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Abstract—Knowledge represented in the semantic network,
especially in the Semantic Web, can be expressed in attributive
language AL. Expressions of this language are interpreted in
different theories of information granules: set theory, probability
theory, possible data sets in the evidence systems, shadowed sets,
fuzzy sets or rough sets. In order to unify the interpretations of
expressions for different theories, it is assumed that expressions
of the AL language can be interpreted in a chosen relational
system called a granule system. In this paper, it is proposed to
use information granule database and it is also demonstrated that
this database can be induced by the measurement system of the
adequacy of information retrieval, called a perceptual system. It
can simplify previous formal description of the information gran-
ule system significantly. This paper also shows some examples of
inducing rough and fuzzy granule databases by some perceptual
systems.

I. INTRODUCTION

I
T IS intuitively assumed that conceiving of information,

represented by descriptions of something, is to discern,

distinguish, and indentify this thing. Conceiving of informa-

tion about an object is preceded by the perception of the

description of this object. The perception consists of a degree

of compliance between certain information resources about

the object and precisely determined knowledge represented

in the set of object descriptions called the thesaurus [9],

[24]. Thus, object perception determines the weight, rank,

and importance of object descriptions representing information

about this object. This also applies to sources of information

about objects, pointing to these objects, called in the computer

science entities, i.e. such signs of these objects, which are

different from their descriptions. Each such reference is called

the information granule [24], [25] and its instance is called

data about the object that this information is concerned with.

The description of the information granule indicates what this

information is about. In the Web, any description, and thus

the description of the information granule, has the address of

information in the memory of computers connected to this

network. This address indicates the sign for human of what

the information relates to, including a specific description of

the object. These are, for example, natural language expres-

sions describing these objects, data representative about these

objects, their image or their sound characteristics. Granules are

grouped into granule systems in which granular calculations

are made, i.e. the information about objects is interpreted. For

well-established knowledge, granules are data sets. When, for

knowledge representation, incorrect classification of objects

is used, i.e. knowledge about them is probable, uncertain,

unclear, or vogue, then information granules can not be

described by abstract data sets. In such situation, to determine

the information granules it is proposed to use the following

nonstandard formalisms of the set theory [22]: interval analysis

[14], fuzzy sets [29], [30], [31], rough sets [15], [16], [17],

[18], [19] and shadowed sets [20], [21], [22]. In the papers

mentioned above, as well as in other papers on granular calcu-

lations, there is a lack of uniform methods of using abstraction

in order to interpret the expressions of the attributive language

AL in the information granule theories.

It should be noted that in computer science, from the

beginning of its existence, abstraction has been used to reduce

the complexity of the problem and achieve greater trans-

parency [27]. The elementary form of abstraction introduces a

distinction between the level of a concrete (instance, instance

of data) and its type. With abstraction, the class type of similar

concretes can be specified. The lowest level of abstraction is

one that does not require skipping (abstaining from) significant

differences between objects. The abstraction model is an

abstract set of data about objects, described in the terminology

of the set theory in the Cantor sense. At present, the sets are

understood as such abstractions in which the formal language

of the Zermelo-Frenkel ZF set theory can be interpreted, e.g.

sets of decidable data strings in the alternative Vopenka theory

of sets [28], such as: extended sets [3] and multi sets [2]. For

these sets, formal axiomatic set theories have been built, i.e.

precise descriptions of these sets.

For any abstraction there is a relational structure called a

granule system. In this system defines: the set of the universe

elements of this structure, the atomic sets determined by the

universe elements (singletons), relationships like membership

of elements to sets, sets conclusion, sets equality. Furthermore,

any set is a sum of atomic sets and analogously to standard

one, all operations on sets are specified. In any granule system,

the ZF set theory language is interpreted. However, not all

axioms (except from the axioms of the granule system) and

not all ZF theorems must be met in this system. The granule

system, at a higher level of abstraction, specifies knowledge

that is inaccurate, uncertain or unclear at a lower level of

abstraction. For fifty years, for fuzzy sets, no such system has
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been defined and no formal theory has been built. In 1981,

Pawlak [15] described the approximated set at a higher level

of abstraction as an abstract class of the relation of the equal

approximation of sets and proposed to build an axiomatic

rough set theory. A solution to this problem is proposed in

the Bryniarski’s papers [10], [11].

Recently, the information retrieval IR in the semantic net-

work, especially in the Semantic Web, usually means looking

for a reliable source of this information. So far, information

retrieval systems and information interpretations have only

indicated semantically the nearest, described in the thesaurus,

sources of searched information. However, this is not always

the case. Often, when searching for information about an

object in a language deviating from the thesaurus, uncertain,

unclear or inaccurate knowledge is obtained. Nevertheless,

this uncertainty may lead to the unequivocal establishment of

sources of knowledge about this object, i.e. precise knowledge.

In this way, compliance with the description of the object

model is obtained (compatibility with the thesaurus). The

situation described above is called the information disam-

biguation paradox of information retrieval [5].

Searching information in the Semantic Web is to find data

copies which are:

• one-argument values of attributes – data representing

knowledge about some features or types of objects,

• two-argument values of attributes – data representing

knowledge about some properties of objects or relations

between two objects..

In first case, data are called concepts, and in the second

one they are called roles. To describe concepts and roles,

the Description Logic (DL) language [1], [4] is used. The

DL language describing concepts and roles can be extended

to some formulas of the first order logic. In the extended

language, a thesaurus is created, which describes model

concepts and roles, while the ontology is a language which

describes searched concepts and roles. For the searched data

described in the ontology and the recommendations (criteria

and knowledge) of experts, there may be a certain degree

of compliance of these data with the data described in the

thesaurus. This is the assessment of the compatibility of data

with the thesaurus accepted by experts. The conceiving rule

determining the paradox of accuracy appearing here is called

the residuum rule [5].

This paper presents a perception model of descriptions

representing information in semantic networks. In this model,

accepted methods to the description perceptions are used, in

order to use the residuum rule. It is the perception of refer-

ences information resources about the object to the degree of

compliance of this information with the precisely determined

knowledge represented in the set of object descriptions called

the thesaurus. Such perceptual system for descriptions will be

called the residuum system.

The model of information granule systems represented in

semantic networks was formulated at the syntactic and seman-

tic level in the papers [7], [9]. Continuing this research, only

the method of inducing information granules by the residuum

system will be presented in this paper.

In this paper firstly is presented the semantic network

and the perception in the residuum systems in this network.

Further is definition of the information granule database and

its extension to the information granule system. The perceptual

system defined by the information granule database is novel in

this paper. At the end there are two examples of such system

– rough and fuzzy one.

II. THE SEMANTIC NETWORK

The semantic network, or the Semantic Web, most com-

monly is considered to be a graph schema of knowledge rep-

resentation. It can be identified with an ordered, indexed graph.

In the semantic network the vertices and edges are described

by some attributes: one or two-argument. In this paper, a more

general graphical scheme of knowledge representation is given

in which edges can have more than two vertices [7], [8], [9].

Definition 2.1: The semantic network is a system:

SN = 〈U,AS,DS〉, (1)

where:

• U – is a finite set of individual names, object names of

represented knowledge (in the Semantic Web it is a set

of names which have the Web address). Elements of U
are called vertices of the semantic network.

• DS is a family of nonempty sets of vertices descriptions,

and also certain systems of these vertices, called edges.

The number n is the largest number of vertices in edges.

Let card(U) = n and Ugen = U ∪ U2 ∪ ... ∪ Un. Then:

AS ⊆ DS × Ugen, (2)

Elements of the set AS are called assertions. AS includes

all vertices U :

U = {x : exists (dsk, (x1, ...xi..., xk)) ∈ AS, x = xi} (3)

When ds ∈ DS, then exists a set X(ds) ⊆ Ugen, such that:

{ds} ×X(ds) = ({ds} × Ugen) ∩AS. (4)

Such set and its any subset X is called a subject X with

description ds (shortly: subject), and pair 〈ds,X〉 is called

a conceiving subject of description ds. The subject X with

description ds will be identified with the conceiving subject

〈ds,X〉 of description ds.

For example, let the conceiving subject of description ds be

〈ds,X〉, where R is k-th argument relation such that:

{ds} ×R = ({ds} × Uk) ∩X(ds). (5)

The set X(ds) is a relation or sum of relations R defined as

above for any number of arguments. About subject X(ds), it

is said that, it is a maximum subject of the description ds, and

about the description ds, that it is an instance of the subject

X ⊆ X(ds).
SN is called full, if sum of all such sets is equal Ugen.
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Any element of Ugen is called an instance of the SN, and

when this element belongs to some subject X with some

description, it is called an instance occurrence in the SN

network.

Sets {ds} × X(ds) = ({ds} × Ugen) ∩ AS are called

attributes of subjects X ⊆ X(ds) with descriptions ds, and

these descriptions will be identified with the instance of this

attribute. The family of all such subjects X(ds) is denoted by

C0. This set is sometimes a division of Ugen set. The elements

of X(ds) are called an instance occurrence of attribute ds,

and elements of AS are assertions. The following notary

agreement is accepted:

For attribute ds the instance occurrence set about this

attribute is denoted as:

• ||ds|| =df X(ds).
• the assertion occurrence (ds, u) ∈ AS, is denoted as u :

ds, eg. instead of ’6 < 9’ it will be written ’(6, 9) :<’.

One-argument relations will be called concepts, and at least

two-argument relations will be called roles, i.e. concepts and

roles are subjects of conceiving certain descriptions.

Due to the fact that for any X subject, uniquely designated

by the attribute {ds}×X , the description ds corresponds only

to one relationship R ⊆ X, {ds}×R = ({ds}×Uk)∩X with a

given number k of arguments. Therefore, in the further part of

this paper, with a fixed number of arguments of these relations,

concepts and roles will be identified with the corresponding

descriptions.

Occurrences of instances with some attribute, occurrence

of attributes, subjects with this attribute, concepts, roles and

assertions are described in attributive language AL. Basic

syntax and semantic of AL language are formulated in the

paper [1], and the generalized construction of this language is

presented in papers [4], [5], [6], [7], [8], [9].

For example, a role sonhood connecting a person named

John with a person named Simon, who is his father, leads to

assertion: 〈sonhood, John, Simon〉, what can be denoted as:

sonhood(John, Simon) or (John,Simon): sonhood.

To join the concept sonhood with the time current

year, we need two assertions 〈sonhood, John, Simon〉 and

〈sonhood, current_year〉, what can be written as a set of de-

scriptions {(John,Simon):sonhood, (current_year):sonhood}.

An assertion which is expressed in a sentence Eva

sits between John and Simon can be denoted as:

sit_between(Eva,John, Simon) or (Eva, John, Simon):

sit_between. Roles which are functions, in terms of the

last component, are called operations, for example in the

assertion drive_to (John, New York).

It is significant to notice that in a triple (Eva, John, Simon)

the cyclic inverse of names can be used, and then the following

triple is created: (John, Simon, Eva), which is also an instance

of some role. This new assertion can be expressed in a sentence

John and Simon sit next to Eva and can be denoted as:

(John, Simon, Eva): sit_nextto. The role sit_nextto is cyclically

inverse to the role sit_between.

When a triple (Eva, John, Simon), which is an oc-

currence of an assertion sit_ between, is reduced by

the first component, then a pair (John, Simon) is also

an instance of some assertion, for example expressed in

a sentence: someone sits between John and Simon –

(John, Simon) : someone_sits_between. This role is called

a reduction of a role sit_between.

Distinguished by experts subsystem of SN is denoted as

SN+ in which concepts and roles are considered to be

accurate – experts have confidence in this knowledge. SN+ =
〈U+, AS+, DS+〉 is called a confidence range for the SN. In

the confidence range is U+
gen = U+∪(U+)2∪...∪(U+)n. The

set SNtez = DS+ ∪ SN+

inst of all attribute descriptions and

instances of these attributes in the SN+ is called a thesaurus

of the semantic network SN [8], [9].

III. DESCRIPTION PERCEPTION IN THE RESIDUUM

SYSTEMS

In this paper, some aspects of the perceptual proximity

theory are used in the context of the proximity of knowledge

searched in the semantic Web to the adequate knowledge

represented in the thesaurus. A certain view of nearness

perception is accepted, combining the basic understanding of

perception in psychophysics with the view of the perception

described in the Merleau-Ponty paper [13]. This means that the

perception of nearness of knowledge about reality to adequate

knowledge – and as a result to human knowledge about objects

– depends on the signals of sensors, i.e. signals of the senses

or measuring systems [12].

But it is known that these signals from measuring sys-

tems are received by our senses, and then, as descriptions

of objects, are analyzed in the mind. In this approach, our

senses are compared to the sampling function. They mimic

the impressions describing the features on the numerical values

recognized by the mind. Human sensors (senses) collect data

samples and measure the physical characteristics of objects in

our environment. The physical properties of the object that

are read are described and identified with the features of the

object. It is our mind that identifies the relations between the

values of the features of the object, creating the perception of

the detected objects [13]. Object perception is a measure of the

adequacy of the information resource that defines this object.

As it was written earlier, such a measurement of the adequacy

of the information resource will be hereinafter referred to

as a granule of information. In this sense, by searching for

information about certain objects in the Semantic Web, the

perception of object descriptions and descriptions representing

information about these objects are made. In this way a certain

set of information granules is obtained [8], [9].

Thus, the definition of algorithms for granular calculations

should begin with the definition that is a part of the definition

of the perceptual system.

A. The residuum system

Definition 3.1: The system

SP = 〈SP , •P ,→P , 0P , 1P 〉 (6)
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is a residuum system, where a set SP is called the

set of perception values, and it includes two different ele-

ments 0P , 1P , called values of truth and false. An operation

•P : SP × SP → SP is called the operation of perception

combination, an operation →P : SP × SP → SP is called the

operation of perception residuum.

Operations of the residuum system satisfy following condi-

tions (for any z ∈ SP ):

if z 6= 0P , then (0P →P z) = 1P , (z →P 0P ) = 0P . (7)

In addition, there is such an operation
∑

P : ℘(SP ) →
SP , ℘(SP ) = {X : X ⊆ SP }, called the generalized

combination of perception, such that for any x ∈ SP and

for any nonempty disjoint sets A,B ⊆ SP :
∑

P
∅ = 0P , (8)

∑
P
{x} = x, (9)

∑
P
(A ∪B) =

∑
P
(A) •P

∑
P
(B), (10)

Hence, for any x, y ∈ SP :
∑

P
{x, y} = (x •P y). (11)

A differentiated operation (.d) : SP → SP , such that

(0P )
d = 1P and (1P )

d = 0P , (xd)d = x, is called the dual

value operation in the system SP, such that if x, y ∈ SP and

x < y, then yd < xd.

• If (z →P z) = 1P , then the residuum operation is called

the t-residuum.

• If (z →P z) = 0P , then the residuum operation is called

the s-residuum.

With the above definitions results:

Fact 3.1: Perception combination is a commutative and

associative operation.

Let in the residuum system SP = 〈SP , •P ,→P , 0P , 1P 〉,
for the operation (.d) of dual value in the system SP, exist

such operation
∑

P ′ : ℘(SP ) → SP , that (for any x ∈ SP and

A,B ⊆ SP ):
∑

P ′

∅ = 0P , (12)

∑
P ′

{x} = x, (13)

∑
P ′

(A ∪B) = (
∑

P ′

(A)d •P
∑

P ′

(B)d)d, (14)

Then, for any numbers x, y ∈ SP it is assumed that:

x •P ′ y =df (xd •P yd)d, (15)

for any nonempty, disjoint sets A,B ⊆ SP :
∑

P ′

(A ∪B) =
∑

P ′

(A) •P ′

∑
P ′

(B). (16)

Let x →P ′ y =df (xd →P yd)d.

If z 6= 0P ′ , then (0P →P ′ z) = 1P , (z →P ′ 0P ) = 0P .

Therefore:

Fact 3.2: The algebra system SP′ = 〈SP , •P ′ ,→P ′ ,
0P , 1P 〉 is the residuum system.

Definition 3.2: The residuum system

SP′ = 〈SP , •P ′ ,→P ′ , 0P , 1P 〉 is called the dual system

for the SP system.

Fact 3.3: The operation →P ′ in the residuum system SP

is the s-residuum operation.

B. T-norm and s-norm systems in the partially ordered set

Theorem 3.1: The algebra system St = 〈L, •t,→t, 0L, 1L〉,
is called the t-norm system in the set L partially ordered

by the relation ≤, in which any subset has infimum and

supremum, where 0L = inf L, and 1L = supL. It is the

residuum system, if the operation •t : L × L → L, called

the t-norm in the L, satisfies following conditions (for any

numbers w, x, y, z ∈ L):

• boundary conditions

0L •t y = 0L, y •t 1L = y (17)

• uniform value increase, monotonicity

x •t y ≤ z •t y, when x ≤ z (18)

• uniform value limitation

w ≤ x •t y ≤ z, when w ≤ x ≤ z or w ≤ y ≤ z (19)

• commutativity

x •t y = y •t x (20)

• associativity

x •t (y •t z) = (x •t y) •t z (21)

• and

exist x →t y = sup{t ∈ L : x •t t ≤ y}. (22)

Such described operation →t: L × L → L is the t-residuum

in the set L.

Let operation d : L → L be an operation of the dual values

in the St system, then the system Ss = 〈L, •s,→s, 0L, 1L〉 is

defined as follows (for any numbers x, y ∈ L):

x •s y = (xd •t y
d)d, (23)

x →s y = (xd →t y
d)d, (24)

Then:

Theorem 3.2: In the system Ss = 〈L, •s,→s, 0L, 1L〉, the

following conditions are satisfied (for any numbers w, x, y, z ∈
L):

• boundary conditions

0L •s y = y, y •s 1L = 1L (25)

• uniform value increase, monotonicity

x •s y ≤ z •s y, when x ≤ z (26)

• uniform value limitation

w ≤ x •s y ≤ z, when w ≤ x ≤ z or w ≤ y ≤ z (27)

• commutativity

x •s y = y •s x (28)
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• associativity

x •s (y •s z) = (x •s y) •s z (29)

• and

x →s y = inf{t ∈ L : y ≤ x •s t}. (30)

Definition 3.3: The system Ss = 〈L, •s,→s, 0L, 1L〉 is

called the s-norm system in the set L partially ordered by

the relation ≤, and the operation •s : L×L → L is called the

s-norm in the L for the operation (.d) of dual values in the

system St.

Example 3.1: Let range of numbers L = [0, 1] be ordered

by the relation ≤. The operation •t : [0, 1] × [0, 1] → [0, 1],
for any x, y ∈ [0, 1], is the t-norm and is defined by formula:

x •t y = inf{x, y} = min{x, y}. (31)

Its generalized form determines the formula, for any set X ⊆
[0, 1] ∑

t
X = infX. (32)

It can be determined that:

x →t y = sup{t ∈ [0, 1] : min{x, t} ≤ y}. (33)

Example 3.2: Let range of numbers L = [0, 1] be ordered

by the relation ≤. The operation •s : [0, 1] × [0, 1] → [0, 1]
for any x, y ∈ [0, 1], is the s-norm and is defined by formula:

x •s y = sup{x, y} = max{x, y} (34)

Its generalized form determines the formula, for any set X ⊆
[0, 1]: ∑

s
X = supX. (35)

It can be determined that:

x →s y = 1− (1− x) →t (1− y) =

= 1− sup{t ∈ [0, 1] : min{1− x, t} ≤ 1− y} =

= inf{t ∈ [0, 1] : y ≤ x •s t}. (36)

Having t-norm and s-norm systems can be determined:

Definition 3.4: The system Slogic = 〈L, •s,→t, 0L, 1L〉 is

called the logical residuum system.

IV. THE INFORMATION GRANULE DATABASE

Firstly, the definition of the perceptual system is given in

order to define the information granule database. Then, it is

shown how this database is induced by this system.

A. The perceptual system

Definition 4.1: For the semantic network SN =
〈U,AS,DS〉, a perceptual object is an instance which

was given a certain value in the residuum system

Slogic = 〈L, •s,→t, 0L, 1L〉, i.e. perceptual objects are

elements of some set O = Ugen, where the set L0 ⊆ L is a

set of values of instances in the residuum system Slogic.

Giving certain values in the Slogic residuum system also has

some interpretation in Slogic. This interpretation is defined by

the definition:

Definition 4.2: A probe function or a perception is a

function that φ : O → L0 represents a feature of a perceptual

object [23], [26].

Further, for the SN, it is assumed that any description

φ ∈ DS corresponds to a certain perception φ : O → L0

determined by this description φ.

Extending the perceptual system definition [26], for the

concept of the logical residuum system Slogic, it is assumed

that:

Definition 4.3: A perceptual system PS = 〈O,F,Slogic〉
consists of a nonempty set O of sample perceptual objects

and the set F of chosen perceptions φ : O → L0, called the

perceptions of the PS system. Elements of the L0 are called

then the perception degrees.

B. The granule information database induced by the percep-

tual system

Definition 4.4: The system:

Gbase = 〈G, {}G,∪G,⊆G,=G,

0G, 1G, Ginst, Gset, G0〉, (37)

is called the granule information database, where elements

of the set G are called granules, Ginst is a set of instance

granules, Gset is a set of set granules and G0 is a set of

singletons of granules, a granule 0G is called an empty granule

and a granule 1G is called a full granule, the operations

{}G,∪G and the relations ⊆G,=G are defined by following

conditions:

G0 ⊆ Gset, (38)

G = Ginst ∪Gset, (39)

Ginst ∩Gset = ∅. (40)

There is some function {}G : Ginst → G0, such that

for any x ∈ Ginst, {x}G ⊆G 1G, additionally, if

{x0}G ⊆G {x}G, then {x0}G =G {x}G, (41)

G0 = {x ∈ Gset : ∃z ∈ Ginst(x = {z}G)}. (42)

There is some function ∪G : ℘(Gset) → Gset, such that

∪G∅ = 0G, (43)

∪GGset = 1G, (44)

∪G{z} = z, for z ∈ Gset, (45)

x ⊆G x, (46)

0G ⊆G x, (47)

If x 6= 0G, then, it is not true that x ⊆G 0G, (48)

y = ∪G{x ∈ G0 : x ⊆G y}, (49)

for any x, y ∈ Gset, (x =G y) ⇔df

∪G {z ∈ G0 : (z ⊆G x) ⇔ (z ⊆G y)} = 1G. (50)

It is assumed, in the sense of the set theory, that the

Inst : Ugen → Ginst function assigns a certain instance
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granule to each instance. Any such function allows to enter a

notation agreement for the granule Inst(〈v1, v2, ..., vk〉), when

〈v1, v2, ..., vk〉 ∈ Uk:

(Inst)〈x1, x2, ..., xk〉 = Inst(〈v1, v2, ..., vk〉)

iff 〈v1, v2, ..., vk〉 ∈ Uk and

xi = Inst(vi), for i = 2, ..., k. (51)

Theorem 4.1: Let, for any perceptual system PS =
〈O,F,Slogic〉, Slogic = 〈L, •s,→t, 0L, 1L〉, symbols

G, {}G,∪G,⊆G,=G, 0G, 1G, Ginst, Gset, G0 be interpreted

as follows (for any φ1, φ2 ∈ Gset, φ ∈ G0, C0 is a family

of maximum subjects in the semantic network SN):

Ginst = Ugen × L0 ∪ C0, (52)

where C0 ⊆ ℘(Ugen) and L0 = {r : exists a ∈ Ugen and

exists φ ∈ F such that r = φ(a)},

Gset = F, (53)

G = Ginst ∪Gset, (54)

φ1 ⊆G φ2 iff for any x ∈ L, φ1(x) →t φ2(x) = 1L, (55)

{(a, r)}G = µ ∈ F, (56)

where µ is such perception that for (a, r) ∈ Ginst, µ(a) =
r 6= 0L, and µ ⊆G 1G, additionally, if µ0 ∈ F and µ0 ⊆G

µ, then µ0 = µ,

{K}G = µ ∈ F, (57)

where µ is such perception that for K ∈ C0, µ(a) =
1L for any a ∈ K,µ(a) 6= 0L for any a /∈ K and µ ⊆G 1G,
additionally, if µ0 ∈ F and µ0 ⊆G µ, then µ0 = µ,

G0 = {φ ∈ F : exists u ∈ Ginst,

such that φ = {u}G}. (58)

Additionally, if A ⊆ F , then:

(∪GA)(x) =
∑

P
{y ∈ L : y = φ(x) ∧ φ ∈ A}, (59)

(φ1 =G φ2) ⇔df ∪G{φ ∈ G0 : (φ ⊆G φ1) ⇔

⇔ (φ ⊆G φ2)} = 1G. (60)

Then, the system 〈G, {}G,∪G,⊆G,=G

, 0G, 1G, Ginst, Gset, G0〉 is the granule information

database.

Definition 4.5: The granule database described in above

theorem is called the granule information database induced

by the perceptual system PS.

V. EXTENDING THE INFORMATION GRANULE DATABASE

TO THE INFORMATION GRANULE SYSTEM

Definition 5.1: For any x ∈ Ginst and y ∈ Gset,

x ∈G y iff {x}G ⊆G y. (61)

The relation ∈G is called the relation of belonging instance

granule to the granule set.

Hence, and from the conditions describing the information

granule database:

Theorem 5.1:

{x ∈ Ginst : x ∈G 0G} = ∅, (62)

{x ∈ Ginst : ∃z ∈ G0(x ∈G z)} = Ginst, (63)

{z ∈ Gset : ∃x ∈ Ginst(x ∈G z)} = Gset, (64)

y = ∪G{{x}G : x ∈G y}, (65)

Theorem 5.2: Granules y′G, y∩G z, y∪G z, and y\G z exist

in the granule database, and are defined by formulas:

y′G = ∪G{z ∈ G0 : ∃x ∈ Ginst(x ∈G z ∧ ¬x ∈G y)}, (66)

y ∩G z = ∩G{y, z} = ∪G{t ∈ G0 :

∃x ∈ Ginst(x ∈G t ∧ x ∈G y ∧ x ∈G z)}, (67)

y ∪G z = ∪G{y, z} = ∪G{t ∈ G0 :

∃x ∈ Ginst(x ∈G t ∧ (x ∈G y ∨ x ∈G z))}, (68)

y \G z = ∪G{t ∈ G0 :

∃x ∈ Ginst(x ∈G t ∧ x ∈G y ∧ ¬x ∈G z)}. (69)

In order to unify the expressions of the attributive language

AL in various theories of information granules, formulated

in theories: set theory, probability theory, possible data sets

in the evidence systems, fuzzy set theory, rough sets theory

and shadowed sets theory, the expressions of the attributive

language are assumed to be interpreted in a chosen relational

system G [8], [9], [11] given below. A distinction is made

between the set of granule instances and the set of granule

set instances. In the first set, attribute instances are interpreted

and in the second - set of instances (concepts and roles). The

important thing is that the granule set instances determine

sets of instances. Granule instances are interpreted as elements

of granule set instances, analogically to some classical G
+

algebra.

Definition 5.2: Let the granule system for the attributive

language be:

G = 〈G,MG,∪G,∩G, \G, ′G,∈G,⊆G,

=G, 0G, 1G, Ginst, Gset, G0〉. (70)

where:

• G = Ginst ∪ Gset is a sum of sets: Ginst – is a set

of granule instances and Gset is a set of granule set

instances,

• MG is a set of functions mG : G → G,

• operations ∪G,∩G are generalized operations of sum and

product described on the subsets of the granules family

G,

• \G is an operation of granules difference,

•
′

G is an operation of granules closure,

• for an empty set, a value of these generalized operations

is an empty granule 0G and for the G set it is a full

granule 1G,
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• ∈G is a relation of being a granule element,

• ⊆G is a relation of granules inclusion for instance set

granules,

• =G is a relation of granules closeness for instance set

granules,

• G0 is a set of chosen granules.

G0 is a set of granules called granules of instances single-

tons such that there is some function {}G : Ginst → G0 and

G0 = {x ∈ G : ∃z ∈ Ginst(x = {z}G)}.

VI. EXAMPLES OF THE GRANULE SYSTEM

Let consider two examples of the granule system the rough

and the fuzzy granule databases.

A. The rough granule database

Let in the system 〈Ugen, C〉, where C is a partition of Ugen,

operations be defined (for any X ⊆ Ugen):

C−(X) = ∪{K ∈ C : K ⊆ X}, (71)

C+(X) = ∪{K ∈ C : K ∩X 6= ∅}, (72)

Any sets X,Y ⊆ Ugen are indiscernibility, what is written:

X ∼ Y iff

C−(X) = C−(Y ), (73)

C+(X) = C+(Y ). (74)

The relation ∼ is a relation of equivalence. The abstraction

classes [X]∼ of this relation for the representative X is

denoted as XC . ∅C is denoted by 0C and (Ugen)C is denoted

by 1C .

The abstract classes of the relations ∼ are called rough sets

in the system 〈Ugen, C〉.
The set inclusion relations and the rough membership

relation [10] is defined as follows (for any X,Y ⊆ Ugen):

X ⊆C YC iff C−(X) ⊆ C−(Y )

and C+(X) ⊆ C+(Y ), (75)

X ∈C YC iff X 6= ∅ and exists such K ∈ C,

that X ⊆ K,C−(X) ⊆ C−(Y ) and K ⊆ C+(Y ). (76)

The expression X ∈C YC is read: X is an element of the

rough set YC . Hence:

X ∈C YC iffX 6= ∅ and exists such K ∈ C,

that X ⊆ K and X ⊆C YC . (77)

Intuitively, due to the fact that the description of x ∈ Y
cannot be precisely determined, this description is interpreted

as follows: indistinguishable from x elements of the indistin-

guishable elements from the sets Y . With the relation ∈C ,

the conclusion of rough sets can also be defined. For any

Y ⊆ Ugen,

XC ⊆C YC iff for any Z ⊆ Ugen,

if Z ∈C XC , then Z ∈C YC . (78)

Using the theorems given by Bryniarski [10], [11], in the

family approximate sets, analogically to the classical set the-

ory, the following operations can be defined: the addition ∪C ,

the multiplication ∩C , the difference \C and the complement
′C of the rough sets.

For any rough sets XC , YC , and any Z ⊆ Ugen,

Z ∈C XC ∪C YC iff Z ∈C XC or Z ∈C Y, (79)

Z ∈C XC ∩C YC iff Z ∈C XC and Z ∈C Y, (80)

Z ∈C XC \C YC iff Z ∈C XC and not Z ∈C Y, (81)

Z ∈C (XC)
′C iff Z ∈C (Ugen)C \C XC , (82)

Operations ∪C ,∩C can be generalized and used in the same

way as in the set theory.

If the system:

Grough = 〈G,MG,∪G,∩G, \G,
′G , {}G,∈G,⊆G,

=G, 0G, 1G, Ginst, Gset, G0〉, (83)

is interpreted as follows:

Gset =df {XC : X ⊆ Ugen}, (84)

Ginst =df {X ⊆ Ugen : X = {x} or X ∈ C}, (85)

G =df Ginst ∪Gset, (86)

∪G =df ∪C , (87)

∩G =df ∩C , (88)

\G =df \C , (89)

′G =df
′C , (90)

∈G=df∈C , (91)

⊆G=df⊆C , (92)

=G=df=, (93)

0G =df ∅C = {∅}, (94)

1G =df (Ugen)C , (95)

An operation {}G : Ginst → G0 such that for any X ∈
Ginst, {X}G = XC , G0 = {XC : X ∈ Ginst}, and the set of

operations MG is empty.

Then the system Gbase (equation 37 from definition 4.4)

is a granule information database, and the elements of G
are called the approximate granules. Moreover, the system

Grough is the rough granule system.

B. The fuzzy granule database

Let PS = 〈O,F,Slogic〉 be a perceptual system, in which

O = Ugen, and the instance values L0 ⊆ [0, 1] are in the

residuum system Slogic = 〈[0, 1], •s,→t, {0, 1}〉. In the range

[0, 1], the s-norm •s : [0, 1] × [0, 1] → [0, 1] is defined by

formula (for any x, y ∈ [0, 1]):

x •s y = sup{x, y} = max{x, y}. (96)

Its generalized form determines the formula (for any set X ⊆
[0, 1]): ∑

s
X = supX. (97)
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It can be determined that:

x →t y = sup{t ∈ [0, 1] : min{x, t} ≤ y}. (98)

F is a set of symbols µA of a function µA : Ugen →
[0, 1], and also a symbol of some fuzzy sets [29], [30], [31],

described for any A ⊆ Ugen as follows (for any x ∈ K) [17]:

[x] = K ⇔ K ∈ C and x ∈ K, (99)

µA(x) = |A ∩ [x]|/|[x]|, (100)

i.e. F = {µY : Y ⊆ Ugen}, where |X| denotes the cardinality

of the X .

Hence the result:

Theorem 6.1: There are (for A,B ⊆ Ugen):

C−(A) = {x ∈ Ugen : µA(x) = 1}, (101)

C+(A) = {x ∈ Ugen : µA(x) > 0}, (102)

AC = BC ⇔ for any x ∈ Ugen, µA(x) = µB(x) ⇔

⇔ µA = µB , (103)

AC ⊆C BC ⇔ for any x ∈ Ugen, µA(x) →t

→t µB(x) = 1, (104)

µA(x) →t µB(x) = 1 ⇔ µA(x) ≤ µB(x), (105)

AC ⊆C BC ⇔ for any x ∈ Ugen, µA(x) ≤ µB(x). (106)

The perceptual system PS = 〈O,F,Slogic〉, induces the

fuzzy granule database Gbase (equation 37 from defini-

tion 4.4), where symbols G, {}G,∪G,⊆G,=G, 0G, 1G, Ginst,
Gset, G0 are interpreted as follows:

Ginst = Ugen × L0 ∪ C, (107)

where C is a partition of Ugen and L0 = {r : exisits u ∈ Ugen

and exists µ ∈ F such that r = µ(u)},

Gset = F, (108)

G = Ginst ∪Gset, (109)

µ1 ⊆G µ2 iff for any x ∈ Ugen, µ1(x) →t

→t µ2(x) = 1, (110)

{(a, r)}G = µ ∈ F, (111)

where µ is such perception that µ(a) = r 6= 0 and µ ⊆G 1G,

additionally, if µ0 ∈ F and µ0 ⊆G µ, then µ0 = µ,

{K}G = µ ∈ F, (112)

where µ is such perception that for K ∈ C, µ(a) = 1 for any

a ∈ K,µ(a) 6= 0 for any a /∈ K and µ ⊆G 1G, additionally,

if µ0 ∈ F and µ0 ⊆G µ, then µ0 = µ,

G0 = {φ ∈ F : exists u ∈ Ginst,

such that φ = {u}G}, (113)

Additionally, if A ⊆ F , then

(∪GA)(x) = sup{y ∈ [0, 1] : y = µ(x) ∧ µ ∈ A}, (114)

(µ1 =G µ2) ⇔df ∪G{µ ∈ G0 : (µ ⊆G µ1) ⇔

⇔ (µ ⊆G µ2)} = 1G. (115)

VII. CONCLUSION

Presented application of abstraction methods in creating

concepts allows to describe and solve more complex problems

of knowledge representation in the semantic network, espe-

cially in the Semantic Web. Following issues are presented in

this paper:

• A semantic network having a more general graph rep-

resentation of the knowledge representation has been

specified, i.e. one in which the edges of the network

can have more than two vertices [5], [7], [8]. Roles in

attribute language AL can join more than two vertices of

the network. In addition, all currently used methods of

knowledge representation can be implemented in a certain

semantic network understood as in this paper.

• The theory of information granule databases in the se-

mantic network has been formulated, in which axioms

meet the standard theorems of the set theory defining the

concept of a set. The model of this theory is the granule

system.

• It has been shown that very complex constructs of the

interpretation of the AL language expressions in the

granule systems [9], at a higher level of abstraction, can

be simplified by reducing them to interpretation in the

granule databases induced by the perceptual system.

• Due to the fact that any granules are sums of singletons,

calculations in granule systems can be simplified by per-

forming them only on certain selected representatives of

the elements of these granules. That allows to implement

such computational procedures for the most frequently

occurring in the processing of knowledge large data sets

represented in the Semantic Web.

In further work presented information granule system will be

designed also for extended sets, multiset, Borel field of sets

and the system of conceiving will be defined.
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