keyword do not use that keyword in text

at all or just list it in "See also" section, which does not provide

good context around the keyword for the model to improve on.

Moreover, some keywords do not have enough usage examples

that can be found on Wikipedia alone. In such cases, other

websites were used to find proper usage examples.

The dataset is split into training and test set, with 5 training

and 10 test examples for each keyword. Each example is stored

in plain text, with the ambiguous word marked with "*" on

both sides. For simplicity, only one word is marked in each

text, even if more ambiguous word usages can be found. In

case we wanted to mark another word in the same text, we

could just add the same example twice, with different words

marked each time.

The correct keyword for each example, together with a path

to file and a link, where the original text was taken from,

are stored in CSV files: train.csv for training set, test.csv for

test set (columns: path,keyword,link). Keywords themselves,

together with links to their Wikipedia articles, are stored in

keywords.csv.

Dataset, together with the code to execute experiments from

this paper, can be found on our GitHub repository1.

IV. OUR METHOD

Keyword is a sequence of words that is composed of the

ambigous word and words describing its specific meaning, e.g.

tree (forest) that represents tree as a plant (ambiguous word:

tree, meaning: forest) and tree (structure) which represents tree

as a mathematical structure (ambiguous word: tree, meaning:

structure).

To get the embedding of the keyword, we average embed-

dings of all the words in the keyword:

k = e(w1, w2, ..., wN ) =
1

N

N∑

i=1

e(wi) (1)

where e(·) is the embedding function used and

w1, w2, ..., wN is a sequence of N words that, in this

case, constitutes a keyword.

Example for keyword tree (forest):

ktree(forest) = e(tree, forest) =
e(tree) + e(forest)

2
(2)

Context is a sequence of words, extracted from some text,

which contains an ambiguous word and words surrounding it

in text. It is parametrized by context length l, which specifies

how many words from both sides of the ambiguous word are

taken into consideration.

Context embedding c is also achieved by taking an average

of word embeddings (Equation 1). In this case, N = 2l + 1
and w1, w2, ..., wN is the context with ambiguous word inside.

For some cases N < 2l + 1, since the ambiguous word may

occur at the beginning or end of text example and full context

cannot be collected. In this case, we just average the reduced

context.

The approach is to use keyword and context embeddings

to find the closest keyword given some context, using cosine

distance as a similarity metric.

1https://github.com/gberinger/automatic-wiki-links

274 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Table I
RESULTS ACHIEVED ON THE TEST SET FOR OUR METHOD. COSINE

DISTANCE IS MEASURED BETWEEN THE CORRECT KEYWORD AND

CONTEXT EMBEDDINGS.

Metric Our Model

Top-1 accuracy 67%

Top-2 accuracy 85%

Top-3 accuracy 93%

In other words, given an input text and marked ambiguous

word within, we extract the context and compute its embed-

ding c. The keyword, whose embedding is closest to c w.r.t.

cosine distance, is chosen as the ambiguous word’s meaning.

V. RESULTS OF THE EXPERIMENTS

In our experiments we evaluate how semantic-rich keyword

embeddings, perform for the dataset we collected (III), for

the our approach. We use a pretrained embedding model from

spaCy - en_vectors_web_lg, which contains 300-dimensional

word vectors trained on Common Crawl with GloVe2.

We compare results on the test set with top-k metrics

(k ∈ 1, 2, 3), where we check, if the correct keyword is in

closest k keywords given a specific context describe it. We

focus mostly on top-1 accuracy, since we are interested if the

word is correctly disambiguated.

Due to the high impact of training data order on test results,

we take the average score of 30 runs (each with a random

order of training data) for each optimization experiment. We

evaluate the performance of the proposed model with different

context lengths, to see how it affects top-k accuracies (Fig. 1).

We can see, that the model does relatively well. Top-3

accuracy is about 85-90%, which is probably caused by a low

number of meanings for each ambiguous word. Top-1 accuracy

for shorter context lengths can go as high as 65% but decreases

with longer contexts. As suspected (V-A), this is most likely

due to the fact, that the average of many word embeddings may

make some contexts similar to each other, therefore making it

harder to distinguish between some meanings.

The best result w.r.t. top-1 accuracy was achieved with l =
3, which is why we choose this context length as a starting

point for next experiments.

Performance on the test set can be seen in Table I. All

metrics improved due to the optimization process of moving

correct keywords closer to (and incorrect keywords away

from) contexts found in the training set. High top-2 and

top-3 accuracies suggest, that the correct keyword is usually

relatively close to the context describing it.

It is important to note, that the performance might worsen, if

we expand the keyword vocabulary to large-scale experiments,

where we have much more possible keywords than 28.

A. Discussion and future work

We are aware that our method has some limitations. First

of all, it may be impossible to achieve the optimal solution, as

we can only optimize keyword embeddings, leaving context

2https://spacy.io/models/en#section-en_vectors_web_lg

embeddings fixed in the multidimensional space. Therefore,

it is possible that contexts for specific keyword overlap on

contexts for other keyword.

Secondly, the average context embedding may be ambigu-

ous, with a high possibility of two different context being

mapped to a similar point in space, especially for longer

context lengths. In future work we plan to experiment with

different sequence embedding techniques, that might be better

suited for this purpose than a flat average.

Finally, we run experiments for a very small number of

ambiguous words and meanings. Our method could have

problems with a bigger dataset, since it would be much more

difficult to separate different keywords.

Constructing semantic-rich embeddings for ambiguous

words, by taking the average of embeddings of the ambiguous

word and words describing its meaning, and then comparing

it with the average embedding of context words describing

given keyword, proved to be a surprisingly good approach for

the task of disambiguation on the dataset of 28 keywords we

collected (III). Our method achieved 67% top-1, 85% top-2

and 93% top-3 accuracy for context length l = 3. Longer

context lengths were shown to decrease the accuracy, since

the average of many word embeddings may result in similar

embeddings for different contexts.

Further improvements could be sought by using different

keyword and context embedding schemes, e.g. weighted aver-

age or by using some sentence embedding method. Optimiza-

tion method itself could be made more stable by applying

decay to alpha and beta parameters and by using a validation

set for early stopping. It could also be bound to cosine distance

between the keyword and context - the bigger the difference,

the bigger the update.

It would also be interesting to see, how the suggested

approach for constructing semantic-rich embeddings would

perform on a large-scale dataset. Such a dataset could be

automatically collected from Wikipedia, using disambiguation

pages to find ambiguous words and their meanings, and What

links here utility, to find usage examples for each keyword.

We assume, that the performance of the our model (and thus

the quality of keyword embeddings) can be improved, if we

provide examples of contexts that the specific keyword appears

in. This can be reached by moving keyword embeddings

closer to embeddings of contexts they appear in, so for each

training example, the correct keyword embedding is shift by a

given factor, in the direction of the context embedding, which

describes said keyword. Further optimizations can be done,

by moving top-k closest keywords that are incorrect given the

same context.

VI. ACKNOWLEDGEMENTS

The work has been partially supported by funds of Fac-

ulty of Electronics, Telecommunications and Informatics of

Gdańsk University of Technology.

REFERENCES

[1] R. Socher, J. Bauer, C. D. Manning, and N. Andrew Y., “Parsing with
compositional vector grammars,” in Proceedings of the 51st Annual

GRZEGORZ BERINGER ET AL.: TOWARDS SEMANTIC-RICH WORD EMBEDDINGS 275



Figure 1. Top-k accuracies of the our model with different context lengths.

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). Association for Computational Linguistics, 2013, pp.
455–465. [Online]. Available: http://aclweb.org/anthology/P13-1045

[2] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng,
and C. Potts, “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2013, pp. 1631–1642. [Online]. Available:
http://aclweb.org/anthology/D13-1170

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.
[Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1301.
html#abs-1301-3781

[4] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in In EMNLP, 2014.

[5] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” JOURNAL OF

THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, vol. 41,
no. 6, pp. 391–407, 1990.

[6] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” arXiv preprint arXiv:1607.04606,
2016.

[7] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” J. Mach. Learn. Res., vol. 3, pp.
1137–1155, Mar. 2003. [Online]. Available: http://dl.acm.org/citation.
cfm?id=944919.944966

[8] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” feb
2018. [Online]. Available: http://arxiv.org/abs/1802.05365

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding,” oct
2018. [Online]. Available: http://arxiv.org/abs/1810.04805

[10] I. Iacobacci, M. T. Pilehvar, and R. Navigli, “Embeddings for word sense
disambiguation: An evaluation study,” in Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). Association for Computational Linguistics, 2016, pp.
897–907. [Online]. Available: http://aclweb.org/anthology/P16-1085

[11] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,”
in Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers). Association for
Computational Linguistics, 2018, pp. 2227–2237. [Online]. Available:
http://aclweb.org/anthology/N18-1202

[12] A. Raganato, J. Camacho-Collados, and R. Navigli, “Word sense
disambiguation: A unified evaluation framework and empirical
comparison,” in Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 1,

Long Papers. Association for Computational Linguistics, 2017, pp.
99–110. [Online]. Available: http://aclweb.org/anthology/E17-1010

[13] A. Raganato, C. Delli Bovi, and R. Navigli, “Neural sequence learning
models for word sense disambiguation,” in Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2017, pp. 1156–1167.
[Online]. Available: http://aclweb.org/anthology/D17-1120

[14] O. Melamud, J. Goldberger, and I. Dagan, “context2vec: Learning
generic context embedding with bidirectional lstm,” in Proceedings of

The 20th SIGNLL Conference on Computational Natural Language

Learning. Association for Computational Linguistics, 2016, pp. 51–61.
[Online]. Available: http://aclweb.org/anthology/K16-1006

276 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019


